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Abstract

Robots have gained its popularity in many areas from industrial, household to med-

ical applications. To perform their tasks efficiently, they must be equipped with abil-

ity of localizing themselves in the environment and determining handling objects’

positions. Those remains the most challenging problems for the computer vision

and robotics researchers.

The thesis presents efforts of continuing applying recent advanced natural in-

spired optimization methods in general and adaptive differential evolution methods

in particular for above tasks. It contributes to the research area in the important way

of proposing new pipelines for applying the optimization algorithms into 3D Range

Image Registration. It also proves the effectiveness of those optimization algorithms

in applying for object tracking problem with 2D cameras.

The proposed methods presented in this thesis have been fully implemented and

empirically evaluated. The first demonstration related to registering different 3D

scenes to archive the transformation matrix of camera movement. The fast, accu-

rate, and robust results show that the proposed algorithms significantly improves

on the registration problem over state-of-the-art algorithms. The second demonstra-

tion presents the model-based tracking system for textureless objects by using 2D

camera. Experiment results show the ability of the methods in solving object detec-

tion and tracking problems.
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Chapter 1

Introduction

In Japan and other developed countries, aging population is becoming a great con-

cern for society [1] . As life expectation increase, so does the chance of people be-

coming physically and cognitively limited or disabled. In the same way, require-

ments for caring services and people who can give those services. The social phe-

nomenon forces us to find out new solutions including technologies for promoting

independent living, protecting elderly from disabilities, increasing their participa-

tion in daily life. Which can help them to improve their health-state and prevent

mitigating to care-giving state.

Recent research program in Japan [2] and USA [3] proposes key robot technolo-

gies for prolonging the independence of elderly people. Those robots assist people

in performing their daily activities. Some robots could bring objects, sorting dishes

[4] , set table or warn people in case of forgetting something. Indeed a robot capa-

ble of performing pick-and-place tasks for the objects of daily use might already be

of substantial use. Assistive robots need to be equipped with necessary perceptual

capabilities. The robots have to detect, recognize, localize and track the position of

manipulating objects in order to perform their task competently.

This dissertation thesis continues investigating the core technologies for robot lo-

calization methods, image registration, by using the recent developed optimization

algorithms as the searching engines. We also apply those algorithms into tracking
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problem to find object positions which enables robots to handle objects.

1.1 Intelligent Evolutionary Optimization Algorithms

Optimization takes part into every aspect of our lives. Our working schedules need

to be optimized, transportation routes need to be optimized to minimize possibil-

ity of traffic jams [5], household wives need to optimize their expenses, biological

system need to be optimized to adapt with environment changes [6]. The fascinat-

ing of optimization area is not only because of its algorithmic or theoretical content,

but also its universal applicability. In computer vision task, searching algorithms

work on complicated and nonlinear searching spaces, using intelligent evolutionary

algorithms is necessary for solving problems.

Computers has been dramatically developed from the first versions, they are

good at what we poorly do, like calculating. However, they would long to be able to

perform tasks that humans can do well, like recognizing a face. This led to attempts

to mimic biological behavior in an effort to make computers better at such tasks.

These efforts resulted in technologies like Fuzzy systems [7], Neural networks [8],

Genetic Algorithms [9], and other evolution algorithms (EAs). EAs are therefore

considered to be a part of the general category of computer intelligence.

This section introduce some intelligent characteristics included in EAs: adapta-

tion, randomness, communication, feedback, exploration, and exploitation. These

are the characteristics that implemented in EAs in searching for intelligent algo-

rithms [10].

1.1.1 Adaptation

We usually consider adaptation to changing environments as a feature of intelli-

gence [11]. In our society, if you are intelligent, you will be able to learn things faster
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and change yourself following different conditions. However, if you are not so in-

telligent, then you need helps from someones else or you are slower in adapting

yourself.

However, we do not consider adaptive controllers intelligent [12, 13], or a virus

that can survive extreme environments intelligent. We thus conclude that adaptation

is a necessary but not sufficient condition for intelligence. We want our EAs be able

to adapt with a wide class of problems. Adaptability in an EA is only one of many

criteria for a successful EA.

1.1.2 Randomness

Ones usually think of randomness in negative terms. We want everything in your

control and trajectory, we try to avoid unpredictable things and we also try to control

our environment. However, some degree of randomness is a necessary component

of intelligence [14] . Think of a zebra running to escape from a lion. If the zebra runs

in a straight line and at a constant speed, it will be easy to catch. But an intelligent

zebra will zigzag and move unpredictably to avoid its predator. Conversely, think

of a lion that is trying to catch a zebra. If the lion waits at the same bush and at the

same time every day, it will be easy to avoid. But an intelligent lion will strike at

different places and different times and in an unpredictable way. Randomness is a

characteristic of intelligence.

Too much randomness will be counterproductive. If the zebra randomly decides

to lie down while being chased, we would be right to question its intelligence. If a

lion randomly decides to dig a hole in its search for a zebra, we would be right to

question its intelligence. So randomness is a feature of intelligence, but only within

limitations [15].

EAs designs will include some component of randomness. If we exclude ran-

domness, EAs will not work well. But if we use too much randomness, they will
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not work well either. We will need to use the right amount of randomness in EA de-

signs. Of course, as discussed earlier, EAs are adaptable. Therefore, good EAs will

perform well over a range of randomness measures. We cannot expect the EAs to

be so adaptable that we can use any level of randomness, but they will be adaptable

enough so that the exact randomness measure will not be critical.

1.1.3 Communication

Communication is a feature of intelligence. Consider a genius who takes an IQ test,

except the genius has no way of communicating. He will fail the IQ test even though

he is a genius. Many deaf, dumb, and autistic individuals fail IQ tests even though

they are quite intelligent. Children who are raised without human interaction are not

creative, intelligent, happy, or well adjusted [16]. Their lack of communication with

others during their formative years prevents them from developing any intellectual

capacity beyond a young child. Their years of isolation are irrecoverable, and they

cannot learn to communicate or adapt to society.

Intelligence not only involves communication, but it is also emergent. That is,

intelligence arises from a population of individuals. A single individual cannot be

intelligent. It can be argued that there are many intelligent individuals in the world,

and even if such an individual were isolated he would still be intelligent. However,

such individuals gained their intelligence only through interaction with others. A

single ant wanders aimlessly and accomplishes nothing, but a colony of ants can

find the shortest path to food, build elaborate networks of tunnels, and organize

themselves as a self-sustaining community [17]. Likewise, a single individual will

never accomplish anything if he never has any interaction with a community. The

main point here is that communication is a feature of intelligence. This is why most

EAs involve more than one candidate solutions. Those candidates interact and com-

municate with each other and learn from each other’s successes and failures. After
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many loops of learning and changing, the population of individuals evolves a good

solution to the optimization problem.

1.1.4 Feedback

Feedback is a fundamental characteristic of intelligent [18]. This involves adapta-

tion, which was discussed above. A system cannot adapt if it cannot sense and react

to its environment. However, feedback involves more than adaptation; it also in-

volves learning. When we make mistakes, we change so that we don’t repeat those

mistakes. However, even more importantly, when others make mistakes, we ad-

just our behavior so that we don’t repeat those mistakes. Failure provides negative

feedback. Conversely, success (our’s and others’) provides positive feedback and

influences us to adopt those behaviors to which we attribute success. We often see

others who don’t seem to learn from mistakes, and who don’t adopt behaviors that

are proven to lead to success; we don’t consider such people to be very intelligent.

Feedback is also the basis for many natural phenomena. The water cycle consists of

an endless succession of rain and evaporation. More rain leads to more evaporation,

and more evaporation leads to more rain. Since this includes a fixed amount of wa-

ter, the water cycle leads to a stable amount of moisture on the surface of the earth

and in the sky. If this feedback mechanism were somehow disturbed, there would be

a lot of difficulties for life, including floods and drought. The sugar/insulin balance

in the human body is another feedback mechanism [19] . The more sugar we eat,

the more insulin our pancreas produces; the more insulin our pancreas produces,

the more sugar is absorbed from the blood. Too much sugar in the blood leads to

hyperglycemia, and too little sugar in the blood leads to hypoglycemia. Diabetes is

the disturbance of the sugar/insulin feedback mechanism, and can lead to serious

and long-term health problems. This characterization of feedback as a hallmark of

intelligence is often recognized in intelligent control theory [20]. Feedback is not a
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sufficient condition for intelligence. No one would call a proportional controller in-

telligent, and no one would call a mechanical thermostat intelligent. Feedback is a

necessary, but not sufficient, condition for intelligence.

1.1.5 Exploration and Exploitation

Exploration is the search for new ideas or new strategies. Exploitation is the use of

existing ideas and strategies that have proven successful in the past. Exploration is

high-risk; a lot of new ideas waste time and lead to dead ends. However, explo-

ration can also be high-return; a lot of new ideas pay off in ways that we could not

have imagined. Exploitation is closely related to the feedback strategies discussed

previously. Someone who is intelligent uses what they know and what they have

instead of constantly reinventing the wheel. But someone who is intelligent is also

open to new ideas, and is willing to take calculated risks. Intelligence includes the

proper balance of exploration and exploitation. The proper balance of exploration

and exploitation depends on how regular our environment is [21]. If our environ-

ment is rapidly changing, then our knowledge quickly becomes obsolete and we

cannot rely as much on exploitation. However, if our environment is highly consis-

tent, then our knowledge is dependable and it may not make sense to try very many

new ideas. EA designs will need a proper balance of exploration and exploitation

to be successful. Too much exploration is similar to too much randomness, which

we discussed earlier, and will probably not give good optimization results. But too

much exploitation is related to too little randomness. The proper balance of explo-

ration and exploitation in EAs was called "the optimal allocation of trials" by John

Holland, one of the pioneers of genetic algorithms [22].
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1.2 Range Image Registration

The three-dimensional reconstruction of real objects is an important topic in com-

puter vision [23] . Most of the acquisition systems are limited to reconstruct a partial

view of the object obtaining in blind areas and occlusions, while in most applications

a full reconstruction is required. Many proposed techniques such as Goicp[24] and

SAICP[25] fuse 3D surfaces by determining the motion between the different views.

The first step is related to obtaining a rough registration when such motion is not

available. The second one is focused on obtaining a fine registration from an initial

approximation. Figure 1.1 and Figure 1.2 show an example of registration result for a

more completed views from six range images from PointCloudLibrary website[26].

FIGURE 1.1: Six range images

FIGURE 1.2: Registration result
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1.2.1 Going 3D

The introduction of commercial depth sensing devices, such as the Microsoft Kinect

and Asus Xtion, has shifted the research areas of robotics and computer vision from

2D-based imaging and laser scanning toward 3D-based depth scenes for environ-

ment processing. As physical objects or scenarios are built using more than a single

image, images from different times and positions need to be aligned with each other

to provide a more complete view. We call the alignment process registration, and

it plays a key role in object reconstruction, scene mapping, and robot localization

applications. Depending on the number of views that are processed simultaneously,

registration is divided into multi-view [27] and pair-wise cases [28]. Our method fo-

cuses on the latter case for constructed range images captured by 3D cameras. From

two images, called the model and the data, the registration algorithm finds the best

homogeneous transformation that aligns the data and the model image in a common

coordinate system.

1.2.2 Classical Approach

The iterative closest point (ICP)[29] algorithm and its variants, such as EM-ICP[30]

and Generalized-ICP[31], have been indispensable tools in registration algorithms.

ICP’s concept and implementation are easy to understand. It derives a transforma-

tion that draws images closer to each other using their L2 error iteratively. ICP-class

algorithms have a drawback for general registration in that they require a further

assumption of near-optimal initial pose transformation; otherwise, the registration

process is likely to converge to local instead of global or near global optima. Some

mesh and point cloud editor software programs, such as Meshlab [32], include an

ICP built-in registration tool; however, they require that users perform manual pre-

alignment before ICP can be applied.
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To overcome the shortage of ICP-class methods, automatic registration algo-

rithms in general perform two steps: coarse initialization and fine transformation. If

two point clouds are sufficiently close, the first step can be omitted. Otherwise, re-

searchers are faced with a big challenge. Two approaches for coarse transformation,

pre-alignment estimation, or initialization exist: local and global. The former uses

local descriptors (or signatures), such as PFH[33] and SIFT[34], which encode local

shape variation in neighborhood points. If the key points of these descriptors appear

in both registered point clouds, the initialization movement can be estimated by us-

ing sample consensus algorithms, such as RANSAC [35]. Unfortunately, it is not

always guaranteed that these signatures will appear in both registered point clouds.

On the other hand, global approaches, such as Goicp and SAICP, take all the points

into account. The computation cost is the biggest problem in this approach. In big

number data cases, the computation cost becomes large. By virtue of new search

algorithms, in particular heuristic optimal methods, and the increase in computer

speed achieved by using multi-core computer processor units (CPUs) and graphic

computation units (GPUs) [36], it is possible to find reasonable solutions using global

approaches for the registration problem. When the coarse transformation has been

estimated, the ICP algorithm is an efficient tool for finding the fine transformation.

1.2.3 Optimization Algorithms with Range Image Registration

By integrating optimal search tools with an ICP algorithm, researchers have created

hybrid algorithms that integrate global optimizers with ICP. However, this approach

has its limitations. SAICP, a parameter-based algorithm, uses simulated annealing

[37] as a search engine to find the best movement combination of rotation angles

and translation. However, SA is not sufficiently effective to allow its application to

a complicated fitness function, where the potential of a failed convergence is high.

Goicp converges slowly, since it uses the branch-and-bound (BnB) method, a time
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consuming and non-heuristic method, as a search algorithm to ensure a 100% con-

vergence rate. In addition, ICP algorithms frequently include a kd-tree structure for

searching corresponding points. Using the kd-tree nearest neighbor search method

also leads to a high computation cost and a long runtime.

1.3 Object Tracking

Object tracking plays a crucial part in the field of computer vision. Its greatest ap-

plication comes in the area of automated video analysis which has received large

interest in recent times with the proliferation of powerful computer systems. In

video analysis applications, there are three main steps that take place. These steps

are: the detection of objects of interest, the tracking of the objects from one frame to

another and lastly the analysis of the trajectory of the objects from one frame to an-

other and lastly the analysis of the trajectory of the objects in question [38]. For this

reason, we find object tracking being paramount in applications that deal with auto-

mated surveillance [39], video indexing, motion recognition [40], human computer

interaction and traffic monitoring [41] among others.

The prior knowledge of object and its behavioral properties must be know and

programmed in advance. Over the years, many great tracking algorithms and meth-

ods have been proposed. They all differ in approach to dealing with the issue of:

what image feature to utilize, what is the best object representation and lastly how

should the motion, shape and appearance of the object be modeled. We can divide

tracking methods into three main categories which are: point tracking, kernel track-

ing and silhouette tracking.

1.3.1 Point Tracking

Point tracking methods involve detecting objects in consecutive frames and repre-

senting them as points [42]. The association of the points being based on the state



Chapter 1. Introduction 11

which can depended on the object location or motion with the system requiring an

external module for detecting objects in every frame.

The formulation of correspondence o the points across different frames can be a

difficult problem especially in the presence of occlusion, mis-detection, entries and

exits of objects.

1.3.2 Kernel Tracking

Kernel tracking is usually performed by computing the motion of an object from

one frame to other with the object being represented as primitive shape region [43].

Here the tendency is to see object motion in a form of a parametric motion such as

translation, affine and the like. Otherwise we see it as a dense flow field computed in

subsequent frames. The difference between two approaches is found in appearance

of representation used, the number of objects being tracked and the methods used

to approximate motion flow.

1.3.3 Silhouette Tracking

Since geometric transformations and illumination changes has no effect on finding

keypoints, they have been widely used for matching images from slightly different

viewpoints. Keypoint-based approaches work well in textured objects but texture-

less objects [44] . Textured objects have various keypoints, those have high poten-

tial appearing on both images. After finding keypoints, sample consensus such as

RANSAC calculates the most suitable transformation of the object from reference

position to current position. The more matched keypoints, the more accurate the

transformation is. On texture-less objects lack of keypoint repeatability and stability

on texture-less regions neither reduces the accuracy of sample consensus method

nor leads to wrong results. Like keypoints, edges are also invariant to general ge-

ometric transformations and illumination changes. Using edges are more suitable
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as a general approach even with texture-less objects [45]. In early computer vision

research, to find the best alignment between two edge maps, a given priori set of

edge templates compare their suitability to the current edge maps to draw the mot

suitable transformation. The current proposed method of chamfer distance match-

ing enhances the cost functions enable for applying global searching algorithm into

object tracking problem [46]. One drawback of using edges is that they are not dis-

tinctive enough to provide effective discrimination in complex background or occlu-

sions, there have been efforts to enhance the previous one by unifying interest points

or considering multiple but limited hypotheses on edge correspondences [44]. For

consideration of multiple hypotheses in a more general sense global searching algo-

rithm should come into consideration.

1.4 Thesis Outline and Contributions

Differential Evolution algorithms proved to be effective in solving various computer

vision problems. Its simplicity, effectiveness and straightforward approach are suit-

able characteristics for computer vision applications which require high accuracy,

small runtime and robustness with different scenarios. Those reasons lead us to

continue applying currently developed Adaptive Differential Evolution Algorithms

into problems of Range Image Registration and Object Tracking.

The thesis contributes new approaches for Range Image Registration and Object

Tracking problems by using recently developed Adaptive Differential Evolution Al-

gorithms. The first part, chapter II, we presented the current using methods recently

developed ISADE[47], NNGADE[48]. First adaptive method, not only keeps the ad-

vantages of Differential Evolution but also enhances the effective of algorithms by

applying adaptive techniques. Another more complex algorithm, uses an advanced

adaptive technique based on Neural Network and Genetic Algorithms combination.
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The second part of the thesis, chapter III, we proposed two pipelines for tackling

Range Image Registration problem which are Point Based and Ray-casting Based

approaches. The first pipeline, by using two movement technique, searching al-

gorithms only search on two dimensional searching spaces instead of searching on

conventional six dimensional ones. Dramatically reducing searching dimensions

heightens the convergence rate and accuracy of the results.

With good results on benchmark functions, we believe that adaptive differen-

tial evolution algorithms are sufficient for challenging searching tasks. We propose

the direct applying adaptive differential evolution algorithms to replace current hy-

brid approaches which use both local search and global searching tools. Our new

approach only uses ISADE as a global searching tool on ray-casting, a fast error cal-

culation method. It reduces the computation cost significantly while still archives

high accuracy and robustness for Range Image Registration problem.

Chapter IV presents a potential direction of applying Adaptive Differential Evo-

lution algorithms into object tracking problem. The results proved ability of adap-

tive differential evolution algorithms applying for different problems.

Finally, chapter V presented experiments and results of our proposed algorithms

in various scenarios for Range Image Registration. For Object Tracking problem, our

Adaptive Differential Evolution methods proved to work well in finding a position

of the target object.

The disseration thesis is divided into six chapter as in Figure 1.3 including:

• Chapter 1: Introduction to the thesis topic

• Chapter 2: Adaptive Differential Evolution Algorithms

• Chapter 3: 3D Range Image Registration

• Chapter 4: Model Based Textureless Object Tracking

• Chapter 5: Experiments & Results
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• Chapter 6: Conclusion and future directions

Introduction
Chapter I

Adaptive DE Algorithms
Chapter II

Range Image Regsitration
Chapter III

Object Tracking
Chapter IV

Experiments & Results
Chapter V

Discussion and Future work

Chapter VI

FIGURE 1.3: Thesis outline
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Chapter 2

Adaptive Differential Evolution

Algorithms

2.1 Differential Evolution

To solve complex numerical optimization problems, researchers have been looking

into nature both as model and as metaphor for inspiration. A keen observation of

the underlying relation between optimization and biological evolution led to the de-

velopment of an important paradigm of computational intelligence for performing

very complex search and optimization.

Evolutionary Computation uses iterative process, such as growth or develop-

ment in a population that is then selected in a guided random search using paral-

lel processing to achieve the desired end. Nowadays, the field of nature-inspired

metaheuristics is mostly continued by the Evolution Algorithms (EAs) (e.g., Genetic

Algorithms (GAs), Evolution Strategies (ESs), and Differential Evolution (DE) etc.)

as well as the Swarm Intelligence algorithms (e.g., Ant Colony Optimization (ACO),

Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), etc.). Also the field

extends in a broader sense to include self-organizing systems, artificial life, memetic

and cultural algorithms, harmony search, artificial immune systems, and learnable

evolution model.
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The GAs have been applied to various complex computational problems, and

its validity has been reported by many researchers [1, 2]. However, it requires a

huge computational cost to obtain stability in convergence towards an optimal so-

lution. To reduce the cost and to improve the stability, a strategy that combines

global and local search methods becomes necessary. As for this strategy, current re-

search has proposed various methods [3]. For instance, Memetic Algorithms (MAs)

[4, 5, 6, 7, 8, 9] are a class of stochastic global search heuristics in which EAs-based

approaches are combined with local search techniques to improve the quality of the

solutions created by evolution. MAs have proven very successful across the search

ability for multi-modal functions with multi-dimensions. These methodologies need

to choose suitably a best local search method from various local search methods for

combining with a global search method within the optimization process. Further-

more, since genetic operators are employed for a global search method within these

algorithms, design variable vectors (DVs) which are renewed via a local search are

encoded into its genes many times at its GA process. These certainly have the po-

tential to break its improved chromosomes via gene manipulation by GA operators,

even if these approaches choose a proper survival strategy. To solve these problems

and maintain the stability of the convergence towards an optimal solution for multi-

modal optimization problems with multiple dimensions, Hieu Pham et al. proposed

evolutionary strategies of Adaptive Plan system with Genetic Algorithm (APGAs)

[10]. It is shown to be statistically significantly superior to other EAs and MAs.

Unlike most other techniques, GAs maintain a population of tentative solutions

that are competitively manipulated by applying some variation operators to find a

global optimum. For non-trivial problems, this process might require high compu-

tational resources such as large memory and search times. To design efficient GAs,

a variety of advances by new operators, hybrid algorithms, termination criteria, and

more are continuously being achieved. Parallel GAs (PGAs) [11, 12, 13] often leads

to superior numerical performance not only to faster algorithms. However, the truly
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interesting observation is that the use of structured population, either in the form

of a set of islands or a diffusion grid, is responsible for such numerical benefits. A

PGA has the same as a serial GA, consisting in using representation of the problem

parameters, robustness, easy customization, and multi-solution capabilities. In ad-

dition, a PGA is usually faster, less prone to finding sub-optimal solutions only, and

able of coorperating with other search techniques in parallel.

Differential Evolutionary (DE)[14] was recently introduced and has garnered sig-

nificant attention in the research literature. DE has many advantages including sim-

plicity of implementation, reliable, robust, and in general is considered as an ef-

fective global optimization algorithm. DE operates through similar computational

steps as employed by a standard EA. However, unlike traditional EAs, the DE vari-

ants perturb the current generation population members with the scaled differences

of randomly selected and distinct population members. Therefore, no separate prob-

ability distribution has to be used for generating the offspring [15]. Recently, DE has

drawn the attention of many researchers all over the world resulting in a lot of vari-

ants of the basic algorithm with improved performance such as Self-adaptive control

parameters DE (jDE) [16] and Advanced DE (ADE) [17]. Compared with and other

techniques [18], it hardly requires any parameter tuning and is very efficient and

reliable.

In DE, the scaling factor F and crossover rate Cr determine the correction and

speed of convergence, while another important parameter, NP , the population size,

remains a user-assigned parameter to handle problem complexity.

2.1.1 Initialization in DE

The initial population was generated uniformly at random in the range lower bound-

ary (lb) and upper boundary (ub).

XG
i = lbj + randj(0, 1)(ubj − lbj) (2.1)
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where randj(0, 1) a random number ∈ [0, 1].

2.1.2 Mutation operation

In DE, there are various mutation schemes to create mutant vectors V G
i = (V G

i,1, ..., V
G
i,D)

for each individual of population at each generation G. XG
i is target vector in the

current population, D is vector dimension number.

DE/rand/1 : V G
i,j = XG

r1,j + F (XG
r2,j −X

G
r3,j) (2.2a)

DE/best/1 : V G
i,j = XG

best,j + F (XG
r1,j −X

G
r2,j) (2.2b)

DE/currenttobest/1 : V G
i,j = XG

i,j + F (XG
best,j −XG

i,j) + F (XG
r1,j −X

G
r2,j) (2.2c)

DE/rand/2 : V G
i,j = XG

i,j + F (XG
r2,j −X

G
r3,j) + F (XG

r4,j −X
G
r5,j) (2.2d)

DE/best/2 : V G
i,j = XG

best,j + F (XG
r1,j −XG

r2,j) + F (XG
r3,j −XG

r4,j) (2.2e)

DE/randtobest/1 : V G
i,j = XG

best,j + F (XG
best,j −XG

r2,j) + F (XG
r2,j −XG

r3,j) (2.2f)

where r1, r2, r3, r4, and r5 are randomly selected integers in the range [1, NP ].

2.1.3 Crossover operation

After mutation process, DE performs a binomial crossover operator on XG
i and V G

i

to generate a trial vector UGi = (UGi,1, ..., U
G
i,D) for each individual population i as

shown in Equation 2.3.

UGi,j =

 V G
i,j if randj 6 Cr or j = jrand

XG
i,j otherwise

 (2.3)

where i = 1, ..., NP, j = 1, ..., D , jrand is a randomly chosen integer in [1, D],

randj(0, 1) is a uniformly distributed random number between 0 and 1 generated for
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each j and Cr ∈ [0, 1] is called the crossover control parameter. Using jrand ensures

the difference between the trial vector UGi and target vector XG
i .

2.1.4 Selection operation

The selection operator is performed to select the better one between the target vector

XG
i and the trial vector UGi entering to the next generation.

XG+1
i =

 UGi if f(UGi ) 6 f(XG
i )

XG
i otherwise

 (2.4)

where i = 1, ..., NP , XG+1
i is a target vector in the next generation’s population.

2.1.5 DE algorithm flowchart

Figure 2.1 shows implementation flowchart of DE algorithms.

2.2 ISADE, an efficient improved version of Differential Evo-

lution algorithm

2.2.1 Adaptive selection learning strategy in mutation operator

With ISADE [19], authors randomly chose three mutation schemes: DE/best/1/bin,

DE/best/2/bin, andDE/randtobest/1/bin. DE/best/1/bin andDE/best/2/bin have

a good convergence property and DE/randtobest/1/bin has a good population di-

verse property. The probability of applying these strategies is equal at values of

p1 = p2 = p3 = 1/3.

DE/best/1 : V G
i,j = XG

best,j + F (XG
r1,j −X

G
r2,j) (2.5a)

DE/best/2 : V G
i,j = XG

best,j + F (XG
r1,j −XG

r2,j) + F (XG
r3,j −XG

r4,j) (2.5b)
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Memorize
Update the best solution so far

FIGURE 2.1: DE implementation process

DE/randtobest/1 : V G
i,j = XG

best,j + F (XG
best,j −XG

r2,j) + F (XG
r2,j −XG

r3,j) (2.5c)

where r1, r2, r3, r4, and r5 are randomly selected integers in the range [1, NP ],

where NP is the population size.

2.2.2 Adaptive scaling factor

To achieve a better performance, ISADE gives the scale factor F a large value ini-

tially to allow better exploration and a small value after the generations to allow ap-

propriate exploitation. Instead of using sigmoid scaling in Equation 2.6 taken from

Tooyama and Hasegawa’s study on APGA/VNC[20], ISADE adds a new factor to
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calculate F as shown in Equation 2.7.

Fi =
1

1 + exp(α ∗ i−NP/2NP )
(2.6)

Fi =
Fi + Fmeani

2
(2.7)

in which Fmeani is calculated as Equation 2.8.

Fmeani = Fmin + (Fmax − Fmin)(
imax − i
imax

)niter (2.8)

where Fmax and Fmin denote the lower and upper boundary condition of F with

recommended values of 0.15 and 1.55, respectively. i, imax, and niter denote the

current, max generation, and nonlinear modulation index as in Equation 2.8.

niter = nmin + (nmax − nmin)(
i

imax
) (2.9)

where nmax and nmin are typically chosen in the range [0, 15]. Recommended

values for nmin and nmax are 0.2 and 6.0 respectively.

2.2.3 Crossver control parameter

ISADE is able to detect whether the height of Cr values are useful. The control

parameter Cr is assigned as

Ci+1
r =

 rand2 if rand1 6 τ

Cir otherwise

 (2.10)
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where rand1 and rand2 are random values ∈ [0, 1], τ represents the probability

to adjust Cr, which is also updated using

Ci+1
r =

 Crmin Crmin 6 Ci+1
r 6 Crmedium

Crmax Crmedium 6 Ci+1
r 6 Crmax

 (2.11)

where Crmin , Crmedium , and Crmax denote a low value, median value, and high

value of the crossover parameter, respectively. We use recommended values of τ =

0.1, Crmin = 0.05, Crmedium = 0.50, and Crmax = 0.95.

2.2.4 ISADE algorithm pseudo-code

ISADE eliminates tuning tasks for the problem-dependent parameters F and Cr.

With simple adaptive rules, the computation complexity of this new version of the

DE algorithm remains the same as that of the original version. All the above ideas

and theories of ISADE algorithm is implemented as in the flowchart shown in Figure

3.11.

2.3 Self-adaptive of Differential Evolution Using Neural Net-

work with Island Model of Genetic Algorithm

We purposed a new evolutionary algorithm called NN-DEGA that using Artificial

Neural Network (ANN) for Self-adaptive DE with Island model of GA to solve large

scale optimization problems, to reduce a large amount of calculation cost, and to

improve the convergence towards the optimal solution.

2.3.1 Island model parallel distributed in NN-DEGA

Migration PGA, island model, are reported to have greater information compati-

bility, a stable design and low computational costs because they deal with GAs in
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Population Initialization
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Calculate cost function for each individual
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Choose the better vector between U vs V

Memory

Calculate cost function for each individual

FIGURE 2.2: ISADE implementation process with ray-casting
corresponding method

parallel. In NN-DEGA, optimization is conducted by applying GA and DE to each

subpopulation. The control variables adjust the vicinity of the output constriction

factor F between the subpopulations. The candidate control variables and the new

solution come from the other subpopulation at the time of immigration, so a diver-

sity of solutions can be expected because the migration destination is determined at

random. A schematic diagram of NN-DEGA with PGA migration is shown in Fig.

2.3.
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FIGURE 2.3: Island Model GA conceptual diagram in NN-DEGA.

2.3.2 Self-adaptive using Neural Network

The self-adaptive constriction factor F (NN) is used for data clustering of the GA

control variables using NN, which have been determined uniquely to stabilize their

variation. From a viewpoint of excellent parallel processing and to ensure compat-

ibility with multi-point search methods such as GA and DE are also used in the

present method. NN is often used in combination with these techniques [24]. NN

may be used to cluster and classify the data without using a signal if it is neces-

sary to learn using a teacher signal that is also a NN. In the present method, the GA

variable data clustering is controlled using unsupervised learning to determine the

output scaling factor change. The initial constriction factor F is set at random and we

vary its value based on the NN output. The unsupervised learning method is also

a multi-layer NN, so we use NN to perform the feed-forward transfer. The number

of layers is determined in a number of search points for each subpopulation. In ad-

dition, the NN is configured after it has been sorted in descending order of fitness

in the subpopulations to the output side from the input side, where the weight of

the transfer equation is as shown in Equation 2.12. Therefore, many subpopulations
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FIGURE 2.4: NN-DEGA neural network.

have highly adaptive search points with strong effects on other subpopulations. The

formulation of the control variable, the transfer equation for each node in the NN

and the schematic diagram of the overall NN are as follows.

wjnin = ynm/y(n−1)m (2.12)

nodet =
I∑
i=1

SP · winjnoutn−1i /I (2.13)

SP = 2 · Ci,G − 1 (2.14)

C = [ci,j , . . . , ci,p] ; (0.0 ≤ ci,j ≤ 1.0) (2.15)

Fi,G+1 = Fi,G −∇Fi (2.16)

The GA handles control variables (CVs) and Ct is allocated to each search point,

which is encoded as a 10-bit string. The order of each search point is allocated to

each node of a multi-layer NN, as shown in Fig. 2.4, on the input side and the output
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FIGURE 2.5: Step size that defined by CVs for controlling a global
behavior to prevent it falling into the local optimum.

side. The weight of the NN, wjnin , which is determined from the adaption ratio of

the search points, is transmitted between the nodes. Ct is the control variable that

determines the step size SP as shown in Fig. 2.5 and this element determines the

extent of the constraint factor change, ∇F . Therefore, the constriction factor change

is an important factor, which determines the width of the overall distribution of

the neighborhood of search points. Using the control variable, we can change F

adaptively to facilitate more stable solution search and better control of the control

variable in the NN. In addition, n is the number of NN hierarchical levels, m is the

number of subpopulations, j, i is the number of neurons in NN, t is the number of

individuals, S is the number of searches per island and I is the maximum number

of islands.

2.3.3 Reconstruction of differential vector

Each target vector aims at the global optimal solution by updating differential vector

based on its best solution has been achieved so far pbestij and the best solution of all
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Algorithm 1 The NN-DEGA Pseudocode

1: Initialize population with CVs;
2: Generate initial DVs;
3: Evaluate individuals with initial DVs;
4: while (Termination Condition) do
5: Adaptive control of scaling factor F = F (NN) using Neural network;
6: Generate DVs via AP with new DE scheme:
7: Generate a mutant vector: Vij,G+1 = gbestj,G + F (NN) · (pbestij,G −Xij,G);
8: Generate a trial vector Uij,G+1 through binomial crossover:

Uij,G+1 =

{
Vij,G+1, (randj ≤ CR) or (j = jrand)
Xij,G+1, (randj ≥ CR) and (j 6= jrand)

;

9: Evaluate the trial vector Ui,G;
10: if f (Ui,G) ≤ f (Xi,G) then Xi,G+1 = Ui,G else Xi,G+1 = Xi,G;
11: end if
12: Evaluate individuals with DVs;
13: Select parents;
14: Recombine to produce offspring for CVs;
15: Mutate offspring for CVs;
16: if (Restructuring Condition) then
17: Restructure chromosome of offspring for CVs;
18: end if
19: end while
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individuals in the population gbestj (where j = [1, 2, . . . , D], D is the dimension of

the solution vector), as Equation 2.17:

Vij,G+1 = gbestj,G + F · (pbestij,G −Xij,G) (2.17)

We carried out the reconstruction of the control variable like considered control vari-

ables APGAs, not only control variable meet the conditions listed below, but also re-

construction of the DE differential vector by keep performing keep the global search

of the search point, the appropriate solution search is always performed.

• The same value adaptation accounted for more than 80% for the entire

• The same bit-string chromosome occupies more than 80% for the entire

• The same value of scaling factor accounted for 50% of the total.

2.3.4 Elite strategy

In this method, using the diploid genetics is not proper to perform the search using

the NN solution [25]. Generally, GA, information has only a single gene for one

individual. However, the structure has a double recessive genetic information that

does not appear in the dominant phenotype. Here, in NN, genetic information is

treated as a control variable. Information dominance for the NN is elite solution

closed to the control variable, as shown in the following equation. With the aim

of having a strong influence in the form of dominant inheritance, enhancing the

effectiveness of the control variable, advantageously advancing the solution search,

elite solution against other sub-populations as the island model of GA.

if |eSP − SP1| − |eSP − SP2| < 0 SP = SP1

if |eSP − SP1| − |eSP − SP2| > 0 SP = SP2

(2.18)
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Chapter 3

Range Image Registration

3.1 Range Image Registration Approaches

This part summaries some approaches for global range image registration problem

up to date.

3.1.1 Registration error function and ICP

SVD and PCA[1] are integrated with ICP in classical methods and global search algo-

rithms are integrated with ICP in most current hybrid methods. In this integration,

SVD and PCA find the coarse transformation while ICP is the fine transformation

estimation tool. The original version of the ICP algorithm relies on the L2 error to

derive the transformation (rotation R ∈ SO3 and translation t ∈ R3), which mini-

mizes the L2 type error:

E(R, t) =

n∑
i=1

ei(R, t) =

n∑
i=1

|Rxi + t− yj∗ | (3.1)

where X = {xi}, {i = 1, 2, 3, ...,m} is the model pointset and Y = {yj}, {j =

1, 2, 3, ..., n} is the data pointset, xi and yj ∈ R3 are the coordinates of the points

in the pointsets, R and t are the rotation and translation matrix, respectively, yj∗ is

the corresponding point of xi denoting the closest point in data pointset Y . R and
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t are determined by Roll-Pitch-Yaw movement of three rotation angles (α, β, γ) and

translation values (x, y, z).

Variants of the ICP algorithm rely on different distance categories to define the

closest points. Point-to-point distance and point-to-plane distance are two popular

examples. Equation 3.2 presents the former case.

j∗ = argmin
j∈{1,...,n}

||Rxi + t− yj|| (3.2)

The following iterative process is designed to achieve the final transformation.

1. Compute the closest model points for each data point as in Equation 3.2.

2. Compute the transformation R and t based on the error obtained using Equa-

tion 3.1.

3. Apply R and t to the data pointset.

4. Repeat Steps 1, 2, and 3 until the error obtained using (3.1) is smaller than a

set tolerance level or the procedure reaches its maximum iteration.

Step by step, the data pointset becomes closer to the model pointset and the

process stops at local minima. ICP’s variants, such as LMICP[2] and SICP[3], use

different methods to calculate the transformation from error E(R, t). A well-known

accumulation registration method in the KinectFusion[4] algorithm uses ICP to reg-

ister two consecutive frames. The transformation matrix for the current frame is

estimated by multiplying the matrices from the previous registration steps. ICP im-

plementation procedure is presented in Figure 3.1.

Kd-tree nearest neighbor

Kd-tree[5] is the way of organizing some number of points in k-dimension space

with binary search tree. It is a powerful tool for nearest neighbor (NN) searching for

the first step in ICP algorithms. Original ICP has Olog(n) complexity, where n is the
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FIGURE 3.1: ICP flowchart

number of point in the pointset.

a) Building a kd-tree: At each level, a hyperplane, which is perpendicular to

the corresponding axis, splits all children into two next branches of the tree. At the

root of the tree, all children would be splitted based on the first dimension. The root

point at each note should be the median point to balance the tree. Each level down,

the tree is divided by the next dimension, returning to the first dimension once all

others have been exhausted. The recurrent procedure is repeated until the last trees

that contain one point. Figure 3.2-3.3 show an example of two dimension kd-tree

and its presentation in binary tree.

b)Kd-tree nearest neighbor search: Nearest neighbor search algorithm aims to

find the closest point of all tree point to a curtain point. By exploiting properties of

kd-tree, kd-tree NN search algorithm quickly eliminates large portions of points in

the searching space. Kd-tree NN algorithm in a k-d tree is presented as following:

1. Starting from the root node, the algorithm moves downward recursively, by

comparing whether the point is less than or greater than the current node in the split

dimension.
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FIGURE 3.2: An example of two dimension kdtree

2. Once the algorithm reaches a leaf node, that leaf node become "current best".

3. The algorithm unwinds the recursion of the tree, performing the following

steps at each node:

1. If the current node is closer than the current best, then it becomes the

current best.

2. There could be other points in the other side of the splitting plane that are

closer to the set point then the "current best". A hypersphere around the set points

is created with "current best" on the surface.

Next, the algorithm checks whether hypersphere intersects hyperplanes by

comparing the distance from the set point to those hyperplanes with radius of the

hypersphere.

1. In case of the hypersphere intersects the plane, there could be a better

points in the other side of the plane, then the algorithm must move downward to

check on the other branch of the tree.

2. The algorithm gets rid the branch on the other side of the node and
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FIGURE 3.3: An example of two dimension kdtree

move upward.

4. The search draws to the NN when the algorithm finishes this process for the

root node.

By using an idea of NN search in kd-tree, if we maintain k current bests instead

of just one closest point we have k-nearest neighbor search algorithm of kd-tree.

3.1.2 Global hybrid registration algorithm

ICP algorithms constitute the most suitable method for registering close or pre-

aligned point-cloud data. In other cases, the algorithm frequently converges incor-

rectly. Global search algorithms are suitable for solving this problem, since they can

find the global instead of the local minima. To reduce the burden of the global search

algorithm, researchers frequently flatten the search space by using ICP. Figures 3.4

and 3.5 show an example of ICP’s operation as a flattening tool. In Figure 3.4, from

any beginning point, after many iterations ICP finds the nearest local optima point.

Figure 3.5 shows that a complex fitness function (colored black) becomes a simpler

one (colored red). As a result, global search methods are able to find the global

minima more effectively.

The integration is effective in the case of point-cloud data where the point num-

ber is small. For cases where the point number is large, the hybrid approach with
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FIGURE 3.4: global searching algorithm with ICP integrated

ICP becomes slow. This method cannot therefore be implemented in real-time ap-

plications. The flowchart of hybrid approach is presented in Figure 3.6.

3.2 Point based Approach

We proposes a novel global registration approach named "Global Hybrid Point-

based Registration". As a global registration method, it requires no local descriptors.

The approach uses points as variables in point spaces with a global searching tools

as a search engines to find the global optimal. With this approach, the searching

dimension reduces from six to two and increase convergence rate as well as robust-

ness. ICP algorithm in the method is itergrated to find local minima and error for

each initialization.

3.2.1 Approach Methodology

If we assign one point of the model pointset as the based point and knowing its

the corresponding on the data poinset, point based registration performs two steps
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FIGURE 3.5: Example of flatten objective function after icp in red
color where original function is in black.

movement which are shown in Figure 3.7, the model pointset is in red and the data

pointset is in blue:

- Step 1: The first movement is to make two corresponding points and their

normal vector aligned is performed. The algorithm works on assumption of exist-

ing corresponding points on data pointset. If there is some losing data on the data

pointset, algorithm could fill the losing data by using nearby data points with inter-

polation methods.

- Step 2: To rotate the data pointset a curtain angle about the point’s normal vec-

tor.

By doing so, the global searching algorithm works only on two dimensions a much

more easier task.

3.2.2 Point based searching

Point and Normal adjustment

The first movement is to move data pointsets Y so a point yj ∈ Y coincides with a

fix point xi ∈ model pointset X , so as their normal vectors. The first step includes
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Begin

Initlization for global

methods populations of

with each population

call ICP procedure for local optimum

global methods

if best error
smaller than threshold

or max generation

End

α, β, γ, x, y, z

methods populations of

α, β, γ, x, y, z

FIGURE 3.6: Implementation procedure of the hybrid approach

two small movements.

First of all, We do the translation from yj to xi. The translation matrix is as in

Equation 3.3.

t =

∣∣∣∣∣∣∣∣∣∣
xxi − xyj

yxi − yyj

zxi − zyj

∣∣∣∣∣∣∣∣∣∣
(3.3)

where xxi , yxi , zxi are coordinates of xi, and xyi , yyi , zyi are coordinates of yi in

Euclidean coordinate.

Then we do the rotation to make xi and current yi coincides. To do so, we need

to find the vector, which normal to both those normal vectors by cross multiplying
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b

b
b

Step 1
Step 2

bθ

nA

nB

nA,nB

nA,nB

FIGURE 3.7: Point based registration method with two-step
movement

those two normal vector. ∣∣∣∣∣∣∣∣∣∣
u

w

v

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
nx,xi

ny,xi

nz,xi

∣∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣∣
nx,yj

ny,yj

nz,yj

∣∣∣∣∣∣∣∣∣∣
(3.4)

where nx,xi , nz,xi , nz,xi are values of normal vector of X at xi and nx,yj , nz,yj ,

nz,yj are values of normal vector of Y at yj in three dimensions.

The angle between those two normal vector ε is calculated as Equation 3.5.

ε = asin(norm

∣∣∣∣∣∣∣∣∣∣
u

w

v

∣∣∣∣∣∣∣∣∣∣
) (3.5)

There is a case when ε = 0. We do not do any further in this step. Otherwise, the
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transformation which make two normal vector coincides is presented as in Equation

3.6.

T =

∣∣∣∣∣∣∣∣∣∣∣∣∣

T11 R12 T13 T14

T21 R22 T23 T24

T31 R32 T33 T34

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.6)

where

|u′, v′, w′|′ is vector |u, v, w| after normalization. T11 = u′2 + (v′2 + w′2)cos(ε)

T12 = u′v′(1− cos(ε))− w′sin(ε)

T13 = u′w′(1− cos(ε)) + v′sin(ε)

T14 = (xxi(v
′2 + w′2)− u′ ∗ (yxiv

′ + zxiw
′))(1− cos(ε)) + (yxiw

′ − zxiv′)sin(ε)

T21 = u′v′(1− cos(ε)) + w′sin(ε)

T22 = v′2 + (u′2 + w′2)cos(ε)

T23 = v′w′(1− cos(ε))− u′sin(ε)

T24 = (yxi(u
′2 + w′2)− v′ ∗ (xxiv

′ + zxiw
′))(1− cos(ε)) + (zxiu

′ − xxiw′)sin(ε)

T31 = u′w′(1− cos(ε))− v′sin(ε)

T32 = v′w′(1− cos(ε)) + u′sin(ε)

T33 = w′2 + (u′2 + v′2)cos(ε)

T34 = (zxi(u
′2 + v′2)− w′ ∗ (xxiu

′ + yxiv
′))(1− cos(ε)) + (xxiv

′ − yxiu′)sin(ε)

After the first step, yj changes to y∗j and Y to Y ∗.

Rotation around normal vector

The second movement is to rotate data point sets Y ∗ around current normal vector at

y∗j or xi since they coincide now and calculate the best rotation angle. The transfor-

mation matrix is similar as Equation 3.6 with normal vector of X at xi is the vector

which data points rotate about.

Global searching algorithms take responsibility for searching the best correspond-

ing point and rotating angle with each point as from Equation 3.7.
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(θ, j) = argmin
θ∈[−π,π],j∈[0,n]

||Exi,yj (R, t)θ|| (3.7)

where θ is rotating angle in the second step.

R, t are rotation and translation matrix of two steps included in transformation

matrix T. After all, transformation matrix T could be calculated as Equation 3.8:

T = Tntn ∗ Tran (3.8)

where Tntn is transformation matrix which presents for movement to adjust two

normals of data points. Tran is transformation matrix which presents for rotation

around normal vector. The flowchart for hybrid point based approach is presented

in Figure 3.8.

Begin

Initlization for global

methods populations of

with each population

call ICP procedure for local optimum

global methods

- best error
smaller threshold
- max generation

End

i, θ

methods populations of

i, θ

FIGURE 3.8: Implementation procedure of the hybrid approach
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3.3 The new direct global approach

In this part, a new global direct registration method for 3D constructed surfaces

captured by range cameras in cases with not close enough initialization is proposed.

- It eliminates the ICP algorithm from the registration process and thus becomes

a direct method.

- As other global registration methods, the new method requires no local descrip-

tors and operates directly on raw scanning data.

- The method uses the improved self-adaptive differential evolution (ISADE) al-

gorithm [19] as a search engine to find the global minima as a direct method that

does not use a fine registration procedure such as ICP.

- Furthermore, ray casting-based error calculation reduces the computation cost

and runtime, because of the potential for using parallelized computation. CPU-

based parallel computing procedures allow the algorithm to find the solution at a

rate equivalent to the online rate.

With the newly developed global search algorithms, flattening using ICP inner

loops in registration becomes redundant. Our method integrates a new global search

algorithm, ISADE, which is suitable for complicated fitness functions when the flat-

tening process is not performed, and a ray casting-based corresponding search method

to accelerate the objective function calculation in the registration procedure.

3.3.1 Ray-casting for fast corresponding point determination on constructed

range image

The KinectFusion algorithm, a real-time scene reconstructing pipeline, uses ICP as

the only method for registering two continuous frames. The procedure requires a

powerful GPU to speed up calculations and reduce runtime. However, global reg-

istration algorithms calculate a thousand times more error functions than ICP, and
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thus, so that these algorithms can be applied on-line or using less powerful proces-

sors, faster error calculation methods must be included.

ICP algorithms use the kd-tree [5] structure to speed up the process of deter-

mining j∗ in Equation 3.2. The complexity of the kd-tree nearest neighbor search

algorithms is O(log(n)), where n is the set number of the search points. Figure 3.9

shows an example of the true closest corresponding points of the model and data

pointsets.

FIGURE 3.9: Closest corresponding point using kd-tree. Data points
are in blue and model points are in red.

Ray casting [6] is one of the most basic of the many computer graphics rendering

methods. The idea behind the ray casting method is to direct a ray from the eye

through each pixel, and find the closest object blocking the path of the ray. Using the

material properties and light effect in the scene, rendering methods can determine

the shading of the object. Some hidden surface removal algorithms use ray casting

to find the closest surfaces to the eye and eliminate all others that are at a greater

distance along the same ray. The Point Cloud Library uses ray casting as a filtering

method; it removes all points that are obscured by other points.

We apply ray casting to find the approximated closest point using a range camera

model. Constructed range images or point-cloud data are frequently captured by a

3D range camera, where a range image can be considered a 2D gray image, G; the

value of each pixel shows the depth of a point. To simplify the problem, we do not
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take distortion into consideration.

zi,j = Gi,j (3.9)

where zi,j is the depth of the image at pixel column i and row j.

Equation 3.10 converts range image data points to real 3D depth data {x, y, z} in

R3.

xi,j = (i− cx)Gi,j/fx (3.10a)

yi,j = (j − cy)Gi,j/fy (3.10b)

zi,j = Gi,j (3.10c)

where fx, fy, cx, and cy are the intrinsic parameters of the depth camera.

Inversely, pixel position i, j is to be calculated. Figure 3.10 shows the method’s

idea.

j

i

datamodel

camera
casti

ng ray

∆zi,j

origin

FIGURE 3.10: Ray-casting method for searching corresponding point

Using the corresponding points obtained in the ray casting step, we determine

the depth difference ∆zi,j for the next step of calculating the objective function for
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the global search method, as

∆zi,j(R, t) =

 zXi,j − zY
R,t

i,j

0
if
|zXi,j − zY

R,t

i,j | < thresthold

otherwise

 (3.11)

where R and t are the rotation and translation matrix, respectively, zXi,j is the

depth of the model pointset and zY (R,t)
i,j is the depth of the data pointset after apply-

ing the rotation and translation matrix with i, j from the ray casting process.

The ray casting method is simple and fast (with a complexity of O(1)) and, more

importantly, potentially parallel computing can be applied.

3.3.2 Objective function

Global optimization methods use fitness or objective functions to find the transfor-

mation that drives the fitness function to the smallest value. We propose a fitness

function F (R, t):

F(R, t) = f(k)
n∑

i=1

m∑
j=1

(∆zi,j(R, t))2 (3.12)

where R and t are the rotation and translation matrix, respectively, m and n are

the height and width of the image frame, and k is the inlier point number.

To gain a smaller error in a larger number of inlier points, we used an additional

function f(k):

f(k) =

 ∞

(1− k/N)/k2
if

k < N/10

k > N/10

 (3.13)

where N is the number of points in the data pointset.
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The ray casting-based method makes the algorithm run significantly faster than

the kd-tree based approach. However, since a global search algorithm handles a

large number of points at a huge computation cost, we take parallel implementation

into consideration. Since in most computers a multi-core processor is available, us-

ing the CPU for parallel computing is convenient in most applications. In addition,

CPU multi-core parallel implementation is even easier with OpenMP library [21].

Furthermore, the ray casting process adapts well to parallel computing, and the cor-

responding points can be calculated in different processes or threads. The whole

procedure for the method is presented in Figure 3.11.

Population Initialization

Start

Population error rank evaluation

Adaptive scaling factor Fi

parameter Cr

Adaptive crossover control

Mutation
Apply different mutation schemes to create vector V

Crossover

Selection

Update for the best so far individual

Terminal?

Stop

No

Yes

Calculate corresponding with ray-casting
and error for each individual

Calculate corresponding with ray-casting
and error for each trial vector

Create trial vectors U

Choose the better vector between U vs V

Memory

FIGURE 3.11: ISADE ray-casting implementation
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Chapter 4

Model-based Pose Estimation for

Texture-less Objects

4.1 Introduction

In the last decade, object detection and recognition have gained significant improve-

ment by using keypoint features [1] . Since geometric transformations and illumi-

nation changes has no effect on finding keypoints, they have been widely used for

matching images from slightly different viewpoints [2]. Keypoint-based approaches

work well in textured objects but texture-less objects. Textured objects have vari-

ous keypoints, those have high potential appearing on both images. After finding

keypoints, sample consensus such as RANSAC calculates the most suitable transfor-

mation of the object from reference position to current position. The more matched

keypoints, the more accurate the transformation is. On texture-less objects lack of

keypoint repeatability and stability on texture-less regions neither reduces the accu-

racy of sample consensus method nor leads to wrong results. Like keypoints, edges

are also invariant to general geometric transformations and illumination changes

[3]. Using edges are more suitable as a general approach even with texture-less ob-

jects. In early computer vision research, to find the best alignment between two edge

maps, a given priori set of edge templates compare their suitability to the current
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edge maps to draw the mot suitable transformation. The current proposed method

of chamfer distance matching [4] enhances the cost functions enable for applying

global searching algorithm into object tracking problem. Harris[5] and other pro-

posed edge-based tracking systems [6] used edges and contours for visual tracking

task. One drawback of using edges is that they are not distinctive enough to pro-

vide effective discrimination in complex background or occlusions, there have been

efforts to enhance the previous one by unifying interest points or considering mul-

tiple but limited hypotheses on edge correspondences. For consideration of mul-

tiple hypotheses in a more general sense global searching algorithm should come

into consideration. We propose an approach of using ISADE as the global searching

method to continuously search for the 3D position of object in camera coordinate.

4.2 Methodology

Initialization is the most important step of tracking process. Following steps presents

the implementation pipeline of the initialization:

- Canny edge image is employed to archive edge images from query images.

- Distance map or chamfer matching map is calculated from edge images.

- Adaptive Differential Evolution Algorithms search for the best fit pose of the

object which create an 2D edge images fitted into the chamfer matching maps for

initialization.

After initialization, narrower searching boundary is used to get the accurate re-

sults at on-line speed. If the cost function goes large, initialization is required.

4.2.1 Chamfer matching maps from query images

Canny Edge Detection

The white lines in Figure 4.1 are output of Canny[7] edge detection method from

Figure 4.2. Canny method includes five different steps:
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1. Apply Gaussian filter to smooth the image in order to remove the noise.

2. Find the intensity gradients of the image.

3. Apply non-maximum suppression to get rid of spurious response to edge

detection.

4. Apply double threshold to determine potential edges.

5. Track edge by hysteresis: Finalize the detection of edges by suppressing all the

other edges that are weak and not connected to strong edges.

OpenCV[8] library documentation gave us above implementation in detail[9].

FIGURE 4.1: Input image

Chamfer Matching Maps

Building chamfer matching maps involves distance tranform method. The distance

transform is an operator normally only applied to binary images. The result of the

transform is a graylevel image that looks similar to the input image, except that the

graylevel intensities of points inside foreground regions are changed to show the

distance to the closest boundary from each point.
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FIGURE 4.2: Edge image

One way to think about the distance transform is to first imagine that foreground

regions in the input binary image are made of some uniform slow burning inflammable

material. Then consider simultaneously starting a fire at all points on the boundary

of a foreground region and letting the fire burn its way into the interior. If we then

label each point in the interior with the amount of time that the fire took to first reach

that point, then we have effectively computed the distance transform of that region.

There is a dual to the distance transform described above which produces the

distance transform for the background region rather than the foreground region. It

can be considered as a process of inverting the original image and then applying the

standard transform as above. Figure 4.3 shows a distance transform for background

region from edge maps in Figure 4.2.

4.2.2 Camera model and edges from CAD model

From a camera with prior-known configuration and object CAD model, we are able

to archive ideal visible edges of objects by using camera model matrix. This matrix
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FIGURE 4.3: Charmfer matching map

convert a point with coordinate of (x, y, z) in real coordinate to a image point (u, v)

as Equation 4.1 and Figure 4.4.

∣∣∣∣∣∣∣∣∣∣
u

v

1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
fx 0 cx

0 fy cy

0 0 1

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
x
z

y
z

1

∣∣∣∣∣∣∣∣∣∣
(4.1)

where fx and fy are focal length of camera on x and y dimension.

To determine visibility of object edges we use edge features based method from

[10] . Figure 4.5 shows an edge between adjacent faces A =< v0, v1, v2 > and

B =< v0, v1, v2 > with unit face normal nA and nB calculated as in Equation 4.2,4.3.

nA = norm((v1 − v0)× (v2 − v0)) (4.2)

nB = norm((v3 − v0)× (v1 − v0)) (4.3)

To determine the visibility of edge E =< v0, v1 >, we uses additional vector ve with

direction from v0 to the camera center. E is visible edge if cross manipulation value
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FIGURE 4.4: Pinhole camera model

of ve with nA or ve with nB is positive.

4.2.3 Initial pose searching

The cost function for global searching algorithm is a comparison result between edge

maps from image and edge maps from CAD model. To gain a equivalent between

ideal edge maps, a re-sampling step is applied, so the number of edge points in

different ideal maps is set equally at N=200 points.

The error cost function is calculated as in Equation 4.4.

F(R, t) = f(k)
m∑
i=1

(Ei −Mi)
2 (4.4)

where f(k) is function depended on number of inlier (k) as in Equation 4.5. Ei is

value of real edge images at inlier i , Mi is value of CAD model edge images at inlier

number i.

f(k) =

 ∞

(1− k/N)/k2
if

k < N/10

k > N/10

 (4.5)

The whole implementation steps are presented in Figure 4.6.
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FIGURE 4.5: Visible edge identification
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FIGURE 4.6: Visible edge identification
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Chapter 5

Experiments & Results

5.1 Registration with Point based method

5.1.1 Experimental Setup

In this section, we presents our experiment and results using different algorithms of

both point based and conventional approacches for different scanned surface data.

The first category data are shown in Figure 5.1 which are avaible on The Stanford 3D

Scanning Repository http://graphics.stanford.edu/data/3Dscanrep) in-

cluding Armadillo, Dragon, Stanford Bunny, Happy Buddha. The second class is shown

in Figure 5.2 which were downloaded from Queen’s Range Image and 3-D Model

Database http://rcvlab.ece.queensu.ca/~qridb/QR3D/DatabasePagexyz.

html including Old Gnome, Dinosaur, Green Pipe, Angel. Stanford data format is *.ply

and *.wrl is for Queen surface.

Scanning data were sub-sampled to smaller point number of 2000 points for a

reasonable runtime. We use Meshlab software to subsample the scan surfaces, the

sub-sampled data are showed in Figure 5.3 and Figure 5.4. The experiments arms

to show the advantages in accuracy of point based approach coarse registration to

conventional approach with six dimensions searching on scanning surfaces.

http://graphics.stanford.edu/data/3Dscanrep
http://rcvlab.ece.queensu.ca/~qridb/QR3D/DatabasePagexyz.html
http://rcvlab.ece.queensu.ca/~qridb/QR3D/DatabasePagexyz.html


Chapter 5. Experiments & Results 67

Algorithm 2 Hybrid Point Based Registration Algorithm

1: procedure SEARCHING ALGORITHM

2: Initialize Xi = with center point of Model pointset
3: Initialization for populations with random values of (θ, j)
4: while (Not reached stop criterion) do
5: for the whole populations do
6: Move the data surface to model surfaces using point based steps. After

applying ICPs, remaining errors from Equation 3.1 are calculated.
7: end for
8: Sorting all populations.
9: Update the best solution until the current step.

10: Update for the next generation population from the current generation
using suitable searching strategies of (SA, PSO, DE).

11: end while
12: end procedure
13:
14: procedure FINE REGISTRATION

15: Using ICPs for Best.solution.so.far from above Searching Procedure.
16: end procedure

FIGURE 5.1: Stanford scanning data
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FIGURE 5.2: Queen range objects

FIGURE 5.3: Stanford sub-sampled data
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FIGURE 5.4: Queen sub-sampled range data

In point based algorithms, we did not set the limitation of points but the rotation

angle θ ∈ [−Π/2,Π/2] . In the conventional approach the boundaries of searching

algorithm are α, β, γ ∈ [−Π/2,Π/2] and x, y, z ∈ [−0.2, 0.2]. Calculating time for er-

ror functions for algorithms were set to 2500 including 1250 searching loop of global

search (1250 generations for SA, 50 generations for 25 population number with DE

and PSO) and 2 ICP local minimization loops in each global search position.

Algorithm parameters are shown in Table 5.1 for both points based and parame-

ter based algorithms. Algorithms are coded in C++, and test in a PC powered with

a Intel i7 3.4GHz CPU processor.
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Algorithms SA DE PSO

Parameters α = 0.996 F0 = 0.8 elites = 1

maxgen = 1250 Cr = 0.9 neighbors = 5

DE/rand/1/bin c1 = c2 = c3 = 2.1

maxgen = 50 maxgen = 50;

p = 25 p = 25

TABLE 5.1: Evolutionary algorithms parameters

5.1.2 Experimental Results

The results presented as following arm to prove the superior of the point based reg-

istration to conventional six dimension based method. Moreover, those results gave

us suggestions of a good integration for the robust hybrid algorithm. The results for

Stanford dataset presents in Table 5.2 and Table 5.3 is for Queen dataset. The results

are in four categories including: min, max, mean and standard deviation. The re-

sults in both tables are from coarse registration procedure in Algorithm 2. In both

table, DEP, SAP and PSOP stand for Differential Evolution Point based, Simulated

Annealing Point based and Particle Swarm Optimization Point based respectively.

The better results are marked in bold.

The results in Table 5.2,5.3 in which all the new approach errors were in smaller

means and standard deviations prove the superior of point based approaches over

conventional approaches. Those results also suggest that, in three global searching

algorithms, multiple agent algorithms such as DE or PSO are more suitable tool to in-

tegrate with than single agent algorithms like SA. Sometime, by chances,conventional

approach could have smaller error. The reason is that the searching space is discrete

for point based search and continuous for conventional search, if there are correct

convergence in conventional methods, it could gain smaller errors.



Chapter 5. Experiments & Results 71

Figure 5.5-5.7 visually show means and standard deviations of all methods’ er-

rors in different objects. The advantage of point based approach is clearly seen. In

all objects, Gnome objects registration task is the most difficult. The object is lack of

changing in shape every algorithms are false to find correct registration solutions.

FIGURE 5.5: The results with mean and standard deviation of using
DE as searching method in point based and conventional approach.

FIGURE 5.6: The results with mean and standard deviation of using
PSO as searching method in point based and conventional approach.
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FIGURE 5.7: The results with mean and standard deviation of using
SA as searching method in point based and conventional approach.
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Dataset Algorithm Min Max Mean St. dev.

DEP 0.1209 0.1472 0.1096 0.0001

DE 0.1565 0.2771 0.2144 0.0385

Armadillo SAP 0.1366 0.2011 0.1696 0.0230

SA 0.2559 0.3623 0.3160 0.0333

PSOP 0.1092 0.1095 0.1095 0.0001

PSO 0.1122 0.2601 0.2171 0.0446

DEP 0.1016 0.1020 0.1017 0.0001

DE 0.1340 0.2021 0.1683 0.0280

Dragon SAP 0.1219 0.1901 0.1507 0.0264

SA 0.2351 0.3869 0.2933 0.0432

PSOP 0.1016 0.2017 0.1255 0.0393

PSO 0.0886 0.2463 0.1618 0.0643

DEP 0.0616 0.0927 0.0830 0.0034

DE 0.1208 0.2167 0.1686 0.0258

Bunny SAP 0.1011 0.1368 0.1220 0.0111

SA 0.2129 0.3384 0.2812 0.0305

PSOP 0.0816 0.0831 0.0821 0.0004

PSO 0.0976 0.2113 0.1626 0.0402

DEP 0.1114 0.1114 0.1114 0.0000

DE 0.1331 0.2670 0.2670 0.1790

Happy Buddha SAP 0.1227 0.1701 0.1496 0.0137

SA 0.2349 0.3303 0.2678 0.0280

PSOP 0.1114 0.1114 0.1114 0.0000

PSO 0.0712 0.2046 0.1472 0.0399

TABLE 5.2: Comparison between point based and parameter based
algorithm using Stanford scanning data



Chapter 5. Experiments & Results 74

Dataset Algorithm Min Max Mean St. dev.

DEP 0.1619 0.1620 0.1619 0.0001

DE 0.1408 0.2107 0.1863 0.0222

Gnome SAP 0.1649 0.1805 0.1721 0.0056

SA 0.2497 0.3322 0.2873 0.0310

PSOP 0.1619 0.1733 0.1687 0.0047

PSO 0.1166 0.2315 0.1795 0.0415

DEP 0.0938 0.0939 0.0939 0.0001

DE 0.2034 0.2666 0.2256 0.0186

Dinosaur SAP 0.1168 0.1626 0.1404 0.0143

SA 0.2563 0.3867 0.3205 0.0427

PSOP 0.0938 0.0972 0.0959 0.0017

PSO 0.1287 0.3281 0.1740 0.0692

DEP 0.1086 0.1099 0.1092 0.0005

DE 0.1742 0.2549 0.1960 0.0253

Green Pipe SAP 0.1249 0.1668 0.1467 0.0123

SA 0.2658 0.3740 0.3189 0.0341

PSOP 0.1086 0.2150 0.1195 0.0336

PSO 0.0946 0.2491 0.1824 0.0542

DEP 0.1042 0.1123 0.1113 0.0025

DE 0.1623 0.2519 0.2120 0.0333

Angle SAP 0.1152 0.1764 0.1486 0.0173

SA 0.2790 0.4018 0.3197 0.0366

PSOP 0.1120 0.1120 0.1120 0.0000

PSO 0.1561 0.2606 0.1990 0.0366

TABLE 5.3: Comparison between point based and parameter based
algorithm using Queen scanning data
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Figure 5.8-5.11 give us some results visually where pointsets are in red and data

pointsets are in green color. They are results after raw alignment from point based

and the conventional approach with DE as searching algorithms. The new method

results are in the left side and the conventional method results are in the right side

of figures. All experimental objects, the visual and statistical results in Table 5.6-

5.7 agree with each other. The new methods gave the better performs than other

conventions methods. Excepts for Gnome dataset, every methods of two approaches

failed to find the good alignment.

FIGURE 5.8: Alignment results of Armadillo and Dragon dataset
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FIGURE 5.9: Alignment results of Bunny and Happy Buddha dataset

FIGURE 5.10: Alignment results of Gnome and Dinosaur dataset
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FIGURE 5.11: Alignment results of Green Pipe and Angle dataset

5.2 Ray-casting method with ISADE

This section describes experiments that were conducted using the proposed method

in real range image data registration and presents the results. We integrated differ-

ent global search methods with the ray casting-based algorithm in order to obtain a

comparison between ISADE and the state-of-the-art methods as follows.

1) SA proposed in Luck et al.’s paper, Registration of range data using a hybrid

simulated annealing and iterative closest point algorithm.

2) Particle swarm optimization (PSO) proposed in Talbi et al.’s paper, Particle

swarm optimization for image processing [1].

3) Genetic algorithm (GA) proposed in Valsecchi et al.’s paper, An image regis-

tration approach using genetic algorithms [2].

4) DE proposed in Falco et al.’s paper, Differential evolution as a viable tool for
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satellite image registration [3].

We also calculated the ray casting-based error of the KinectFusion and Go-ICP

algorithms for further comparison. All algorithms were implemented in C++ and

compiled with GNU/g++ tool.

FIGURE 5.12: RGB-D Chess, Fire, Heads, Office Dataset for
experiments
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FIGURE 5.13: RGB-D Bumpkins, Red Kitchen, Stair Dataset for
experiments

5.2.1 Range Image Dataset

In our experiments, a number of pair-wise registrations was conducted using well-

known depth data, "RGB-D Dataset 7-Scenes", taken from the Kinect Microsoft Cam-

era downloaded from the Microsoft Research Web site, http://research.microsoft.

com/en-us/projects/7-scenes/. Specifically, Figures 5.12 and 5.13 show all

the scenes: Chess, Fire, Heads, Office, Pumpkin, RedKitchen, and Stairs. The details

of the data used in the registration experiments are as follows.

Chess dataset: image sequence 2, frame 960 vs frame 980.

Other datasets: image sequence 1, frame 000 vs frame 020.

These "PNG" format depth images are sub-sampled into a smaller resolution of

128× 96, which is five times smaller than the original resolution of 640× 480 in each

dimension. The purpose of using a dataset with a smaller number of points is to

achieve a suitable runtime while preserving robustness and accuracy.

http://research.microsoft.com/en-us/projects/7-scenes/
http://research.microsoft.com/en-us/projects/7-scenes/
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5.2.2 Parameter Settings

For each method, thirty runs were performed. The search space had rotation angles

and translation limited at [−π/5, π/5] and [−1, 1] separately. This means that the

limitation of the rotation angles was 36 degrees and of the translation was 1 meter.

The algorithm parameters shown in Table 5.4 constitute the configuration for

all the algorithms. All methods were run on a desktop PC powered with an Intel

core I7-4790 CPU 3.60 GHz × 8 processor, 8 GB RAM memory and Linux Ubuntu

14.04 64-bit Operation System. The new algorithm C++ code was written based on

reference from Andreas Geiger’s LIBICP code [4].

TABLE 5.4: Algorithms configuration

Algorithm DE GA SA PSO Go-ICP

parameters F0 = 0.8 Pc = 0.95; α = 0.995 elites = 4 trimFraction = 0.0

Cr = 0.9 Pm = 0.1; neighbors = 5

DE/rand/1/bin elites = 5 c1 = c2 = c3 = 2.1 distTransSize = 50

maxgen 100 100 3000 100;

population 30 30 30 subsample=1000 points

5.2.3 Comparison with KinectFusion algorithm

Accompanied by depth ranger images, "RGB-D Dataset 7-Scenes" provides homoge-

neous camera to world transposes at each frame calculated using the KinectFusion

algorithm. We converted those camera transposes into transformation matrix be-

tween two frames as

T ji = T−1i ∗ Tj (5.1a)

T ji =


Rji tji

0 0 0 1


(5.1b)
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where T ji is the transformation matrix to move frame j to align with frame i, Ti and

Tj are the homogeneous transpose matrix for the camera at frame i and j, respec-

tively, and Rji and tji are the rotation and translation matrix of T ji , respectively.

Rji and tji are applied to ray casting error calculation methods for two frames,

as in Equation 3.12, to describe the errors of the KinectFusion algorithm. Table 5.5

presents the mean errors of the proposed method in comparison with the error of

the KinectFusion algorithm. The significantly smaller mean errors of the proposed

method prove its superiority to the KinectFusion algorithm registration pipeline.

TABLE 5.5: Error comparison between new method, KinectFusion
and Go-ICP algorithms

Chess Fire Heads Office Pumpkin RedKitchen Stairs

Our method 0.10230 0.03179 0.01000 0.03096 0.05563 0.03481 0.00883

KinectFusion 22.37200 0.24311 2.99067 3.85941 0.11136 0.09836 0.01561

Go-ICP nan 0.825212 0.01832 0.358507 inf 1.5387 2.28615

Figures 5.14 and 5.15 visually show the registration results of the proposed algo-

rithm for the seven scenes in center and those of KinectFusion on the left hand side,

to provide a visual comparison. The seven scenes included are Chess, Fire, Heads,

Office, Pumpkin, RedKitchen, and Stairs. Model pointsets are colored red and data

pointsets are colored green.
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FIGURE 5.14: First 4 scenes (Chess, Fire, Heads, Office) registration
output example. KinectFusion results are in the left hand side, the
new algorithm’s results are in the center and Go-ICP algorithm’s

results are on the right hand side.
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FIGURE 5.15: Last 3 scenes (Bumpkin, RedKitchen, Stairs)
registration output example. KinectFusion results are in the left

hand side, the new algorithm’s results are in the center and Go-ICP
algorithm’s results are on the right hand side.

In these figures, that the proposed algorithm outperforms KinectFusion is clearly

seen. Even in the best case of KinectFusion, such as Stairs or RedKitchen, the over-

lapping regions, where the two colors are mixed together, are not as clearly seen as

in the results of the proposed algorithm.

An example of applying the new method to consecutive localizations can be seen

in Figure 5.16. The pumpkin 3D scene, which is built from seven different range
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images (frame 000, 020, ..., 120), visually shows the accuracy of the proposed method

at various percentages of overlapping regions. The different frames are in different

colors. A video at https://www.youtube.com/watch?v=sgaUry5qsxU gives

a clearer view.

FIGURE 5.16: Office scene reconstructed results from different view
angles

5.2.4 Comparison with Go-ICP algorithm

From authors contributed code[5], we performed experiments to compare our method

with Go-ICP on accuracy, run time and robustness. Go-ICP configuration parame-

ters were set as in Table 5.4 with the identical searching boundary with other meth-

ods. distTransSize is the number of nodes in translation searching boundary. It

was set to 50 or translation resolution is at 40 mm. Raising accuracy by increasing

distTransSize to 500 or 4 mm resolution effort failed due to infinite runtime. Go-

ICP were able to register Heads and Office datasets at distTransSize of 100 with run

https://www.youtube.com/watch?v=sgaUry5qsxU
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time presented in Table 5.8.

The disadvantage of big resolution could be compensated by inner ICP loops,

however, the smaller resolution the more accurate the algorithm is. We set the data

subsample to 1000, Go-ICP reaches infinitive runtime at the original 128× 96 resolu-

tion.

Together with KinectFusion and our method errors, Table 5.5 presents the mean

errors of Go-ICP algorithm where "nan" stands for undefined result in the case of in-

finitive runtime and "inf" stands for wrong convergence with few overlaped points.

Over all, only Heads and Office showed good convergence with small error and

runtime. However, those small errors are still bigger than the new method’s.

Figures 5.14 and 5.15 also show the registration results of Go-ICP algorithm on

the right side together with new method results in the center and KinectFusion algo-

rithm result on the left side. From those figures, the new method better performance

is clearly seen. In the case of RedKitchen dataset, the wrong convergence results of

Go-ICP was observed, the error was small because of small over-lapsed percentage.

Average run time for Go-ICP on different datasets are presented in Table 5.8

where average run times of the new algorithm at different generation numbers are

presented. In the table, "inf" values stand for infinitive run time. Go-ICP was fast in

case of Heads dataset or extreme slow for the case of Chess dataset.

Over all, the new methods outperformed Go-ICP on experiments datasets in ac-

curacy, runtime, and robustness.

5.2.5 Comparison between different optimization algorithms

Tables 5.6 and 5.7 show the experimental results of all the integrations and methods

in four categories: min, max, mean, and standard deviation.
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TABLE 5.6: Results of Chess, Fire, Heads and Office datasets

Scene name Algorithm Min Max Mean St. dev.

Chess ISADE 0.10047 0.11187 0.10230 0.002821482

KinectFusion DE 0.17453 3.92808 0.29860 0.112087291

ref: 22.372 GA 1.44923 1.80180 2.53723 0.691936150

SA 1.11736 2.55157 1.65871 0.400817542

PSO 1.19899 2.58186 1.72316 0.459892382

Fire ISADE 0.03169 0.03196 0.03179 8.70855E-005

KinectFusion DE 0.03873 0.26059 0.10263 0.066038287

ref: 0.243112 GA 0.22177 3.93133 1.58268 0.913837133

SA 0.15060 0.88670 0.45855 0.249700426

PSO 0.11158 0.63419 0.34592 0.151824890

Heads ISADE 0.00994 0.01016 0.01000 7.01799E-005

KinectFusion DE 0.01276 0.06570 0.02205 0.012768061

ref: 2.99067 GA 0.47056 1.70316 0.97758 0.358190303

SA 0.30740 1.01428 0.65404 0.264058658

PSO 0.20801 1.88772 0.54401 0.463097716

Office ISADE 0.03084 0.03115 0.03096 8.39925E-005

KinectFusion DE 0.03195 0.06436 0.04373 0.009462166

ref: 3.85941 GA 0.24518 4.05346 1.88819 0.928751342

SA 0.10385 2.67972 0.84426 0.720046753

PSO 0.07169 2.08078 0.58507 0.686244921
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TABLE 5.7: Results of Pumpkin, RedKitchen and Stairs datasets

Scene name Algorithm Min Max Mean St. dev.

Pumpkin ISADE 0.05541 0.05603 0.05563 0.000175987

KinectFusion DE 0.06555 0.16927 0.11105 0.111050113

ref: 0.111361 GA 0.45803 3.15529 1.42922 0.775060060

SA 0.07468 0.90335 0.49504 0.248322702

PSO 0.11181 1.43345 0.36443 0.334116975

RedKitchen ISADE 0.03423 0.03759 0.03481 0.000915588

KinectFusion DE 0.05879 0.60304 0.17479 0.149183155

ref: 0.0983645 SA 0.52141 5.48133 2.07233 1.339500137

GA 0.12508 1.58015 0.62601 0.441544434

PSO 0.05515 2.48188 0.54354 0.671268667

Stairs ISADE 0.00875 0.00898 0.00883 0.000079463

KinectFusion DE 0.00975 0.04665 0.01767 0.009514675

ref: 0.0156084 SA 0.21207 2.24988 1.19252 0.627554990

GA 0.01405 1.08881 0.29528 0.304574563

PSO 0.04632 0.96723 0.25021 0.239971819

The smaller means and standard deviations for every dataset in comparison with

the other methods show the accuracy and robustness of the new search engine as

compared to the state-of-the-art search algorithms. In some cases, the experimental

results show that the other integrations performed better than KinectFusion. The

ICP accumulating error is the reason for this poor performance.

5.2.6 Iterations vs Convergence

Figure 5.17 we compare the robust results of convergence of the registration of the

seven scenes for a small number of iterations between using ISADE and DE, where
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the horizontal axis represents the iteration, and the vertical axis represents the er-

ror. In comparison with ISADE, DE required significant larger iteration number to

achieve convergence. With ISADE, from 70 iterations, all the results show a flat trend

and no new optimal solutions with a significant difference are found. This iteration

number for DE is 120.

These results show that, if we reduce the maximum number of iterations to 70,

the results remain the same. Clearly, the smaller the iteration number, the shorter is

the runtime.

FIGURE 5.17: Fitness function as iterations of different datasets with
ISADE in blue and DE in red color.
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5.2.7 Results from registering in different movement patterns and frame

distances

Figure 5.18 shows the values of rotation angles (α, β, γ) in radian and translation

distances (x, y, z) in meter of 3D camera movement. Those values were obtained

by using new algorithm to register range images from frame 001 to 060 respectively

into the frame 000 of seq-01 in different datasets. The process stops if the movement

values get over searching boundaries. From all datasets, we choose three typical

movement of Chess, Fire and Heads datasets for rotating, sliding and forwarding

with rotating movements respectively.

FIGURE 5.18: Movement pattern from Chess, Fire and Heads
scenarios.

The results with no sudden value changing between two consecutive frames ver-

ify the feasibility of applying the new algorithm in registering range images of dif-

ferent movement patterns and frame distances.
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5.2.8 Runtime

For the data of 128 × 96 resolution, average runtime for the proposed method are

shown in Table 5.8. In the results, the average runtime for registration is around

0.6 s for 150 iterations of all scenes. Since the distance between two frames is 20,

the registering equivalence rate is 33 frames per second (fps). At this rate, when we

move the camera the algorithm are able to update the scenarios.

TABLE 5.8: Average running time (in second) on different scenes of
new methods and Go-ICP

New methods New method Go-ICP Go-ICP
100 generations 150 generations distTransSize=50 distTransSize=100

Chess 0.388414 0.516832 inf inf
Fire 0.385928 0.625765 14.2786 inf

Heads 0.335828 0.562451 0.102944 0.104659
Office 0.378768 0.560734 0.030326 34.411

Pumpkin 0.410615 0.621756 104.468 inf
RedKitchen 0.415258 0.588466 30.3815 inf

Stairs 0.409834 0.597050 188.205 inf

By subsampling the data range image and remaining the model range image, the

new algorithm gain smaller runtime while error level stays unchanged. Figure 5.19

shows the runtime at different level of subsample on the right hand and the errors

in the left hand for the Redkitchen scenario.

FIGURE 5.19: Runtime and error on subsample point numbers
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5.3 Model based Texture-less Object Pose Estimation

To implement the algorithm, the system hardware included a iBuffalo BSW20KKM11BK

camera. We used small box as a tracking object. All code is implemented on C++

code on a standard Desktop Computer powered with Intel Core i7-4790 CPU 3.6x8.

In the experiment, we used the box object with size of 145 × 95 × 40 (mm) in white

colour as the tracking object. The object "*.ply" extension is use the input model. The

searching boundary for the objects translation are in [−100, 100] and [−π/2, π/2−] for

rotation angles of roll-pitch-raw. Parameters for ISADE searching algorithm are set

as for range image registration problem to prove its adaptive property.

Fig 5.20 and Fig 5.21 show results from Canny edge detection method.

FIGURE 5.20: Edge detection result
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FIGURE 5.21: Edge detection result

Figure 5.22 and Figure 5.23 show results of boundary search of the box with

different positions from Figure 5.20 and Figure 5.21. The box boundary is in blue

colour in the left image. The result images showed that, the method were able to

find the position of the object so the boundary could fit into the edge maps.

FIGURE 5.22: Tracking result
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FIGURE 5.23: Tracking result

Depend on the objects, symmetric or non-symmetric, we need to set different

searching boundaries for the searching algorithm (DE). Table 5.9 shows consuming

time depend on number of population of DE.

TABLE 5.9: Run time on population size

Popsize 400 300 200 100 20 10

ms 2817 2190 1404 741 161 76
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Chapter 6

Discussion and future directions

6.1 Point based Methods

The proposed hybrid point based approach to continues tackling a well-know chal-

lenging computer vision task, i.e, the registration problem for range data. The con-

ducted experiments on different objects and datasets show the significant improve-

ments toward having high-quality registration outcomes. Moreover, integrating

between new approach with different evolutionary searching algorithm suggests a

good combination with Differential Evolution. What is more important is that, this

approach do not require any initial configuration related to first position of register-

ing range datasets.

Besides good results, the method has its limitations. The method uses the sur-

face’s median point of model pointset as based point in assumption that this me-

dian point appears on dataset. That means, overlap region rate is limited at about

50%. Besides, currently normal vector at each points calculation relies on the closest

pointset of sub-sampling datasets which leads to some changing in direction of nor-

mal vector. This problems can solve by preserving normal vector in sum-sampling

process.

Furthermore, using original kd-tree structure to find nearest closest point for
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ICP algorithm enlarger computation cost and run time. In future, fast approxi-

mated nearest neighbor searching algorithm with [1] library empowered with CPU

or Graphic Card multi-core processing could be used to replace the current method.

Lastly, there are many new integrated evolutionary algorithms which have been

published and proved to be far better than DE algorithm such as ISADE, APDEGA[2],

AP/PSODEGA[3], etc. Those algorithms give us abundant choices of hybridizing

with potential of much higher accuracy and robustness in registration task.

6.2 Global Ray-casting Method

We proposed a novel registration method in which a fast ray casting-based error

calculation is integrated with a powerful self-adaptive optimization algorithm. The

experimental results showed that ISADE is able to find a robust and accurate trans-

formation matrix, while the ray casting method is fast and efficient in calculating

error for global registration problems.

A more important point is that, by eliminating inner ICP loops in hybrid inte-

grations and fine tuning procedures applied in previously proposed methods, the

newly proposed method becomes the first direct, as well as the first online potential,

global registration algorithm. Its robustness and accuracy were tested and verified

in real 3D scenes captured by a Microsoft Kinect camera.

Currently, the algorithm is implemented using a CPU parallel procedure. In fu-

ture work, the new algorithm can be implemented on a GPU to reduce its runtime

and error while retaining its accuracy and robustness. Furthermore, the method can

be extended for general point clouds from different sources by using a virtual cam-

era surface and presenting it as a constructed surface. The proposed method is also

potentially suitable for super resolution range images.
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6.3 Model based Texture-less Object Pose Estimation

Object tracking has been always a challenging task in computer vision. Recently,

evolution based global searching methods have proved its potential of tackling the

tracking problem with ability of finding robust and accurate global optima solutions.

We proposed a novel approach of using ISADE as a global searching method to find

the best 3D position of objects. The experimental results showed promising results.

ISADE was proved to be efficient working on different problems though further

research need to be done.

In the future work, we would like to improve cost function with the method to

narrow searching area for more accuracy but smaller generation of searching. By

doing so, we expect to reduce the runtime but remains the accuracy and robustness.
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