
SHIBAURA INSTITUTE OF TECHNOLOGY

DOCTORAL THESIS

Hysteresis Characterization and

Compensation of Smart Material-Based

Actuators via a New Modified Bouc-Wen

Model

Author:
Mohd Hanif Bin Mohd RAMLI

Supervisor:
Professor Xinkai CHEN

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy

February 20, 2017

http://www.shibaura-it.ac.jp/en/
http://www.sic.shibaura-it.ac.jp/~chen/en_profile.html


i
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Abstract

Doctor of Philosophy

Hysteresis Characterization and Compensation of Smart Material-Based Actuators

via a New Modified Bouc-Wen Model

by Mohd Hanif Bin Mohd RAMLI

Most smart material based actuators (smart actuators) are known for their promi-

nent characteristics of a high resolution of positioning, high bandwidth, and the ease of

integration in miniaturized systems. However, their applications are restricted by the

inherent hysteresis nonlinearity. This thesis presents an alternative modification to the

original Bouc-Wen (BW) model in order to improve the characterization of smart actu-

ators those are affected by hysteresis effects. The modified BW model is formulated in

the discrete-time domain. The extended particle swarm optimization technique (EPSO)

is used to properly validate the proposed model. Through the simulation study, it is

observed that proposed model is capable of describing rate-dependent input-output re-

lations which is an important feature in the modeling of hysteresis phenomenon. Then,

the proposed model is directly used in developing control strategies to mitigate the

hysteresis effects. In this case, two control architectures are developed; a discrete non-

linear prescribed performance control (DPPC) scheme and a discrete model reference

adaptive control strategy (DMRAC). In addition, theoretical analysis of the closed-loop

system’s stability under each control algorithm is also systematically discussed. Finally,

the efficacy of formulated control strategies are verified via real case applications. The

simulation and experimental results substantiate the capacity of the proposed MBW

model. It is not only applicable for modeling and characterization, but also towards

control development for the betterment of motion tracking problems in smart actuators

that are affected by hysteresis effects.
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Chapter 1

Introduction

1.1 Overview

In recent decades, there has been a substantial advancement in various smart materi-

als and devices driven by these materials (Esbrook et al., 2014), (Olabi and Grunwald,

A., 2008). The potential advantages of these smart material-based actuators (such as

piezoelectric, magnetostrictive, electroactive polymers, and shape memory alloys) in-

clude a high resolution of positioning and the ease of integration in miniaturized sys-

tems. Some of them can provide a very high bandwidth, whilst others very high stiff-

ness, or high range of deformation and thus of positioning (Grossard and Rakoton-

drabe, M., 2016). Their potential applications extend over a range of different indus-

tries including semiconductor fabrication systems manufacturing (Wang et al., 2015b),

robotics (Karpelson et al., 2012), automotive (Melbert et al., 2006), medical applications

(Levi et al., 2008), (Kaplanoglu, 2012) (for industrial fields), also can be found in digi-

tal equipment such as in optical axis alignment of optical fiber, and positional control

of CCD (charge coupled device) for enhancement of image resolution (Ko et al., 2008).

Certainly, optimal designs of mechatronic actuators together with appropriate control

strategies may lead to the realization of high-precision and reliable actuation mecha-

nisms. However, most smart material-based actuation systems, in general, suffer from

hysteretic nonlinearity phenomenon which greatly deteriorates and limits the systems’

performance.

The term ‘hysteresis’ originally comes from an ancient Greek word which means ‘to

lag behind’. This phenomenon is first observed by scientists in the fields of ferromag-

netism about 200 years ago (Iyer and Tan, X., 2009). According to Oh et al., 2009, hys-

teresis is a quasi-static phenomenon in which a sequence of periodic inputs produces a
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nontrivial input-output loop as the period of the input increases without bound. It is a

fundamental problem in magnetic fields, smart materials (commonly in ferromagnetic

and ferroelectric materials), and mechanical systems where it may lead to performance

degradation if not properly handled. As for now, there is no fundamental theory that

allows a general mathematical framework for modeling the hysteresis effects because

the origins of these phenomena are often multiple and unclear (Ikhouane and Rodel-

lar, J., 2007). In the literature, the common method of characterizing the hysteresis

behaviour is either based on the law of physics or the phenomenological approach (Xu

and Kiong, K., 2016). A notable example of the physics-based model is Jiles-Atherton

model, where it is the first model to describe ferromagnetic hysteresis. Meanwhile,

the phenomenological-based models that have been employed include: i). Preisach,

Prandtl–Ishlinskii (PI) operators, and their extensions which are normally based on the

weighted superposition of many (and even infinitely many) fundamental hysteretic

units known as hysteron, ii). differential equations based (DEB) operators, such as

Dahl model, Coleman-Hodgdon model, and Bouc-Wen (BW) model.

Through the literature review, various control strategies have been developed to

cope with the hysteresis effects. In general, the control strategy can be roughly clas-

sified into the open-loop or feedforward control, and the feedback control schemes

(Hassani et al., 2014). In the feedforward control method, the basic idea is to employ

the inversion of a hysteresis operator for compensating the hysteretic behaviour. This

technique is pioneered by Krejci and Kuhnen, K., 2001 where an inverse compensator

based on the classical P–I model is proposed. Meanwhile, for hysteretic systems those

are described by DEB models such as the Duhem model, Dahl model, and BW model,

the inverse construction is either impossible or extremely difficult to be obtained (Gu

et al., 2016). In this case, the feedforward compensator can be achieved by an alter-

native solution, known as multiplicative-inverse approach such as reported by Rako-

tondrabe, 2011 where the compensator is developed based on BW model. In the same

vein, Habineza et al., 2015 extend it to multiple degree of freedom (DOF) hysteretic sys-

tems. However, the main challenge with such approaches is the modeling complexity

and parameter sensitivity. Therefore, the performance of this control scheme is sensi-

tive to errors in the plant transfer function, leading to problems such as divergence and

instability. Conversely, hysteresis compensation is dealt by several approaches in the
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feedback control scheme. The first approach is to directly develop a feedback controller

without the use of hysteresis operators. The simplest solution is to consider the famous

Proportional-Integral-Derivative (PID) control. In the second method, the system that

is affected by the hysteresis is modeled by a composition of two terms namely, a linear

term and a bounded disturbance-like term. In this approach, the non-smooth hystere-

sis nonlinearity can be dealt with a number of feedback control techniques as reported

by Shan and Leang, K. K., 2012; Xu, 2015; Zhong and Yao, B., 2008. Alternatively,

control design and stability analysis methods are proposed based on the properties of

hysteresis itself such as monotonicity, sector-bound or dissipativity to ensure that the

controller is robust against the parameter uncertainties and thus stable. For example,

Gorbet et al., 2001 derive the dissipativity of the Preisach operator and design a con-

troller, which is strictly passive for the smart actuators. Another result that is similar to

this method can be found in Jayawardhana et al., 2012.

In this thesis, we devote the focus onto a class of DEB models with regard to its fea-

sibility of modeling and control of smart actuators. This consideration is motivated by

observing the fact that differential equations, in general, are well-suitable for controller

design purposes. It is remarked that this class of operator can soundly describe a range

of shapes of hysteretic effects which match the behaviour of a wide class of hysteretic

systems. In addition, it could provide physical insights to the problem, i.e., the changes

to its parameters reflect the shape, amplitude, and orientation of the hysteresis curves.

Recent results on the differential equations based operators in the control and systems

literature include Du et al., 2009; Habineza et al., 2015; Jayawardhana et al., 2012; Xu

and Li, Y., 2010.

1.2 Aim and Objectives

Generally, this research is aimed at improving the characterization and control of non-

linear systems in the discrete-time domain. In particular, this research deals with hys-

teresis, which is the fundamental problem in smart actuators. To fulfil this requirement,

the following objectives are set.

1. To improve the characterization accuracy for describing the nonlinear hysteretic

behaviour in the smart actuators.
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In order to solve the motion tracking problem in smart actuators, a good hystere-

sis model or operator is required. Indeed, there are many suitable candidates for

this purpose, but in this thesis, the focus is devoted to the class of DEB models.

First, the feasibility of the DEB models towards hysteresis characterization and

control fusion will be carefully examined. Then, a new model modification will

be developed based on the outcome of above investigation with a goal to improve

the characterization and control of hysteretic behaviour in the smart actuators.

This development will be established in the discrete-time domain.

2. To fuse the DEB model into the control design.

In this case, two control structures are proposed in order to mitigate hysteresis

effects. Both of these structures consider DEB model in the development. The first

control framework is based on the prescribed performance control. The second

one is an adaptive control strategy. In addition, stability analysis pertaining to

each control scheme will be systematically presented.

1.3 Outline of Thesis

The title of this research is “Hysteresis Characterization and Compensation of Smart

Material-Based Actuators via a New Modified Bouc-Wen Model”. This section briefly

describes the contents of this research thesis, which consists of 6 chapters, including

Introduction, Literature Review, Modeling of Smart Actuators, Discrete Nolinear Pre-

scribed Performance Control, Discrete Model Reference Adaptive Control, and lastly

Conclusions and Recommendations.

Chapter 1: The first chapter provides a general introduction and background of the

whole research, including overview, research objectives, as well as an outline of the

thesis.

Chapter 2: The second chapter elucidates the literature review, which describes previ-

ous studies related to this research. The chapter begins with an introduction of hys-

teresis phenomenon in smart actuators. Then, it is followed by hysteresis modeling.

System identification is also discussed. Finally, a discussion about control issues on the
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smart actuators is presented.

Chapter 3: In the first stage, the feasibility of the DEB models towards hysteresis char-

acterization and control fusion are carefully examined. Then, a new model modifica-

tion is proposed based on the outcomes of above investigation. Additionally, a method

of model validation is presented. In this case, experimental data from three types of

smart-material based actuators are considered namely, a piezoelectric actuator (PEA),

a giant-magnetostrictive actuator (GMA), and an ionic polymer metal composites actu-

ator (IPMC) to study the capacity of the proposed model in fitting and matching real

input-output relations.

Chapter 4: The fourth chapter demonstrates the practicality of the proposed model

for compensating hysteresis nonlinearity of a linear piezoelectrically actuated position-

ing system (PEA stage). The control architecture is synthesized by fusing the proposed

model into a discrete-time version of the prescribed performance control strategy. In the

controller establishment, a new performance function is introduced to properly define

the ultimate allowable steady-state error bound and transient behaviour. In addition,

stability analysis of the closed-loop system is also systematically discussed. Finally, the

proposed control scheme is implemented and tested on PEA stage to show its effective-

ness.

Chapter 5: In this chapter, we exploit the proposed model in designing a robust adap-

tive control law in order to mitigate the hysteresis nonlinearity. Theoretical analysis of

the closed-loop system with regard to stability is also systematically presented. Finally,

a real case control implementation is given to verify the effectiveness of the formulated

control strategy. In this case, the GMA is used as the test rig.

Chapter 6: The last chapter of this thesis explains conclusions of research findings, dis-

coveries and provides future recommendations for forthcoming improvement.
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Chapter 2

Literature Review

2.1 Introduction

The study of hysteresis phenomenon has a long history. It is first observed in the field of

ferromagnetism by James A. Ewing in 1881 (Iyer and Tan, X., 2009). This phenomenon

is history dependent, i.e., it can be referred to a system that has memory, where the

effects of input to the system are experienced with a certain delay in time. According

to Oh and Bernstein, D. S., 2005, hysteresis is a quasi-static phenomenon in which

a sequence of periodic inputs produces a non-trivial input-output loop as the period

of input increases without bound. This phenomenon arises in diverse fields ranging

from physics to biology, from material science to mechanics, and from electronics to

economics.

In recent decades, there has been a substantial advancement in various smart ma-

terials which lead to a new class of sensing and actuation systems. A broad range of

materials falls into this class, including piezoelectrics, magnetostrictives, shape mem-

ory alloys (SMA), electro-active polymers, and magnetorheological fluids. Their advan-

tages include high flexibility in shape designs, versatility, and power–to–weight ratio

compared to the traditional rigid actuators. Their potential applications extend over a

range of different industries including manufacturing (Wang et al., 2015b); for exam-

ple in semiconductor fabrication systems, robotics (Karpelson et al., 2012), automotive

(Melbert et al., 2006), medical applications (Levi et al., 2008) (for example see Fig. 2.1a),

(Kaplanoglu, 2012) (for industrial fields), also can be found in digital equipment such as

in optical axis alignment of optical fiber, and positional control of CCD (charge coupled

device) for enhancement of image resolution (Ko et al., 2008) as illustrated in Fig. 2.1b

( an auto focus camera module that has a size of 10x9.8x5.6t (in mm)). These materials,
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(A) A diagram of Magnetic Resonance Imaging
(MRI) driven by PEA (MICROMO company).

(B) Perspective views of an auto-focus module
adapted from (Ko et al., 2008)

FIGURE 2.1: Examples of real applications driven by smart actuators.
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FIGURE 2.2: The plots of open-loop input-output relations measured in
the experiments. (Top) A PEA case. (Bottom) A GMA case.
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however, are strongly exhibit hysteresis. As a result, systems that driven by these ma-

terials are directly affected by the hysteresis effects and give rise to poor performance

(Gu et al., 2016; Zhang et al., 2015). Fig. 2.2 illustrates the hysteresis effects in the smart

actuators, in particular, PEA and GMA for the case of a damped input trajectory.

This chapter provides a brief literature survey relating to the various types of hys-

teresis models with regard to their applications in modeling and control. In the re-

maining part of this study, different types of methods which are utilized for parameter

estimation, system identification and a discussion about control issues on the smart

actuators will also be provided.

2.2 Conventional models of hysteresis

As for now, there is no fundamental theory that allows a general mathematical frame-

work for modeling the hysteresis effects because the origins of these phenomena are

often multiple and unclear (Ikhouane and Rodellar, J., 2007). In the literature, it can be

noticed that most of the existing models of hysteresis are initially developed to describe

a particular type of hysteretic system but their mathematical forms are to a degree suit-

able for multi-disciplinary extensions. For example, Preisach model is initially devel-

oped to describe the dependence of magnetization on magnetic field in ferromagnetic

systems in the mid-1930s. The model is widely used by the scientific community only

after 50 years later following the works by Mayergoyz, 1986. Since then, the model has

been extended to describe hysteresis phenomena in many other areas of science such

as electromagnetism, economics, biology, geology, and has become one of the most uti-

lized mathematical models in the literature.

By and large, the common approach of characterizing the hysteresis behaviour is ei-

ther by the law of physics or the phenomenological method (Xu and Kiong, K., 2016). A

notable example of the physics-based model is Jiles-Atherton model, where it is the first

model to describe the ferromagnetic hysteresis. Meanwhile, the phenomenological-

based models that have been exploited include:

1. Operator based models such as Preisach, Prandtl–Ishlinskii (P-I) operators, and

their extensions which are normally based on the weighted superposition of many

(and even infinitely many) fundamental hysteretic units known as hysteron,
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2. Differential equation based (DEB) operators, such as Coleman-Hodgdon model,

Dahl model, and Bouc-Wen model.

2.2.1 Physics based models

In general, physics-based models are established based on the principle of physics, such

as the relationships of energy, displacement and so on. However, it is difficult to build

a model by this principle because physical feature of a hysteretic system is usually very

complicated. Moreover, a physics-based model developed for one smart actuator may

not be used for another kind of actuator and thus no model generalization is possible.

A well known physics-based model is the Jiles-Atherton model which is introduced

in the early 1980s to describe hysteresis curves in magnetic materials. The relation

between magnetization y field strength within the material and the applied magnetic u

is described by

dy

du
=

(1− τ)L(u+Ay)− y
%(1− τ)sgn(u̇)−A(L(u+Ay)− y)

+ τ
L(u+Ay)

du
(2.1)

where τ , A, and % are the model parameters, which are assumed to be non-negative,

and L is the anhysteretic curve in which can be described by Langevin function

L(u) = ysat(coth(
u

BA
)− BA

u
) (2.2)

in which BA is another fitting parameter and ysat is the saturation value of the output.

(*anhysteretic : not involving or producing hysteresis.)

The following constraints are imposed to ensure that the model is always bounded-

input bounded-output (BIBO) stable:

1. k(1− τ)sgn(u̇) > A(L(u+Ay)− y) for all possible values of u and y.

2. 1 − Aτ dL(u)
du > 0 for any u. If the anhysteretic function is given by (2.2), then this

condition is equivalent to 3 > Aτysat

It can be shown that the Jiles-Atherton model has the following properties (Dimian and

Andrei, P., 2014)

1. The output variable is bounded and lies in the interval (−ysat, ysat).
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FIGURE 2.3: A Preisach hysteron γβα[u].

2. The hysteretic state of the Jiles-Atherton model is completely described by the

value of the input, output, and the direction (increasing or decreasing) of the input

variable.

3. Eqn. (2.1) can be written in the form of a nonlinear first-order differential equation

by taking the derivative in the last term in (2.1) and using the chain rule. One

obtains

dy

du
=

(1− τ)L(u+Ay)− y
%(1− τ)sgn(u̇)−A(L(u+Ay)− y)

+ τ
dL(ueff )

d(ueff )
(1 +A

dy

du
) (2.3)

after a few rearrangements

dy

du
=

(1−τ)L(u+Ay)−y
%(1−τ)sgn(u̇)−A(L(u+Ay)−y) + τ

dL(ueff )
d(ueff )

1−Aτ dL(ueff )
d(ueff )

(2.4)

2.2.2 Phenomenological based models

2.2.2.1 Preisach model

The Preisach model is constructed based on the weighted superposition of many (and

even infinitely many) fundamental hysteretic units known as hysteron. For u(t) ∈

C[0, T ] (the space of continuous functions on [0, T ]) and initial configuration χ ∈ −1, 1,

y(t) = γβα[u, χ] in Fig. 2.3 is defined as
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y(t) =

{ −1, if u(t) < β

1, if u(t) > α

y(t−), if β ≤ u(t) ≤ α

(2.5)

t− ≡ limς>0(t− ς) and y(0−) = χ.

The Preisach plane is defined as

P0 ≡ {(β, α) ∈ R2|β ≤ α} (2.6)

where (β, α) ∈ P0 is identified with the hysteron γβ,αu(t). For u(t) ∈ C[0, T ], then, the

output y(t) is calculated as

y(t) = Γ[u(t)] =

∫∫
P0

ε(β, α)γβ,α[u(t)] dβ dα (2.7)

where Γ is known as Preisach operator, and ε(β, α) is a weighting function called the

Preisach density function. A hysteron constitutes a nonideal delayed relay parame-

terized by two threshold values (β, α), at which the hysteron flips among two binary

states {−1,+1}. Assume that ε(β, α) = 0 if β<β0 or α>α0 for some β0 and α0, then it

is sufficient to consider a finite triangular area in the Preisach plane P in which defined

as

P ≡ {(β, α) ∈ P0|β ≤ β0, α ≤ α0} (2.8)

At time t, P can be divided into two regions

P+(t) ≡ {(β, α) ∈ P | output of γβ,α[u(t)] at t is + 1} (2.9a)

P−(t) ≡ {(β, α) ∈ P | output of γβ,α[u(t)] at t is − 1} (2.9b)

Let the input u(t) change as follows: at time t0, the input u(t0)=u0<β0, and then the

output of each hysteron is -1, as shown in Fig. 2.4(b). Next, u(t) is increases monotoni-

cally to some maximum value at time t1 with u(t1)=u1, and the output of each hysteron

whose α is less than u1 is switched to +1, as shown in Fig. 2.4(c). Based on Eqn. (2.7),

the output y(t) for the case that shown in Fig. 2.4(c) can be written as
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FIGURE 2.4: The occurrence of memory curves on the Preisach plane.
(a) No input. (b) u=u0<β0. (c) β0<u=u1<β0. (d) β0<u=u2<u1. (e)

u2<u=u3<u1. (f) u2<u=u4<u3.



Chapter 2. Literature Review 13

y(t) =

∫∫
P+(t1)

ε(β, α)γβ,α[u(t)] dβ dα−
∫∫

P−(t1)
ε(βα)γβ,α[u(t)] dβ dα (2.10)

As the input u(t) starts to decrease monotonically until it stops at time t2 with

u(t2)=u2, and the output of each hysteron whose β is greater than u2 is switched to -1,

as shown in Fig. 2.4(d). Next, u(t) increases monotonically to u3 at time t3 and u3<u1, as

shown in Fig. 2.4(e). Finally, u(t) decreases monotonically to u4 at time t4 and u4>u2, as

shown in Fig. 2.4(f). The above input reversals generate staircase structured boundary

between P+(t) and P−(t), and coordinate of the boundary’s intersection with the line

α=β correspond to the current value of the input. In general, the output y(t) equals to

the integral of Preisach density function in the P+(t) boundary. This boundary captures

the memory effect of the Preisach operator, so called memory curve.

The presence of a double integral makes the Preisach model relatively complicated

to solve. Numerical and approximative approaches are introduced to simplify such

complexity as reported by Reimers and Della Torre, E., 1998; Song and Li, C.J., 1999;

Tan and Baras, J. S., 2004. Although the Preisach model is well suited for hysteresis

loops of arbitrary shape, a much higher effort is needed to make it work smoothly

within the modeling and control framework (Rosenbaum et al., 2010).

2.2.2.2 Prandtl-Ishlinskii model

The classical Prandtl-Ishlinskii (P-I) model is based on the backlash (also known as

play) operator (see Fig. 2.5). For an input function u, which is monotonic (nondecreas-

ing or nonincreasing) in each interval [ti−1, ti] of a partition 0 = t0 < ... < tm = T and

for a given threshold r>0, the output of a backlash operator is defined by

Fr[u](t) = max(u(t)− r,min(u(t) + r, Fr[u](ti−1))) (2.11)

with initial condition Fr[u](0)=max(u(0)− r,min(u(0) + r, 0)). For a given input u(t) ∈

C[0, T ], the output of the P–I model can be expressed as

y(t) = P [u](t) = p0u(t) +

∫ ∞
0

p(r)Fr[u](t)dr (2.12)
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FIGURE 2.5: A backlash operator with a unity slope.

in which p0 is a positive constant and p(r) is an integrable density function that van-

ished for large value of r. It is reasonable to assume that there exists a constant R such

that p(r) = 0 for r > R. The density function p(r) is usually defined based on the

experimental data (Janaideh et al., 2016; Jiang et al., 2010).

To implement the model (2.12), it is necessary to approximate the integrals. This

problem can be solved by introducing a discrete P-I operator of the play type which

given as (Janocha and Kuhnen, K., 2000).

y(t) = P [u](t) = p0u(t) +

M∑
j=1

pj · Fr[u](t) (2.13)

where pj denote the weights that are calculated from experimental data, and M is the

number of adopted play operators.

In view of relation (2.13), it is obvious that parameters of the P–I model can be easily

identified, for example, via a simple Least Square identification method. Furthermore,

P-I model is analytically invertible and thus can be used as feedforward compensator.

This makes the P–I model convenient for different applications that related to real-time

micro-positioning and nano-positioning systems (Janaideh et al., 2016).
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2.2.2.3 Duhem model

Duhem model is originally developed to describe magnetic hysteresis and has a prop-

erty in which every state is equilibrium under constant inputs and the output can only

change its character when the input changes its direction (Padthe et al., 2008). For a

given shape functions x1 and x2, the relationship between input u(t) and output y(t) is

expressed as

ẏ(t) = x1(y(t), u(t))u̇+(t)− x2(y(t), u(t))u̇−(t) (2.14)

where u̇+(t) and u̇−(t) are defined as

u̇+(t) = max{0, u̇(t)}, u̇−(t) = min{0, u̇(t)} (2.15)

The Duhem model as defined in (2.14) has the following properties (Jayawardhana

et al., 2012):

• Existence of solution

If for every u ∈ R, the functions x1 and x2 are C1 and satisfy

(y1 − y2)[x1(y1(t), u(t))− x1(y2(t), u(t))] ≤ λ1(u)(y1 − y2)2, (2.16a)

(y1 − y2)[x2(y1(t), u(t))− x2(y2(t), u(t))] ≥ λ2(u)(y1 − y2)2. (2.16b)

for all y1, y2 ∈ R, where λ1 and λ2 are nonnegative, then (2.14) has a unique global

solution.

• Monotonicity

If x1, x2 ≥ 0, then the Duhem model (2.14) is piecewise monotone, i.e., for every

u ∈ AC(R+), the inequality ẏ(t)u̇(t) ≥ 0 holds at every t ∈ R+

• Rate-independent

The rate-independency property of the Duhem model (2.14) can be interpreted as

follows, let τ : [0,∞)→ [0,∞) be a continuous nondecreasing function satisfying

τ(0) = 0 and limt→∞ τ(t) = ∞, i.e., τ is the time transformation, then (u(t) ◦

τ, y0) = (u(t), y0) ◦ τ . In other terms, for any periodic input u(t), the input-output

relation does not depend on the input frequency.
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• Causality

The output depends on the past and current inputs but not future inputs, i.e., the

y(t0) only depends on the input u(t) for values of t ≤ t0

However in applications, Eqn. (2.14) is simplified to the special case and given as

(Coleman and Hodgdon, M. L., 1987)

ẏ(t) = a|u̇(t)|(x1(u)− y(t)) + x2(u)u̇(t) (2.17)

with a constant a > 0. Eqn. (2.17) is formally known as Coleman-Hodgdon model and

satisfies the following three conditions.

Condition 1: x1(u) is odd, piecewise smooth, monotonically increasing, real–valued

function, with a finite first-order derivative x′1(u) at infinity;

Condition 2: x2(u) is an even piecewise continuous, real–valued function with a limit

that satisfies

limu→∞ x2(u) = limu→∞ x
′
1(u)

Condition 3: x′1(u) ≥ x2(u) and aeau
∫∞

0 |x
′
1(τ)− x2(τ)|e−audτ ≤ x2(u) for all u > 0.

Thus, for monotone piecewise u(t), Eqn. (2.17) can be solved explicitly as

y(t) = x1(u) + Ψ(u) (2.18)

where Ψ(u) is defined as

Ψ(u) = (y0 − x1(u0))e−a(u−u0)sgn(u̇) − e−ausgn(u̇)

∫ u

u0

(x′1(ζ)− x2(ζ))eaζsgn(ζ̇)dζ (2.19)
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FIGURE 2.6: The input-output map of the Backlash model (2.21) with
a = 1.5, b = 1 and c = 0.5.

for constant u̇(t) and y(u0) = y0. It has been shown by Du et al., 2009 that Ψ(u)→ 0 as

u→∞ if y(u;u0, y0) is the solution of (2.18) with initial values (u0, y0), i.e.,

lim
u→+∞

Ψ(u) = lim
u→+∞

(y(u : u0, y0)− x1(u)) = 0, u̇ > 0. (2.20a)

lim
u→−∞

Ψ(u) = lim
u→−∞

(y(u : u0, y0)− x1(u)) = 0, u̇ < 0. (2.20b)

For example, if the shape functions x1(u) and x2(u) are chosen as x1(u) = (c/a)u

and x2(u) = b. Eqn. (2.17) can be further expressed as

ẏ(t) = bu̇(t)− a|u̇(t)|y + c|u̇(t)|u(t) (2.21)

Relation in (2.21) is known as Backlash-like (Backlash) model (Su et al., 2000). Fig. 2.6

shows the behaviour of the Backlash model with a = 1.5, b = 1 and c = 0.5. Clearly,

the main advantage of Duhem model is that different hysteresis shapes can be captured

by appropriately choosing the shape functions x1 and x2, which satisfy the above three

conditions. Furthermore, the solution of Duhem model can be expressed explicitly,

which makes it possible to explore the control method for mitigating the hysteresis

effects. There are also other shape functions that have been proposed in the literature

such as by Zhou and Wang, J., 2013 and Feng et al., 2009. For example, Zhou and
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FIGURE 2.7: The input-output map of the Dahl model (2.22) with β = 2.5,
σ = 0.75 and r = 3.

Wang, J., 2013 consider a polynomial based shape functions in modeling piezoelectric-

based actuators. Through their experimental verifications, it is shown that the proposed

shape functions help the Duhem model to fit and match the experimental data with a

reasonable accuracy.

2.2.2.4 Dahl Model

Dahl model (Bliman, 1992; Vedagarbha et al., 1999) is commonly used in mechanical

systems, which represents friction force with respect to relative displacement between

two surfaces in contact. The general representation of Dahl model is given as

ẏ(t) = β|1− y(t)

σ
sgn(u̇(t))|rsgn(1− w

σ
sgn(u̇(t)))u̇(t) (2.22)

where β > 0 and σ > 0 reflect the slope and shape of the input-output curve respec-

tively, while r ≥ 1 defines the slope order. Initially this model is formulated to describe

the non-linear friction effects in ball bearings. In this case, the output y(t) denotes the

friction force, and the input u(t) denotes the relative displacement, σ and β can be re-

garded as the Coulomb friction force and the rest stiffness respectively. The Dahl model

(2.22) is also in the class of rate-independent hysteresis model. Eqn. (2.22) can also be
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FIGURE 2.8: The input-output map of the Bouc-Wen model (2.26) with
ξ = 1, ϕ = 1, γ = 0.01, ρ = k = 0.5 and n = 1.25.

described by the Duhem model (2.14) with

x1(y(t), u(t)) = β|1− y(t)

σ
|rsgn(1− y(t)

σ
), (2.23a)

x2(y(t), u(t)) = β|1 +
y(t)

σ
|rsgn(1 +

y(t)

σ
). (2.23b)

The Dahl model can be considered as a special case of the Duhem operator (Padthe

et al., 2008). In Fig. 2.7, we illustrate the behaviour of input-output plot described by

Dahl model where parameters σ, β, and r are chosen as σ = 0.75, β = 1.5 and r = 3.

2.2.2.5 Bouc-Wen Model

The model is initially proposed by Bouc in 1971 to describe the loading and unloading

curves of the hysteresis loop. The model is subsequently modified by Wen in 1976 (Gu

et al., 2016) and used mostly for predicting plastic deformations in mechanical systems.

Due to its capability to describe and characterize a broad range of hysteretic systems, it

has been extensively used in various applications namely smart actuators (Guo et al.,

2011; Habineza et al., 2015; Wang and Mao, J. Q., 2010), magnetorheological dampers

(Lin et al., 2013), as well as mechanical isolation systems (Cao and Chen, X. B., 2015;

Manzoori and Nezhad, H. T., 2016). The general expression of Bouc-Wen (BW) model
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is given as (Ikhouane and Rodellar, J., 2007)

y(t) = ρku(t) + (1− ρ)kw(t) (2.24)

ẇ(t) = ξu̇(t)− ϕ|u̇(t)||w(t)|n−1w(t)− γu̇(t)|w(t)|n, w(0) = w0 (2.25)

where y(t) denotes the output of the BW model; u(t) and w(t) denote the applied input

and the hysteresis state respectively; 0<ρ≤1 is the weighting parameter; k is the stiff-

ness coefficient; and ξ, ϕ, γ and n ≥ 1 are the parameters which govern the shape and

amplitude of the hysteresis curve.

Alternatively, the BW model (2.24)-(2.25) can be expressed as follows

ẏ(t) = (ρk + k(1− ρ)(ξ − ϕsgn(u̇)| y − ρku
k(1− ρ)

|n−1(
y − ρku
k(1− ρ)

)− γ| y − ρku
k(1− ρ)

|n))u̇(t) (2.26)

In view of (2.26), the Bouc-Wen model can be described by the Duhem model (2.14)

with

x1(y, u) = (ρk + k(1− ρ)(ξ − ϕ| y − ρku
k(1− ρ)

|n−1(
y − ρku
k(1− ρ)

)− γ| y − ρku
k(1− ρ)

|n)), (2.27a)

x2(y, u) = (ρk + k(1− ρ)(ξ + ϕ| y − ρku
k(1− ρ)

|n−1(
y − ρku
k(1− ρ)

)− γ| y − ρku
k(1− ρ)

|n)). (2.27b)

Obviously, the BW model is also a variation of Duhem model. An illustration of the

input-output relations described by BW model (2.26) is shown in Fig. 2.8.

2.3 System Identification in Hysteresis Characterization

Most of the models considered in the previous section consist of many parameters to

build the shape of the hysteresis curve. In the first place, a suitable model has to be

assigned to describe a nonlinear behavior of the system properly, and then the param-

eters of the proposed model have to be estimated. This matter can be considered from

two different points of views. In one hand, an identifier can be designed and substi-

tuted into the model of the system for imitating behavior of the real system as nearly as

possible with a minimum error. This kind of identification is known as non-parametric
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identification. On the other hand, parameters of the proposed model can be estimated

through an optimization tool. This type of identification is known as parametric iden-

tification in which the parameters of the system are estimated using several methods

such as least mean square, recursive least square, genetic algorithm, particle swarm

optimization, etc.

2.3.1 Least Square Identification

In this method, the unknown parameters in a certain model are estimated by find-

ing numerical values for the parameters that minimize the sum of the squared de-

viations. Normally, the model is expressed in a regression form such as autoregres-

sive with exogenous model (ARX), autoregressive-moving-average model (ARMA),

autoregressive-moving-average with exogenous model (ARMAX), and so on.

For an illustration, consider a second-order discrete model of the ARX form given

as

y(k) + a1y(k − 1) + a2y(k − 2) = a3u(k) + a4u(k − 1) (2.28)

The objective is to estimate the parameter vector θT = [a1, a2, a3, a4] using the

vector of input and output measurements. Define,

φT (k) = [−y(k − 1), −y(k − 2), u(k), u(k − 1)] (2.29)

Then, we can write (2.28) as follows

y(k) = φT (k) · θ (2.30)

In the least-square (LS) estimation, the following cost function is used

J(θ̂) =

N∑
k=1

[y(k)− φT (k)θ̂]2 (2.31)

where φT (k)θ̂ is the predicted output and y(k) is the real output which measured in the

experiment. To determine the parameter vector θ̂, the cost function (2.31) is minimized,
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i.e.,
dJ(θ̂)

dθ̂
= 0.

dJ(θ̂)

dθ̂
= −2

N∑
k=1

φ(k)(y(k)− φT (k)θ̂) = 0 (2.32)

in which we obtain θ̂N as

θ̂N =

( N∑
k=1

φ(k)φT (k)

)−1 N∑
k=1

φ(k)y(k) (2.33)

Results on modeling and identification of hysteresis behaviour pertaining to the LS

method can be found in Iyer and Shirley, M. E., 2004; Stakvik et al., 2015; Tan et al., 2001.

The LS identification is also known as an off-line parameter estimation method. For on-

line parameter estimation, it is extended to recursive least square (RLS) identification

and is discussed in the following subsection.

2.3.2 Recursive Least Square Identification

In the recursive least square (RLS) technique, the evolution or estimation of parameters

is updated at every time when a new set of observation data is obtained. Compared

to LS approach, RLS algorithm has a faster convergence speed and do not exhibit the

eigenvalue spread problem. However, it entailed more complicated mathematical op-

erations and require more computational resources than LS method. The standard RLS

algorithm is described as follows (Goodwin and Sin, K. S., 2009):

θ̂(k) = θ̂(k − 1) +
P (k − 2)φ(k − 1)

1 + φT (k − 1)P (k − 2)φ(k − 1)
(y(k)− φT (k − 1)θ̂(k − 1)) (2.34)

P (k − 1) = P (k − 2)− P (k − 2)φ(k − 1)φT (k − 1)P (k − 2)

1 + φT (k − 1)P (k − 2)φ(k − 1)
(2.35)

with θ̂(0) given and P (k − 1) is any positive definite matrix P0.

There are many variants of RLS algorithm that have been developed to solve the

identification problems in the linear as well as nonlinear systems. For example, Zhang

et al., 2013 apply an extended RLS method to adaptively identify the parameters of the

controlled autoregressive moving average (CARMA) model which is used to describe

the hysteresis phenomenon in a smart beam. In this study, the CARMA model is used
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to characterize the relationship between the output strain near the fixed end of the can-

tilever beam and the input voltage applied on the piezoelectric actuator. It is shown that

the hysteresis effects in the smart beam could be well identified by the above extended

RLS algorithm.

Meanwhile, Zhou et al., 2013 proposed a variable step-size RLS estimation algo-

rithm in order to reduce the computation overhead in the identification process. It is

then used to identify the weighting parameters of the Krasnosel’skii-Pokrovskii model

in modeling hysteresis nonlinearity of a magnetic shape memory alloy (MSMA) ac-

tuator. For a benchmarking purpose, an improved gradient correction identification

method is used. Through simulation and experimental studies, it is verified that the

variable step-size RLS has a better performance over the gradient approach.

2.3.3 Particle Swarm Optimization Method

The particle swarm optimization (PSO) method is inspired by the flocking and school-

ing patterns of birds and fish. Its establishment is relatively new (in the 1990s) in com-

parison to Genetic Algorithm (GA) and Fuzzy Logic (FL) but has become one of the

most powerful methods for solving unconstrained and constrained global optimiza-

tion problems (Bergh and Engelbrecht, A.P., 2006). Essentially, it consists of a number

of individuals that denote particles to simulate social behavior that ‘flying’ around in

a multidimensional search space. The individuals thus have a position and a velocity.

The particles evaluate and update their positions with a fitness value at each iteration.

By attracting the particles to better positions with good solutions, each particle remem-

bers its own previously best-found position, and particles in the group (a.k.a swarm)

share memories of their “best” positions, and then use those memories to adjust their

own velocities, and thus subsequent positions.

The algorithm of the original PSO is described as follows (Hassani et al., 2014):

1. Initialize the time to zero and set a number for initial position xi,d(0) and initial

velocity vi,d(0).

2. Evaluate the fitness of each particle F (xi,dk ).
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3. Set the Pbi,dk to the better performance as follows

Pbi,dk =

{ Pbi,dk−1, F (xi,dk ) ≥ F (Pbi,dk−1);

xi,dk , F (xi,dk ) < F (Pbi,dk−1).

(2.36)

4. Set the Gbi,dk to the position of particle with the best fitness within the swarm as

Gbi,dk ∈ Pb
1,d
k , P b2,dk , · · · , P bNs,dk /F (Gbi,dk )

= min{F (Pb1,dk ), · · · , F (PbNs,dk )}

5. Update the velocity vector for each particle according to the following rule:

vi,dk+1 = Vmax, if vi,dk ≥ Vmax (2.37a)

vi,dk+1 = −Vmax, if vvi,dk < −Vmax (2.37b)

vi,dk+1 = Iw · vi,dk + ρ1 · r1 · (Pbi,dk − x
i,d
k ) + ρ2 · r2 · (Gbi,dk − x

i,d
k ), otherwise

(2.37c)

6. Update the position of each particle according to

xi,dk+1 = xi,dk + vi,dk+1 (2.38)

7. Let k = k + 1.

8. Compute the new F (xi,dk ) until the iteration to be terminated or the least value for

F to be achieved.

where Iw is inertia weight; ρ1 is cognitive learning gain; ρ2 is social learning gain; r1

and r2 are random numbers,uniformly distributed in the range of [0,1]; Pbi,dk is the best

known position along the dth dimension of particle i in iteration k; Gbi,dk is the global

best known position among all particles along the dth dimension in iteration k; and

k = 1, 2, · · · , N, denotes the iteration number, N is the maximum allowable iteration

number. Ns is the population size. In addition, Vmax is the maximum velocity evolution

which is usually selected to be half of the length of the search space.
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Since its establishment, it has been applied in many areas, such as function opti-

mization, artificial neural network training, pattern classification and so forth (Pant et

al., 2007). Among the advantages of PSO are including rapid convergence, less compu-

tation overhead, and ease of implementation. However, the standard PSO does exhibit

some disadvantages: it is sometimes easy to be trapped in local minima, and the con-

vergence rate decreased considerably in the later period of evolution; when reaching a

near optimal solution, the algorithm stops optimizing, and thus the accuracy that the

algorithm can achieve is limited ( Yang et al., 2007).

To attend the aforementioned problems, the standard PSO has received various

modifications and upgrades. For example, Evers and Ghalia, M. B., 2009 introduce

a mechanism for overcoming the stagnation problem of PSO. This mechanism triggers

the swarm regrouping whenever premature convergence is detected and helps liber-

ate the swarm from the state of premature convergence in order to enable continued

progress toward the true global minimum. In Alrasheed et al., 2007, a chaotic accel-

eration function is introduced into the PSO algorithm. The modified version of PSO

is then empirically tested with the well-known benchmark functions include sphere,

rosenbrock and rastrigin functions. A real case application is also considered to further

evaluate the modified PSO. From the simulation and experimental results, it is proven

that the modified version outperforms the standard PSO with better enhancement of

convergence rate and accuracy. Other results related to the improvement of PSO tech-

nique are include Fan, 2002; Pant et al., 2007; Yang et al., 2007.

2.4 Control Strategies in Hysteretic Systems

Various control strategies have been developed to combat the hysteresis effects. In gen-

eral, the control approach can be roughly classified into the open-loop or feedforward

control, and the feedback control schemes (Cao and Chen, X. B., 2015; Devasia et al.,

2007; Hassani et al., 2014).

2.4.1 Feedforward Approaches

In the feedforward control approach, the basic idea is to employ the inversion of a

hysteresis operator for compensating the hysteretic behaviour. The common structure
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FIGURE 2.9: The block diagram of the inverse feedforward control
scheme. y is the output of the inverse compensation, u is the control

input, and r is the reference input.

of this strategy is shown in Fig. 2.9. The desired output r is fed through the inverse

model to obtain the input signal u, which is then passed onto the physical plant, the

output y of which will ideally be the desired signal.

Generally, this technique is devoted to the operator-based models i.e., the Preisach

and P-I models such as reported by Al-Janaideh and Krejci, P., 2012; Chen et al., 2013;

Krejci and Kuhnen, K., 2001; Tan and Baras, J. S., 2004. Comparing with the Preisach

model, the P-I model has the advantage of the analytical inverse. Krejci and Kuhnen,

K., 2001 are the pioneer to provide the analytical inverse of the classical P-I model.

Since then, it can be seen that extensive works have been developed (Gu et al., 2014;

Kuhnen, 2003; Tan et al., 2009). For the Preisach model, numerical method is mainly

adopted to approximate its inversion (Ruderman and Bertram, T., 2010; Venkataraman

and Krishnaprasad, P. S., 2000).

When the hysteresis is represented by DEB models such as the Duhem model, Dahl

model, and BW model, the inverse construction is either impossible or extremely diffi-

cult to be obtained (Gu et al., 2016). In this case, a feedforward compensator is achieved

by an alternative solution, known as multiplicative-inverse approach such as reported

by Rakotondrabe, 2011 where the compensator is developed based on the BW model. In

the same vein, Habineza et al., 2015 extend this approach to multiple degree of freedom

(DOF) hysteretic systems.

The main challenge with such approaches is the modeling complexity and param-

eter sensitivity. Therefore, the performance of this control scheme is sensitive to errors

in the plant transfer function, leading to problems such as divergence and instability.

In practice, feedback control approaches are used to reduce the effects of uncertainties

and disturbances which is discussed in the following subsection.
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FIGURE 2.10: The block diagram of the feedback control scheme. y is the
controlled output, u is the control input, and r is the reference input.

2.4.2 Feedback Approaches

In the feedback control scheme, hysteresis compensation is dealt by several approaches.

Fig. 2.10 depicts the common structure of the feedback control scheme. The first ap-

proach is to directly develop a feedback controller without the use of hysteresis opera-

tors. The simplest solution is to consider the famous Proportional-Integral-Derivative

(PID) control such as reported by Ikhouane and Rodellar, J., 2006. In this case, the PID

controller is used to regulate the displacement and velocity of a second-order system

that includes a dynamic hysteresis which is described by BW model. It is shown that

the asymptotic regulation of the displacement and velocity can be achieved by the PID

controller with a guaranteed stability of the closed loop signals.

In the second method, the system that is affected by the hysteresis is modeled

by a composition of two terms namely, a linear term and a bounded disturbance-

like term. In this way, available control methods are adequate to deal with the non-

smooth hysteresis nonlinearity and different feedback control techniques have been

proposed along this direction. Riccardi et al., 2013 come up with a control design strat-

egy based on the PID controller to compensate hysteresis of a magnetic shape memory

alloy-actuated positioning system. In this study, the linear matrix inequalities (LMI)

based design tool is used to perform the numerical synthesis of the controller. Xu, 2015

presents the design of a second-order discrete-time terminal sliding-mode control strat-

egy to address the tracking control problem of the PEA stage. Its establishment elimi-

nates the use of the state observer because the designed control signal only depend on

the output feedback. In Zhong and Yao, B., 2008, an adaptive controller framework is

proposed to compensate for the effect of unknown model parameters and bounded dis-

turbances effectively. The formulation of the control strategy takes the basis of a simple

first-order nonlinear model with only four parameters.

Alternatively, control design and stability analysis methods are proposed based on
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FIGURE 2.11: The block diagram of the feedforward-feedback control
scheme with the closed-loop inversion. y is the controlled output, u is

the control input, and r is the reference input.

the properties of hysteresis itself such as monotonicity, sector-bound or dissipativity to

ensure that the formulated controller is robust against the parameter uncertainties and

thus stable. For example, Gorbet et al., 2001 derive the dissipativity of the Preisach op-

erator and design a controller, which is strictly passive for the smart actuators. Another

result that is similar to this method can be found in (Jayawardhana et al., 2012).

2.4.3 Integration of Feedforward and Feedback

There are a number of feedforward-feedback control architectures that have been de-

veloped to further suppress the hysteresis effects and improve the overall systems’ per-

formance. Generally, in this strategy, the hysteresis nonlinearity is compensated by

the approximation of the feedforward scheme (hysteresis inverse), while the feedback

controller is designed to reduce the residual errors due to the inaccurate of hystere-

sis inverse model and the system uncertainties. This integration technique is initially

introduced by Ge and Jouaneh, M., 1996 where they developed the inverse hysteresis

compensator based on the Preisach model to mitigate the hysteresis effects and then

combined it with a PID controller to eliminate the creep nonlinearity and modeling un-

certainties of a piezoceramic actuator. Other results pertaining to this direction can be

found in Cao et al., 2013; Chen et al., 2013; Shan and Leang, K. K., 2012; Xie et al.,

2013. For example, Shan and Leang, K. K., 2012 present a thorough analysis relating to

the effect of hysteresis on the stability of repetitive control (RC) strategy. P–I operator

is used to characterizing the hysteresis effects. Then, the identified parameters of P-I

operator are used to determine the bounds for a stable RC system. Different control

strategies include Proportional-Integral (PI), a hybrid based of PI, RC and inverse P-I

are considered to investigate the performance of RC based control scheme. Experiment

results show a significant improvement in the tracking performance (such as a 71% re-

duction in tracking error) when the hybrid of PI-RC-inverse P-I control architecture is
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used. The results are achieved without compromising the stability of the closed-loop

system. Similar approach is reported in Riccardi et al., 2012.

Fig. 3.1 shows one of the feedforward-feedback control architecture reported for

piezo-actuated nanopositioning stages (Devasia et al., 2007). In this case, the feedfor-

ward controller in Fig. 3.1 is the inversion of closed-loop system. It is demonstrated

that this approach capable of reducing the computational error as the uncertainties and

nonlinearities are compensated in advanced by the feedback control loop.

2.5 Concluding Remarks

This chapter elucidates the literature review, which describes previous studies related

to this research. First, we discuss the conventional hysteresis models for characteriz-

ing the hysteresis effects in various applications and followed by system identification.

Then, a discussion about control issues on smart actuators is presented.
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Chapter 3

Modeling of Smart Actuators

3.1 Introduction

This chapter is focused on modeling of the hysteresis effects in the smart actuators. In

order to solve the motion tracking problem in smart actuators, a good hysteresis model

or operator is required. Indeed, there are many suitable candidates for this purpose.

For example, we can consider physical based model which can accurately describe the

input-output behaviour by considering almost all elements that actuator consists of.

However, the developed model will be too complicated for direct implementation in

the control design. To avoid this kind of limitation, in this thesis, we devote the focus

onto the class of differential equations based (DEB) model. This consideration is due

to its favourable properties that include a small number of parameters is required to

describe the hysteresis phenomenon and the fact that differential equations, in general,

are well-suitable for controller design purposes.

First, the analytical solutions pertaining to the DEB models namely Backlash model,

Dahl model, and BW model are presented. Simulation experiments are also conducted

to understand their physical meanings, similarities, and uniqueness. The insights pro-

vide important remarks on the models’ feasibilities towards the control design. Then,

a new model modification will be developed based on the outcome of above investiga-

tion with a goal to improve the characterization and control of hysteretic behaviour in

the smart actuators. This development will be established in the discrete-time domain.
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3.2 Analytical Solution of DEB Models

3.2.1 Backlash-like Model

The Backlash model (3.1) is the special case of Duhem model which is first appeared in

Su et al., 2000.

ẏ(t) = bu̇(t)− a|u̇(t)|y(t) + c|u̇(t)|u(t). (3.1)

Based on (2.18)–(2.20) in Chapter 2, the solution of Eqn. (3.1) can be derived as follows

y(t) =
c

a
+ Ψ(u) (3.2)

where Ψ(u) is defined as

Ψ(u) = (y0 − (
c

a
)u0)e−a(u−u0)sgn(u̇) + (

ab− c
a2

)sgn(u̇)(1− e−a(u−u0)sgn(u̇)). (3.3)

In view of (2.20), Ψ(u) of (3.2) is bounded by the following properties

lim
u→+∞

Ψ(u) = lim
u→+∞

(y(u : u0, y0)− c

a
u) =

ab− c
a2

, u̇ > 0, (3.4a)

lim
u→−∞

Ψ(u) = lim
u→−∞

(y(u : u0, y0)− c

a
u) = −ab− c

a2
, u̇ < 0. (3.4b)

It is important to note that (3.4) implies that there exists a uniform bound κ as such

that

‖Ψ(u)‖ ≤ κ. (3.5)

3.2.2 Dahl Model

For the simplest case, i.e., r = 1, the Dahl model (2.22) may be written as

ẏ(t) = βu̇(t)− α|u̇(t)|y(t). (3.6)

where α is defined as α =
β
σ .

The analytical solution of (3.6) is given by
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FIGURE 3.1: The block diagram of the feedforward-feedback control
scheme with the closed-loop inversion. y is the controlled output, u is

the control input, and r is the reference input.

y(t) = y0e
−α(u−u0)sgn(u̇) +

β

α
sgn(u̇)(1− e−α(u−u0)sgn(u̇)). (3.7)

It can be easily shown that (3.7) has similar properties as (3.4) for initial values

(u0, y0), i.e., if u̇ > 0 or u̇ < 0 and u → +∞ or u → −∞, the following relations

are obtained

lim
u→+∞

y(u : u0, y0) =
β

α
, u̇ > 0, (3.8a)

lim
u→−∞

y(u : u0, y0) = −β
α
, u̇ < 0. (3.8b)

A careful observation to Eqn. (3.6) and its properties (3.8) along with (3.1) and (3.4)

lead to a conclusion that the hysteresis curves generated by both (3.1) and (3.6) would

share similar shape.

3.2.3 Bouc-Wen Model

For n = 1, k = 1, and ρ = 0, BW model (2.26) can be rewritten as follows

ẏ(t) = ξu̇(t)− ϕ|u̇(t)|y(t)− γu̇(t)|y(t)|. (3.9)

Eqn. (3.9) is known as a special case of Bouc-Wen model. The output y(t) of (3.9) is

bounded with a bound given as in the following form (Zhou et al., 2012)

|y(t)| ≤ ξ

ϕ+ γ
(3.10)

For later developments, relation (3.9) is simplified as follows:
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ẏ(t) = (ξ − |y|µ(u̇(t), y(t)))u̇(t) (3.11)

where µ(u̇(t), y(t)) is defined as

µ(u̇(t), y(t)) = ϕsgn(u̇(t))sgn(y(t)) + γ (3.12)

The above analytical solutions provide the basis of selecting the parameter value for

each model, in particular the parameter a in (3.1), α in (3.6), or ϕ in relation (3.9), i.e., it

must be strictly positive to avoid exponential divergence and to preserve the existence

of the hysteretic nonlinearity. In addition, we also learn that all the DEB models are

bounded. This is an important property in the control design and stability analysis.

Other physical meanings pertaining to each parameter are studied and discussed in the

next section.

3.3 Simulation Analysis

In the first analysis, a sinusoidal input signal u = 10sin(2πt) is used to simulate the

hysteresis curves. Fig. 3.2 shows the generated hysteresis curves for each model with

the chosen parameter values as a = α = ϕ, b = β = ξ, and c = γ. As can be seen

in Fig. 3.2, the hysteresis curves described by each model is identical to each other.



Chapter 3. Modeling of Smart Actuators 34

-10 -5 0 5 10
Input, u(t)

-4

-3

-2

-1

0

1

2

3

4
O
u
tp
u
t,

y
(t
)

Backlash

Dahl

BW

(A) Input of u = 10sin(2πt).

-8 -6 -4 -2 0 2 4 6 8
Input, u(t)

-3

-2

-1

0

1

2

3

O
u
tp
u
t,

y
(t
)

Backlash

Dahl

BW

(B) Input of u = 3.6sin(πt) + 3.1cos(3.4πt).

FIGURE 3.3: Hysteresis curves generated by Backlash model, Dahl
model, and Bouc-Wen model with a = 0.5, b = 0.85, c = 0.115.
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This scenario occurs when the parameters c and γ are kept much smaller than other

parameters, specifically within [0,1).

A subtle difference can be observed as the parameter c or γ is increased or decreased;

this parameter makes the Backlash or the BW model distinct to the Dahl model. Param-

eter c physically change the gradient of the curves while γ reflects the upper and the

lower branch of the curves as depicted in Fig. 3.3 (for positive c or positive γ) and Fig.

3.4 (negative c, i.e. c < −|a| or negative γ, i.e., γ < −|ϕ|). In this simulation study,

the parameters for each model are set as the same condition as in the first first anal-

ysis, i.e., a = α = ϕ, b = β = ξ, and c = γ. An important observation relating to

the Backlash model that can be made is that by setting b to zero in (3.1), the remaining

relations can still yield hysteresis curves as illustrated in Fig. 3.5. Note that the orienta-

tion of the hysteresis curves depicted in Fig. 3.5 is the opposite of the one described in

either Fig. 3.2, Fig. 3.3, or Fig. 3.4. Normally, when the output lags the input, the phase

plot of the input-output signals undergoes a counter-clockwise behaviour and this type

of phenomena is called counter-clockwise (CCW) input-output behaviour. For exam-

ple, Preisach model with positive weights generates CCW curves. On the other hand,

when the output leads the input, the phase plot of the input-output signals undergoes

a clockwise (CW) behaviour. Note that the original form of Backlash model generates

CW hysteresis curves and once the linear term is removed from the equation, i.e., b = 0,

CCW curves are observed.

Nonetheless, BW model loses its ability to describe the hysteretic effects when the
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linear term is removed. However, we wish to investigate the physical meaning of γ

with respect to the input u(t). The plot of µ(u̇(t), y(t)) (3.12) with y(u0) = y0 is shown

in Fig. 3.6. It is apparent from Fig. 3.6 that γ can be less than |ϕ| or vice-versa to yield an

exponential decay behaviour. In addition, the convergence speed can be adjusted by a

proper selection of γ value. Positive value of γ reflects a slight increment to convergence

speed (negative value is conversely).

3.4 Discrete-Time Modeling

It is obvious that Duhem model (for example Backlash model) is capable of describing

complex hysteresis curves that are akin to hysteresis phenomenon in the real applica-

tions. However, it is a challenge to determine proper shape functions that best describe

real hysteresis effects. Furthermore, a good model does not guarantee its viability from

a control standpoint.

Generally, the class of DEB model is used to describe a disturbance or uncertainty

term due to its boundedness property(Xu and Li, Y., 2010). Then, linear ordinary differ-

ential equation (ODE) is commonly used to describe the hysteretic systems so that the

standard control approach can be applied, while the bounded disturbance is assumed

to be fed into either the input or the output channel of the system.

However, when hysteresis nonlinearities are described by the class of DEB model,

the major challenge is the corresponding controller design due to the presence of vari-

able |u̇|. This situation makes control input depends on the sign function sgn(u̇) which

is not available in practice. Based on our analysis, only BW model is found to be suc-

cessful in terms of direct model usage for the control design. The key point to this

success lies in its unique structure that allows control designer to handle the |u̇| term

appropriately. By introducing a specific restriction to parameter γ, the sign of µ(u̇, y)

term in (3.12) can be set to either positive or vice-versa depending on the control law

requirement. In other terms, the control input will be independent of the sign function

sgn(u̇). This point is important because without any restriction to parameter γ, stability

of closed-loop system can not be guaranteed.

Realizing this fact, BW model is adopted to solve the problem of characterization
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and control in the smart actuators. First, a procedure for discretizing the continuous-

time BW model is presented in the following subsection. Next, a new model modifica-

tion to the original BW is proposed in Subsection 3.4.2. This model modification is pro-

posed to fix the rate-independent property of the original BW model. In this case, the

special case of BW model (3.9) is used as the basis for developing the modified one and

its establishment is realized in the discrete-time domain. Then, control fusion methods

are presented in Chapter 4 and Chapter 5. In Chapter 4, a discrete prescribed perfor-

mance control (DPPC) is developed and fused into the modified BW (MBW) model.

For evaluation purpose, a piezoelectrically actuated positioning system (PEA stage) is

considered as the test rig. Chapter 5 describes the development of an adaptive con-

trol framework based on the MBW model along with stability analysis pertaining to

closed-loop system. The control algorithm is then applied to a hysteretic GMA.

3.4.1 Discrete time Bouc-Wen model

Essentially, the discretization method is based on Taylor Series Expansion. Consider

the following simple approximation of a first order derivative

y(t+ ∆t) = y(t) + ẏ(t) ·∆t+ ÿ(ς) · ∆t2

2
(3.13)

where ς ∈ (t, t+ ∆t); ∆t is the sampling period; t = k∆t is the sampling instant.

If y(t) 6= 0 and upon a simple rearrangement, the following relation is obtained

ẏ(t) =
y(t+ ∆t)− (1− ϑ1)y(t)

∆t
(3.14)

in which ϑ1 = ( ÿ(ς)
y(t) ·

∆t2

2 ) is defined as a higher order positive function of ∆t. If the

sampling period ∆t is chosen to be very small, then (1 − ϑ1) will be nearly equal to 1.

Thus, the derivative ẏ(t) can be approximately expressed as

ẏ(t) ∼=
y(t+ ∆t)− δ1y(t)

∆t
(3.15)

where δ1 is a parameter which is nearly equal to 1 when ∆t is sufficiently small. It can

be easily seen that (3.15) is also valid even if y(t) = 0.
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Similarly, u̇(t) can also be approximately expressed as

u̇(t) ∼=
u(t+ ∆t)− δ2u(t)

∆t
(3.16)

where δ2 is a parameter which is nearly equal to 1 when ∆t is sufficiently small.

In view of (3.15) – (3.16), Eqn. (3.9) can be expressed as

y(k∆t+ ∆t) = δ1y(k∆t) + ∆tξ
u(k∆t+ ∆t)− δ2u(k∆t)

∆t

−∆tϕ|u(k∆t+ ∆t)− δ2u(k∆t)

∆t
|y(k∆t)

−∆tγ
u(k∆t+ ∆t)− δ2u(k∆t)

∆t
|y(k∆t)|

(3.17)

For simplicity, denote k∆t as k and define

νk =
uk − δ2uk−1

∆t
, ζ = ∆tξ, ψ = ∆tϕ, α = ∆tγ (3.18)

Then, Eqn. (3.17) can be further simplified as

yk = δ1yk−1 + ζνk − ψ|νk|yk−1 − ανk|yk−1| (3.19)

Relation (3.19) is the representation of BW model in the discrete-time domain. Fig-

ure 3.7a shows the plot of hysteresis curves described by continuous BW model (3.9)

and discrete BW model (3.19) where the parameters of both models are chosen as
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FIGURE 3.8: The comparison of input-output plots between the original
BW model (solid) and MBW model (Dashed) at different frequencies.

ζ = ξ = 0.5, ψ = ϕ = 0.02, α = γ = −0.05, and δ1 = δ2 = 0.9998, while, the sam-

pling period is set as 0.5ms. As can be observed in Figure 3.7a, the hysteresis curves

described by the discrete BW model are well matched with the continuous ones. The

reconstruction accuracy is about 97%.

3.4.2 The Modified Discrete-Time Bouc-Wen Model

From the literature, it is well known that BW model is rate-independent, i.e., limited to

describing invariant hysteresis curves regardless the increment/decrement of the input

frequency. This behaviour can be clearly seen in Fig. 3.7b. Besides, hysteretic effects

found in most smart materials, especially in ferromagnetic and ferroelectric materials

are rate-dependent. In such cases, the use of standard BW model could yield consider-

able errors under inputs that are applied at varying rates.
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To the best of our knowledge, there are a number of extensions of BW model which

have been reported in the literature, but the most significant model improvements are

as described by Song and Der Kiureghian, A., 2006; Wang et al., 2015a. In Song and

Der Kiureghian, A., 2006, additional nonlinear terms are introduced into the standard

BW form that not only depend on the sign of the input derivative but also the input

itself. This extension offers better flexibility in shape control and is capable of describ-

ing highly asymmetric hysteresis curves with the time-invariant parameters. Mean-

while, the extension proposed by Wang et al., 2015a is essentially based on the addition

of a further nonlinear memoryless function, i.e., a polynomial input function is intro-

duced in cascade with the standard BW model which has locally Lipschitz continuous

property. It is observed that both of these extensions require meticulous identification

methods to yield satisfactory results. Additionally, none of them could be directly syn-

thesized into the control design due to the special structure of their input functions.

To solve and improve above limitations, Eqn. (3.19) is further modified by introduc-

ing the first-order input difference term, vu,k which is defined as

vu,k = |uk − uk−1| (3.20)

Then, the modified BW (MBW) model is given as follows:

yk = δ1yk−1 + (ζ1 + ζ2vu,k)νk − (ψ1 + ψ2vu,k)|νk|yk−1

− (α1 + α2vu,k)νk|yk−1|
(3.21)

Remark 3.1: The introduced first-order input difference term vu,k ensures that the gen-

erated hysteresis curves are varying to the speed of input variations, in other terms, the

MBW model is a dynamic or rate-dependent hysteresis operator.

To illustrate Remark 3.1, simulation experiments are conducted to compare the

input-output curves described by the original BW model (3.19) and the proposed MBW

model (3.21) where sinusoidal input of uk = 10sin(2π ∗ Hz ∗ k ∗ 0.0005) is used. In

this case, four different frequencies, namely 1 Hz, 10 Hz, 25 Hz, and 50 Hz are stud-

ied. The parameters of both models are chosen as ζ = ζ1 = 0.4346, ψ = ψ1 = 0.0345,

α = α1 = −0.05, ζ2 = 1e − 6, ψ2 = 0.09, α2 = −0.09, and δ1 = δ2 = 0.9995. As can
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be noticed in Fig. 3.8, the curves described by MBW model are vary with respect to the

increment of input frequency. While the curves described by the original BW model

remain unchanged regardless the frequency changes.

In-fact, higher order difference term vu,k can be used to include rate-dependent

property to BW model (3.19) as illustrated in Fig. 3.9b through Fig. 3.9d. Obviously,

by increasing the order of difference term vu,k, shape of input-output curves become

thinner as input frequency is increasing.

However, without absolute term as described in (3.20), i.e., when vu,k is chosen as

vu,k = uk − uk−1, hysteresis curves will be offset along y–axis and as input frequency

is increased, and the MBW model will no longer able describe hysteresis curves as can

be observed in Fig.3.9e and Fig.3.9f. For this reason, in the following developments, we

only consider vu,k as described by relation (3.20).

3.4.3 Model Validation

By and large, the least square identification method is usually used to estimate the

parameters of a certain model. However, the nonlinear nature of Eqn. (3.21) increases

the difficulty of parameter estimation process. Therefore, the common identification

technique is not effective to yield best result. In order to validate the proposed model,

we consider the extended version of Particle Swarm Optimization (EPSO) technique

which adopted from Alrasheed et al., 2007 to effectively estimate the parameters of

MBW model. In the standard PSO, the particles are tend to be trapped in the local

minima. As a result, the particles are unable to adequately explore the feasible domain

and yield to a premature solution. The proposed EPSO is incorporated with a chaotic

acceleration function to ensure that the particles properly explore the search space, and

thus improve quality of the solution. The chaotic acceleration function is defined as

ϑk+1 = η · ϑk(1− ϑk) (3.22)

in which η is a positive constant.
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iment (solid) and MBW model (Dashed) using identified parameters (A

random input case of PEA.)

Then, the velocity and position updates which are described in (2.37) and (2.38) are

modified as in Eqn. (3.23) and Eqn. (3.24) respectively.

vi,dk+1 = Iw · vi,dk + ρ1 · r1 · (Pbi,dk − x
i,d
k ) + ϑk · ρ2 · r2 · (Gbi,dk − x

i,d
k ) (3.23)

xi,dk+1 = xi,dk + ϑk · vi,dk+1 (3.24)

Empirical studies of PSO pertaining to the inertia weight Iw have shown that a

relatively large Iw has more global search ability while a relatively small Iw results

in a faster convergence (Yang et al., 2007). In this validation process, the inertia weight

Iw is defined as follows
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Iw = Iw,max −
(Iw,max − Iw,min)e−0.02ϑk · k

N
(3.25)

where Iw,max is the maximum inertia weight which is set as 0.9, and Iw,min is the mini-

mum inertia weight, and is set to 0.2. Eqn. (3.25) is a dynamic inertia weight designed

to trade-off between the search ability and convergence rate.

TABLE 3.1: The selected parameter bounds for the identification process.

Parameter Lower Bound values Upper Bound values

ζ1 0.00001 0.9

ζ2 0.00001 1.0

ψ1 0.00001 0.95

ψ2 -1.0 1.0

α1 -0.00001 0.9

α2 -1.0 1.0

Experimental data from three types of smart-material based actuators are consid-

ered namely, a piezoelectric actuator (PEA), a giant-magnetostrictive actuator (GMA),

and an ionic polymer metal composites actuator (IPMC) to study the capacity of the

proposed model in fitting and matching the real input-output relations. In this case,

the cost function is described by the root mean-square error (RMSE) as in Eqn. (3.26).

JRSME =

√∑L
n=1(Y n

exp − Y n
MBW )2

L
(3.26)

where Y n
exp is the measured experiment data at the nth sampling instant, Y n

MBW is the

corresponding estimated output from the MBW model, and L is the total number of

samples. In order to fit the MBW model output and experimental data accurately, the

following fitness function is considered

f(ζ1, ζ2, ψ1, ψ2, α1, α2) = min(JRSME) (3.27)

In the simulation study, the parameters of EPSO algorithm are chosen as ρ1 = 1.5,

ρ2 = 2.5, and η = 4.0. In addition, the population size Ns is set as 40 particles and

the chaotic function is initiated by a random number. By experiential judgement, the

parameter bounds are set as in Table 3.1. For a benchmarking purpose, we consider the
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FIGURE 3.15: Comparison of input-output map between experimental
data of the GMA (Solid) and MBW model (Dashed) at 1Hz.
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FIGURE 3.16: Comparison of input-output map between experimental
data of the GMA (Solid) and MBW model (Dashed) at 10Hz.
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FIGURE 3.17: Comparison of input-output map between experimental
data of the GMA (Solid) and MBW model (Dashed) at 50Hz.
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FIGURE 3.18: The graph of input-output relations obtained from experi-
ment (solid) and MBW model (Dashed) using identified parameters the

case of IPMC at 0.05Hz.

standard nonlinear least square curve fitting method (LSQM) provided by MATLAB

software. In this case, the parameter bounds are set to be the same for both methods.

Fig. 3.10 compares the input-output relations measured in the experiments (PEA) to

those obtained through the simulations based on the identified parameters. Referring

to Fig. 3.10, it is clear that, EPSO performs much better than the LSQM. The RMSE for

both methods are recorded as 0.0318µm for EPSO and 2.9363µm for LSQM.

While Fig. 3.11 further illustrates the effectiveness of EPSO. In this case, a random

input is used to check and verify whether EPSO algorithm is able to escape from the

local minima. By the help of EPSO technique, it can be seen the output generated by

MBW model is well matched with the measured output of PEA. The LSQM, on the other

hand, is stuck in the local minima and is unable to yield a good result. The recorded

RMSE values for this case are 0.0993µm (EPSO) and 2.4297µm (LSQM).

Additionally, Fig. 3.12 through Fig. 3.17 indicate hysteresis curves measured in the

experiments of both PEA stage and GMA to those obtained through MBW model (3.21)

with the identified parameters (by EPSO) at 1Hz, 10Hz and 50Hz respectively. The

RMSE for each case is recorded and tabulated in Table 3.2. Meanwhile, Fig. 3.18 and Fig.

3.19 portray and compare real input-output relations of ionic polymer metal composites

(IPMC) with the estimated input-output relations at 0.05Hz and 0.2Hz respectively. In

this case, RMSE values are recorded as 0.0271 and 0.0795 correspondingly.

Clearly, experimental data show that the hysteresis phenomenon in most smart ac-

tuators especially piezoelectric, magnetostrictive and IPMC actuators are rate-dependent.
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FIGURE 3.19: The graph of input-output relations obtained from exper-
iment (solid) and MBW model (Dashed) using identified parameters for

the case of IPMC at 0.2Hz.

This behaviour is clearly shown in Fig. 3.12 through Fig. 3.19. The shape of hysteresis

loops are changing with respect to the input frequency. With the help of EPSO tech-

nique, it is verified that the proposed MBW model (3.21) is able to capture the dynamic

and hysteretic behavior not only of PEA, but also GMA and IPMC with relatively good

accuracies. Thus, it is proven that the proposed MBW model is not unique and would

be capable of fitting and matching the input-output relations of other smart actuators.

TABLE 3.2: The RMSE value relating to the estimated (by EPSO) and
measured hysteresis curves

Input Frequency
RMSE Value

PEA Case (µm) GMA Case (µm)

1 Hz 0.0248 0.1090

10 Hz 0.0273 0.1056

50 Hz 0.0290 0.1015

Now it is confirmed that the proposed MBW model is capable of describing and

characterizing the input-output relations of hysteretic smart actuators. It will be much

useful if the proposed model can be directly exploited for synthesizing the control al-

gorithm so that the hysteresis effects can be alleviated or significantly reduced. For this

reason, we consider developing two control architectures based on the proposed model

(3.21). The details of control developments are discussed in Chapter 4 and Chapter 5.
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3.5 Concluding Remarks

In the first stage, the feasibility of differential equations based models towards hystere-

sis characterization and control fusion are carefully examined. Through this investiga-

tion, it is discovered that only BW model is applicable in terms of direct model usage

for the control law design. Then, a new model modification to BW model is developed

to introduce rate-dependent property. The development is established in the discrete-

time domain. Further, the results from validation process show that MBW model is

not unique and is capable of describing input-output relations of the smart actuators,

especially piezoelectric and magnetostrictive-based actuators with a sound accuracy.
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Chapter 4

Discrete Nonlinear Prescribed

Performance Control

4.1 Introduction

Inspired by the work of Bechlioulis and Rovithakis, G. A., 2011, the prescribed perfor-

mance control (PPC) framework is considered in developing the discrete nonlinear PPC

(DPPC). The essential point of PPC is to guarantee the convergence of output tracking

error to a predefined arbitrarily small region by transforming the system output error

into a new coordinate. Then, the transformed error is employed in the control design to

modulate the original tracking error with respect to a predefined performance function.

The concept of PPC is quite similar to funnel control (FC) (Wang et al., 2016). FC is de-

veloped by Ilchmann et al., 2002 for systems with BIBO stable zero-dynamics, known

relative degree, and known sign of the high-frequency gain and it is a time-varying

(high-gain based) control strategy. The major difference between PPC and FC is the

function used to transform output tracking error into a new coordinate.

There is a growing body of literature that related to PPC and FC techniques in ad-

dressing the performance issues of the nonlinear systems including Hua and Li, Y.,

2015; Kostarigka and Rovithakis, G. A., 2012; Li et al., 2014; Na, 2013 (for PPC); Hackl,

2015; Hopfe et al., 2010; Wang et al., 2016 (for FC). However, these results are estab-

lished in the continuous-time domain. In this thesis, the PPC is designed directly

in discrete-time domain instead of the continuous-time domain. This consideration

is taken to avoid numerical approximation which normally degrades the system per-

formance. A new performance function is introduced to properly define the ultimate
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allowable steady-state error bound and transient behaviour. In addition, stability anal-

ysis of the closed-loop system is also systematically discussed. For evaluation purpose,

a commercial PEA product is considered as the test-rig. Experimental results substan-

tiate that the formulated control strategy has the capacity for improving the tracking

performance of the PEA without compromising the system’s stability.

4.2 Formulation of Control Algorithm

To facilitate the development of the control law, Eqn. (3.21) in Chapter 3 is rewritten as

follows

yk = δ1yk−1 + νkµk(ν, y) (4.1)

where µk(ν, y) is defined as

µk(ν, y) = ζ1 − |yk−1|(ψ1sign(νk, yk−1) + α1)

+ (ζ2 − |yk−1|(ψ2sign(νk, yk−1) + α2))vu,k

(4.2)

In view of (4.2), it is obvious that the term vu,k is only available in the open-loop con-

dition. For developing the feedback control strategy, the term vu,k is replaced by the

first-order difference of the external desired signal, which is given as

ru,k = |rk − rk−1| (4.3)

Thus, Eqn. (4.1)–(4.2) can be rewritten as

yk = δ1yk−1 + νkµr,k(ν, y) (4.4)

and
µr,k(ν, y) = ζ1 − |yk−1|(ψ1sign(νk, yk−1) + α1)

+ (ζ2 − |yk−1|(ψ2sign(νk, yk−1) + α2))ru,k

(4.5)

Assumption 4.1 : Assume that ζ1 ≥ ζ0 > 0 and ζ2 ≥ 0, where ζ0 is a small known

constant.
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FIGURE 4.1: Illustration of performance function λk and evolution of
tracking error ek.

The main control objective is to design an appropriate feedback control signal uk

such that the state yk in (4.4) follows the specified reference trajectory, rk, i.e., yk → rk

within a desired accuracy as k →∞, where the reference trajectory rk is a bounded se-

quence. In this case, we consider synthesizing MBW model (4.4) into the DPPC control

framework to solve the motion tracking problem of the piezoelectric based actuators.

Define

ek = yk − rk (4.6)

where yk and rk are the measured output and the desired output at time instant k.

Consider the following performance function

λk+1 = (1− ω)λk + ωλ∞ (4.7)

where λk is a positive decreasing function satisfying limk→∞ λk = λ∞ with λ0 > λ∞ >

0, and ω is a constant. Variable λ∞ defines the ultimate allowable steady-state error

bound, while λ0 denotes the maximum bound of the initial tracking error, i.e., maxi-

mum overshoot. Fig. 4.1a depicts the bounds for transient and steady-state specified

by relation (4.7).

The control purpose is that the error ek should evolve strictly within the following

region
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− h−λk < ek < h̄λk (4.8)

This is the so-called prescribed performance control (PPC), where h− and h̄ are strictly

positive. Illustrative example of ek evolution is shown in Fig. 4.1b.

To achieve the prescribed performance of (4.8), the control law is designed as fol-

lows

Step 0 : Choose λ0, h−, and h̄ such that −h−λ0 < e0 < h̄λ0. Define

ε0 = 0.5ln(
λ0h− + e0

λ0h̄− e0
), (4.9)

and ν0 = 0, u0 = 0.

Step k : Calculate λk based on (4.7) and define

εk−1 = 0.5ln(
λk−1h− + ek−1

λk−1h̄− ek−1
). (4.10)

Then choose the signal νk as

νk =
(rk − δ1yk−1)(1 + e2χεk−1) + λk(h̄e

2χεk−1 − h−)

µr,k(ν, y)(1 + e2χεk−1)
(4.11)

in which 0 < χ < 1 is a design constant. Consequently, the control input uk is determined as

uk = νk ·∆t+ δ2uk−1. (4.12)

Let k = k + 1.

Note that εk is the output error in a new coordinate, i.e., transformed error. The

role of εk is to modulate the tracking error ek with respect to the required performance

bounds imposed by (4.8).

Remark 4.1: The values of parameter α1 and α2 in relation (4.5) are restricted such that

α1 < −|ψ1| and α2 < −|ψ2|. These restrictions are imposed to guarantee that µr,k(ν, y)

is always positive definite satisfying µr,k(ν, y) > ζ0. Simulation results also show that
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this assumption is meaningful as can be observed in Figure 3.8 in Chapter 3.

By referring to Remark 4.1, it can be inferred that νk have same sign with the nu-

merator part of (4.11). Define

yr,k =
1

σk
((rk − δ1yk−1)σk + λk(h̄e

2χεk−1 − h−)) (4.13)

where σk is defined as 1 + e2χεk−1 .

As a result, νk is calculated as follows:

νk =

{ yr,k
µ+
r,k(ν, y)

, if yr,k ≥ 0;

yr,k
µ−r,k(ν, y)

, if yr,k < 0.

(4.14)

where µ+
r,k(ν, y) and µ−r,k(ν, y) are given in the following

µ+
r,k(ν, y) = ζ1 − |yk−1|(ψ1sign(yk−1) + α1)

+ (ζ2 − |yk−1|(ψ2sign(yk−1) + α2))ru,k

(4.15)

µ−r,k(ν, y) = ζ1 + |yk−1|(ψ1sign(yk−1)− α1)

+ (ζ2 + |yk−1|(ψ2sign(yk−1)− α2))ru,k

(4.16)

We have the following theorem to describe the stability of the controlled system.

Theorem 4.1: Consider system (4.4) – (4.5) controlled by (4.12)-(4.16). The prescribed

performance of ek in the sense of (4.8) is achieved for k ≥ 0 and all the signals in the

closed-loop system are bounded. Additionally, the tracking error ek asymptotically

goes to zero as k approaches to infinity, i.e., limk→∞ ek = 0.

Proof :

Substituting the control law (4.11)-(4.12) into the closed-loop system yields

ek =
λk(h̄e

2χεk−1 − h−)

1 + e2χεk−1
. (4.17)
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Since λk is positive, it gives

λk(−h−e
2χεk−1 − h−)

1 + e2χεk−1
< ek <

λk(h̄e
2χεk−1 + h̄)

1 + e2χεk−1
(4.18)

i.e.

− h−λk < ek < h̄λk (4.19)

which means that the prescribed performance of ek in the sense of (4.8) is satisfied.

From (4.19), it can be seen that εk is well defined. At the (k + 1)th step, εk is calculated

as

εk = 0.5ln(
λkh− + ek

λkh̄− ek
). (4.20)

Substituting (4.17) into (4.20) gives

εk = 0.5ln

(λkh− +
λk(h̄e2χεk−1−h−)

1+e2χεk−1

λkh̄−
λk(h̄e2χεk−1−h−)

1+e2χεk−1

)

= 0.5ln

(λk(h−σk + h̄e2χεk−1 − h−)

λk(h̄σk − h̄e2χεk−1 − h−)

)

= 0.5ln

((h̄+ h−)e2χεk−1

h̄+ h−

)
= χεk−1

(4.21)

which means that |εk| is decreasing and bounded satisfying limk→∞ εk = 0. By (4.17),

it is obvious that the tracking error ek can be asymptotically brought to zero as k goes

to infinity, i.e., limk→∞ ek = 0 if the upper bound h̄ and the lower bound h− are chosen

such that h− = h̄. In addition, it is also established that the control signal νk is bounded

by observing relation in (4.11) where µr,k(ν, y) > ζ0 is used. Finally, from (4.12), since

0 < δ2 < 1, we can conclude that the control input uk is bounded.

4.3 Experimental Verification

This section is devoted to implementation of the formulated control framework in a

real case application. Subsection 4.3.1 discusses the experimental environment and the
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FIGURE 4.2: The physical diagram of the experimental platform.

FIGURE 4.3: The setup diagram of the experimental platform.

dedicated setup. Then, Subsection 4.3.2 presents the experimental results along with

the discussions.

4.3.1 Experimental Environment

Fig. 4.2 and Fig. 4.3 depict the experimental platform used in this section. The PEA

stage PS1H80-030U (Nano Control Co. Ltd., Japan) consists of a moving table (one di-

rectional movement), a piezoelectric actuator and a built-in displacement sensor. The

travel range of the PEA stage is 30µm. While the resolution of the built-in sensor is 2nm.

The sensor’s output is connected to the SAB101 signal conditioning device, which maps

the measured displacement into voltage signal. The PEA stage is powered by PH301

power unit, which has a range of 0V to 150V with a bandwidth of 6kHz. An analog

interface board (AIO-163202F-PE) is used for data collection throughout the experi-

mentation. The interface board is equipped with 32 analog inputs (AIs) and 2 analog

outputs (AOs) with 16bits resolution and 500kHz sampling rate. The control algorithm

is implemented on a personal computer (PC) by C language. The sampling frequency

is set as 2kHz.
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4.3.2 Experimental Results and Discussion

TABLE 4.1: The optimal parameter values of MBW model (estimated by
EPSO)

Parameter Value

ζ1 0.4029

ζ2 6.7438e-06

ψ1 0.0345

ψ2 0.0149

α1 -0.0394

α2 -0.0245

δ1 0.9620

δ2 0.9511

TABLE 4.2: The chosen controller gains of DPPC

Controller Gain Value

λ0 20

λ∞ 0.4

ω 0.01

χ 0.1

h = h̄ 1.0

A series of experimental studies are conducted to evaluate the performance of the

proposed control design. In order to quantify the tracking results, the RMSE and the

Maximum Absolute Error (MAE) are used. Throughout the experiment study, the op-

timal parameters of MBW model which identified by EPSO technique are used. These

parameters are tabulated in Table 4.1. Meanwhile the controller gains of the DPPC are

chosen as in Table 4.2.

Initially, experiments are conducted without taking into account any control scheme,

i.e., open loop condition. Fig. 4.4 through Fig. 4.6 show the input-output plot for the

case of the typical step input, and sinusoidal inputs with 1Hz and 20Hz frequencies. In

both cases, it can be seen that the system is affected by a strong hysteresis nonlinearity.

Without any control effort, large errors are noticed, the performance of the system is

very poor that merely 50% of the output tracking is achieved.
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FIGURE 4.4: Input-output plot of the PEA stage without any control ef-
forts (Open-loop condition of a step input case).
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FIGURE 4.5: Input-output plot of the PEA stage without any control ef-
forts (Open-loop condition of 1Hz sinusoidal input).

Now, the formulated control scheme is employed to see how well it can mitigate

the hysteresis effects. Several experimental cases are considered and designed to study

the tracking performance and the closed-loop behaviour. Firstly, experiments with Step

and Ramp trajectory references are conducted. As illustrated in Fig. 4.7 and Fig. 4.8,

superior performance are achieved for all cases. Furthermore, the settling time is very

fast that the steady-state is reached within less than 80ms for the case of Step input.

While for the combination of Step and Ramp (Step-Ramp) input, there is no transient

response is observed. In both cases, the tracking errors vary from −0.01 to 0.01µm in

the steady-state.

Next, we consider tracking experiments for Sinusoidal references. In this case, sev-

eral numbers of excitation frequencies are studied, i.e., from 1Hz − 30Hz. Fig. 4.9 and

Fig. 4.10 depict the motion tracking performance for the case of 5Hz and 20Hz respec-

tively, from these figures we can observe that good agreements are achieved between
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FIGURE 4.6: Input-output plot of the PEA stage without any control ef-
forts (Open-loop condition of 20Hz sinusoidal input).
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FIGURE 4.7: The plots of performance tracking for the Step input case.
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FIGURE 4.8: The plots of performance tracking for the case of Step-Ramp
input.
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FIGURE 4.9: The plots of performance tracking for the sinusoidal input
case (5Hz).
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FIGURE 4.10: The plots of performance tracking for the sinusoidal input
case (20Hz).

the desired and controlled outputs. In addition, good settling times are attained (within

50ms) in comparison to the step trajectory tracking. Meanwhile, Fig. 4.11 provides the

input-output plots for the closed-loop condition of Sinusoidal inputs with 5Hz and

20Hz frequencies, i.e., when the DPPC scheme is employed. It can be witnessed that a

significant performance improvement is achieved with the implementation of the pro-

posed control algorithm.

Meanwhile, Table 4.3 summarizes the tracking performance in terms of RMSE and

MAE for the input references relating to Step, Ramp, and Sinusoidal cases. As can be

seen in Table 4.3, the performance index for the step and ramp cases are much better

compared to the sinusoidal case with practically small RMSE and MAE. This situation
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(A) 5Hz sinusoidal input.
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(B) 20Hz sinusoidal input.

FIGURE 4.11: The plots of input-output relations, i.e. closed-loop condi-
tion.

is common because less control effort is needed to regulate Step and Ramp input trajec-

tories. Furthermore, these inputs are not as complicated as the Sinusoidal input.

To further confirm the effectiveness of MBW model and the proposed control scheme,

we consider more complex inputs that involving multiple frequencies, i.e., to imitate

the situation of rate-dependent behaviour. Three different input trajectories are de-

signed. The first one is a wave input with multiple frequencies (a combination of 5Hz,

15Hz, and 40Hz) (C1). The second case is essentially an input with a varied frequency

(C2). While the third one is an input with two sinusoidal functions that combined to-

gether (C3). Results corresponding to these inputs are shown in Fig. 4.12 to Fig. 4.14.

As can be observed through these figures, the tracking performance for each case is

relatively good. It is recorded that the range of tracking errors in the steady-state are

within±0.08 µm for C1,±0.1 µm for C2, and±0.12 µm for C3. While Table 4.4 tabulates

the performance index for each case (RMSE and MAE) for C1, C2, and C3 respectively.

Additionally, it can be seen that the control efforts are stable throughout the experi-

ments. This stability is achieved due to steady evolution of the transformed error εk. As

a results, the progression of error in each experimental study is restricted in the speci-

fied region Eqn. (4.8). In other terms, the proposed DPPC can guarantee the prescribed

transient and steady-state boundaries.
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FIGURE 4.12: The plots of performance tracking for complex input case
(C1).
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FIGURE 4.13: The plots of performance tracking for complex input case
(C2).
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FIGURE 4.14: The plots of performance tracking for complex input case
(C3).
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TABLE 4.3: The summary of the tracking performance for the input re-
lated to step, ramp and sinusoidal functions

Performance Index

Type of Input RMSE (µm) MAE (µm)

Step 0.00518 0.02075

Ramp 0.00673 0.02626

Step + Ramp 0.00773 0.02991

Sinusoidal (1 Hz) 0.01505 0.04044

Sinusoidal (5 Hz) 0.03246 0.09368

Sinusoidal (10 Hz) 0.03620 0.12454

Sinusoidal (20 Hz) 0.04293 0.21616

Sinusoidal (30 Hz) 0.06941 0.39607

TABLE 4.4: The summary of the tracking performance for the mixed fre-
quency trajectories

Performance Index

Type of Input RMSE (µm) MAE (µm)

C 1 as in Fig. 4.12 0.03341 0.1343

C 2 as in Fig. 4.13 0.04691 0.2197

C 3 as in Fig. 4.14 0.03889 0.1906

4.4 Concluding Remarks

In this chapter, a new nonlinear discrete control design based on the modified version

of BW model is presented. The control architecture is synthesized by fusing the MBW

model into the discrete prescribed performance control strategy. Additionally, stability

analysis of the closed-loop system under the formulated control algorithm is presented.

Finally, a real case controller implementation is given to show the efficiency of the pro-

posed control strategy.



64

Chapter 5

Discrete Model Reference Adaptive

Control

5.1 Introduction

In this chapter, we exploit the MBW model (3.21) in designing a discrete model refer-

ence adaptive control strategy (DMRAC) in order to suppress hysteresis nonlinearity.

This is an alternative control synthesis based on MBW model designed to improve mo-

tion tracking of smart actuators. The main merit of this control framework is that only

the parameters in the controller algorithm need to be adaptively estimated, and the real

values of the positioner’s parameters need to be neither identified nor measured.

First, the proposed MBW model (3.21) in Chapter 3 is rearranged as follows

yk = δ1yk−1 + νkµk(ν, y) (5.1)

where µk(ν, y) is defined as

µk(ν, y) = ζ1 − |yk−1|(ψ1sign(νk, yk−1) + α1)

+ (ζ2 − |yk−1|(ψ2sign(νk, yk−1) + α2))vu,k

(5.2)

5.2 Controller Design

In general, the proposed control block diagram is illustrated in Fig. 5.1. The input-

output relations of the smart actuators that possessing the hysteretic phenomenon are

assumed to be described by Eqn. (5.1) with unknown parameters of ζ1, ζ2, ψ1, ψ2, α1

and α2. The control objective is to find a sequence of control signal uk that forces the
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Adaptive law

Reference Model

Controller Plant

rk

yd,k

+

εk

uk
−µ̂r,k

yk

FIGURE 5.1: The block diagram of the proposed control framework.

state yk in (5.1) to follow the desired output yd,k of the reference model given in (5.3)

within a desired accuracy as k →∞.

yd,k = rk + amyd,k−1 (5.3)

where |am| < 1 and rk is a bounded reference input.

5.2.1 Formulation of Adaptive Algorithm

In view of (5.1)–(5.2), it is obvious that the term vu,k is only available in the open-loop

condition. For the case of the closed-loop control strategy, the term vu,k is replaced by

the first-order difference of the external desired signal, which is defined as

ru,k = |rk − rk−1| (5.4)

Thus, Eqn. (5.1)–(5.2) can rewritten as

yk = (δ1 − am)yk−1 + amyk−1 + νkµr,k(ν, y) (5.5)

and
µr,k(ν, y) = ζ1 − |yk−1|(ψ1sign(νk, yk−1) + α1)

+ (ζ2 − |yk−1|(ψ2sign(νk, yk−1) + α2))ru,k

(5.6)

This is done to preserve the rate-dependent property of MBW model in the closed-

loop condition. In addition, for relations (5.5)–(5.6), same Assumption 4.1 (introduced

in Chapter 4) is imposed.
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Now define the tracking error

ek = yk − yd,k (5.7)

From (5.3) and (5.5), it yields

ek = (δ1 − am)yk−1 − rk + amek−1 + νkµr,k(ν, y) (5.8)

Indeed the unknown parameters ζ1, ζ2, ψ1, ψ2, α1 and α2 could be identified via the

EPSO technique, but it is much desirable that if all the parameters can be adaptively

estimated. Thus, an online adaptive method is formulated for estimating the above

mentioned unknown parameters.

Let ζ̂1,k, ζ̂2,k, ψ̂1,k, ψ̂2,k, α̂1,k and α̂2,k be the estimates of ζ1, ζ2, ψ1, ψ2, α1 and α2 at

the kth step, respectively.

Next, define the estimation error as

εk = δ1yk−1 + νkµ̂r,k(ν, y)− yk (5.9)

with

µ̂r,k(ν, y) = ζ̂1 − |yk−1|(ψ̂1sign(νk, yk−1) + α̂1)

+ (ζ̂2 − |yk−1|(ψ̂2sign(νk, yk−1) + α̂2))ru,k

(5.10)

Finally, for simplicity, introduce

Nk =
√

1 + (ν2
k + 2(νkyk−1)2)(1 + r2

u,k) (5.11)



Chapter 5. Discrete Model Reference Adaptive Control 67

The estimates of ζ̂1,k, ζ̂2,k, ψ̂1,k, ψ̂2,k, α̂1,k and α̂2,k are updated by the following

constrained adaptation laws

ζ̂ ′1,k = |ζ̂ ′1,k−1 − κ
εk−1νk−1

N2
k−1

| (5.12a)

ζ̂1,k =

{
ζ̂ ′1,k, if ζ̂ ′1,k > ζ0

ζ0, otherwise
(5.12b)

ζ̂ ′2,k = |ζ̂ ′2,k−1 − κ
εk−1ru,k−1νk−1

N2
k−1

| (5.13a)

ζ̂2,k =

{
ζ̂ ′2,k, if ζ̂ ′2,k ≥ 0

0, otherwise
(5.13b)

ψ̂1,k = ψ̂1,k−1 + κ
εk−1|νk−1|yk−2

N2
k−1

(5.14)

ψ̂2,k = ψ̂2,k−1 + κ
εk−1ru,k−1|νk−1|yk−2

N2
k−1

(5.15)

α̂′1,k = α̂′1,k−1 + κ
εk−1νk−1|yk−2|

N2
k−1

(5.16a)

α̂1,k =

{
α̂′1,k, if α̂′1,k < −|ψ̂1,k| − %

−|ψ̂1,k| − %, otherwise
(5.16b)
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α̂′2,k = α̂′2,k−1 + κ
εk−1ru,k−1νk−1|yk−2|

N2
k−1

(5.17a)

α̂2,k =

{
α̂′2,k, if α̂′2,k < −|ψ̂2,k|

−|ψ̂2,k|, otherwise
(5.17b)

Remark 5.1: The parameter adaptation gain κ (0 < κ < 2) in (5.12)-(5.17) is introduced

to adjust the adaptation speed, while % in (5.16) is a very small positive constant.

Lemma 5.1: For the adaptation algorithms described in (5.12)-(5.17), we have the fol-

lowing properties:

(P1) ζ̂1,k, ζ̂2,k, ψ̂1,k, ψ̂2,k, α̂1,k and α̂2,k are bounded for all k > 0.

(P2)
∑∞

k=1(
ε2k
N2
k

) <∞.

(P3) limk→∞(
|εk|
Nk

) = 0.

(P4) For any positive integer p and for i = 1, 2, it yields

∞∑
k=p

‖ζ̂i,k − ζ̂i,k−p‖22 <∞

∞∑
k=p

‖ψ̂i,k − ψ̂i,k−p‖22 <∞

∞∑
k=p

‖α̂i,k − α̂i,k−p‖22 <∞
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Proof :

First, define

ζ̃i,k = ζ̂i,k − ζi (5.18a)

ψ̃i,k = ψ̂i,k − ψi (5.18b)

α̃i,k = α̂i,k − αi (5.18c)

for i = 1, 2.

Next, introduce the Lyapunov function:

Lk = ζ̃2
1,k + ζ̃2

2,k + ψ̃2
1,k + ψ̃2

2,k + α̃2
1,k + α̃2

2,k (5.19)

Taking the difference of Lk along the trajectories of (5.12)-(5.17) gives

Lk − Lk−1 = ζ̃2
1,k − ζ̃2

1,k−1 + ζ̃2
2,k − ζ̃2

2,k−1 + ψ̃2
1,k − ψ̃2

1,k−1

+ ψ̃2
2,k − ψ̃2

2,k−1 + α̃2
1,k − α̃2

1,k−1 + α̃2
2,k − α̃2

2,k−1

≤ 2κ
εk−1α̃1,k−1νk−1

N2
k−1

− 2κ
εk−1α̃2,k−1ru,k−1νk−1

N2
k−1

+ 2κ
εk−1ψ̃1,k−1|νk−1|yk−2

N2
k−1

+ 2κ
εk−1ψ̃2,k−1ru,k−1|νk−1|yk−2

N2
k−1

+ 2κ
εk−1α̃1,k−1νk−1|yk−2|

N2
k−1

+ 2κ
εk−1α̃2,k−1ru,k−1νk−1|yk−2|

N2
k−1

+ κ2
ε2k−1(1 + r2

u,k−1)ν2
k−1

N2
k−1

+ κ2
ε2k−12(1 + r2

u,k−1)(νk−1yk−1)2

N2
k−1

≤ −2κ
ε2k−1

N2
k−1

+ κ2 ε
2
k−1N

2
k−1

N4
k−1

= −κ(2− κ)
ε2k−1

N2
k−1

(5.20)

Because Lk is a positive function, the properties of Lemma 5.1 can be further proved

by Lemma 3.3.2 in Goodwin and Sin, K. S., 2009.

5.2.2 Adaptive Control Design

This subsection presents the formulation of the control signal uk. Based on relation

(5.8), and the developed adaptive algorithm (5.12)-(5.17) in the previous subsection, a
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robust adaptive control law can be realized and is derived as follows:

νkµ̂r,k(ν, y) + (δ1 − am)yk−1 = rk (5.21)

It follows that

νk =
rk − (δ1 − am)yk−1

µ̂r,k(ν, y)
(5.22)

Consequently, the control input uk is obtained as

uk = δ2uk−1 + νk ·∆t (5.23)

Remark 5.2: By scrutinizing the formulated constraints penalized on α̂1,k and α̂2,k in

(5.16) and (5.17) respectively, it can be induced that µ̂k(ν, y) in (5.22) will always be pos-

itive definite satisfying µ̂k(ν, y) ≥ %|yk−1|+ ξ0 > 0.

Thus, it can be established that νk must have same sign with the numerator part of

(5.22). Define

yr,k = rk − (δ1 − am)yk−1 (5.24)

As a result, νk is calculated as follows:

νk =

{ yr,k
µ̂+
r,k(ν, y)

, if yr,k ≥ 0

yr,k
µ̂−r,k(ν, y)

, if yr,k < 0

(5.25)

where µ̂+
r,k(ν, y) and µ̂−r,k(ν, y) are given by the following relations

µ̂+
r,k(ν, y) = ζ̂1 − |yk−1|(ψ̂1sign(yk−1) + α̂1)

+ (ζ̂2 − |yk−1|(ψ̂2sign(yk−1) + α̂2))ru,k

(5.26)

µ̂−r,k(ν, y) = ζ̂1 + |yk−1|(ψ̂1sign(yk−1)− α̂1)

+ (ζ̂2 + |yk−1|(ψ̂2sign(yk−1)− α̂2))ru,k

(5.27)
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We have the following theorem to describe the stability of the controlled system.

Theorem 5.1: For the system (5.5)-(5.6) controlled by (5.23)-(5.27), all the signals in the

closed-loop system are bounded and the output tracking error ek approaches to zero

asymptotically as k approaches to infinity.

Proof :

Eqn. (5.21) can be expressed as

rk − (δ1 − am)yk−1 = νkµ̂r,k(ν, y) (5.28)

Substituting (5.28) into (5.9) yields

εk = rk + amyk−1 − yk (5.29)

From the definition of Nk in (5.11), it yields

Nk ≤ 1 + (1 +
√

2|yk−1|)(1 + ru,k)|νk| (5.30)

Since the reference input rk is bounded, denote R as the boundary of rk, it gives

ru,k ≤ 2R (5.31)

By substituting (5.31) into (5.30), we obtain

Nk ≤ 1 + (1 +
√

2|yk−1|)(1 + 2R)|νk| (5.32)

In virtue of (5.22) and Remark 5.2, there exist positive constantsA1 andA2 such that

|νk| ≤
A1 +A2|yk−1|
ζ0 + %|yk−1|

(5.33)

which implies that

|νk| ≤ B (5.34)
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From (5.29), (5.32) and (5.34), we obtain

|yk| = | − εk + amyk−1 + rk|

≤ |εk|
Nk

Nk + am|yk−1|+ |rk|

≤ |εk|
Nk

(1 + (1 +
√

2|yk−1|)(1 + 2R)|νk|) + am|yk−1|+ |rk|

≤ |εk|
Nk

(1 + (1 +
√

2|yk−1|)(1 + 2R)B) + am|yk−1|+ |rk|

=
|εk|
Nk

(1 + (1 + 2R)B) +
|εk|
Nk

√
2B(1 + 2R)|yk−1|+ am|yk−1|+ |rk|

(5.35)

Since limk→∞
|εk|
Nk

= 0 and |am| < 1, there exist an instant K and positive constants

C1, and C2 such that

|yk| ≤ C1 + C2|yk−1| (5.36)

for all k > K, where C2 < 1.

At step i (for K + 1 ≤ i ≤ k), multiplying both sides of (5.36) with Ck−i2 gives

Ck−i2 |yi| ≤ C1C
k−i
2 + Ck−i+1

2 |yi−1| (5.37)

Summing both sides of (5.37) from i = K + 1 to i = k gives

|yk| ≤ C1

(
C1C2 + C1C

2
2 + · · ·+ C1C

k−K−1
2

)
+ Ck−K2 |yK | (5.38)

Thus, the upper bound of controlled output yk can be expressed as follows

|yk| ≤ C1

(1− Ck−K2

1− C2

)
+ Ck−K2 |yK | (5.39)

By now, it is obvious from Eqn. (5.34), that the input variable νk is bounded. In

addition, from Eqn. (5.23), since 0 < δ2 < 1, it can be induced that the input uk is

also bounded. Then, by Eqn. (5.32), it can be seen that Nk is bounded. Thus, based on

property (P3) in Lemma 5.1, it can be inferred that limk→∞ εk = 0.

From (5.3) and (5.21), it follows that

εk = rk + amyk−1 − yk

= −ek + amek−1

(5.40)
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FIGURE 5.2: The diagram of experimental test-bed considered in this
section.

i.e., ek → 0 as k →∞. Finally, it can be established that the tracking error will approach

to zero asymptotically as k goes to infinity.

5.3 Experimental Verification

This section is devoted to the implementation of the formulated DMRAC framework

in a real case application. Subsection 5.3.1 discusses the experimental environment and

the dedicated setup. Then, Subsection 5.3.2 presents the experimental results along

with the discussions.

Fig. 5.2 and 5.3 depict the setup of experimental platform used in this section. The

GMA (a) MA-50/6-ac GMA (MORITEX Corporation, Japan) is driven by an analog

input signal from the PC-based real-time controller after being amplified by MO24BR

GMA driver (b) (MORITEX Corporation, Japan).

The contactless PS-1A (c) capacitive displacement sensor provides the real-time out-

put measurement via a probe (d) which attached at the end of the GMA. For the opti-

mal output measurement, the offset distance of the probe is maintained between 50 µm

and 60 µm from the tip of the GMA using the micrometer head MHS1-13 (e). Similar

to experimental setup in Chapter 4, this platform also uses the same analog interface

board AIO-163202F-PE for data collection throughout the experimentation. The sam-

pling frequency is set as 2kHz. The control algorithm is implemented on a personal

computer (PC) byC language. The specification details of the experimental equipments

are shown in Table 5.1.



Chapter 5. Discrete Model Reference Adaptive Control 74

FIGURE 5.3: The diagram of setup environment for the experimental
test-bed.

TABLE 5.1: The specification of MORITEX MA-50/6-ac and MORITEX
MO24BR

MORITEX MA-50/6-ac Value (unit)
Resolution ±20(µm)

Natural Frequency 3000(Hz)
Frequency Range (DC) 4(kHz)

Maximum Dynamic Force ±220(N)
Block Force 462(N)

Input Current ±2(A)
DC Resistance 4.8(Ω)

MORITEX MO24BR Value (unit)
Input Voltage 80 120V (AC)
Input Control Voltage ±5(V)

Output Current ±3(A)
Output Voltage 0 40(V)

Current Protection < ±3(A)

5.3.1 Experimental Environment

5.3.2 Experimental Results and Discussion

In this experimental study, we consider three input cases. The first one is the input

reference that involving Step and Ramp functions and denoted as Case 1. The second

case is Sinusoidal input which similar to Chapter 4 with 1Hz–30Hz of excitation fre-

quencies (Case 2). While the third case is essentially an input that is a combination of

two Sinusoidal functions to imitate the rate-dependent behaviour (Case 3). The perfor-

mance index for each tracking result is measured and quantified by the RMSE and the

MAE.

The initial value for parameters ζ̂1,0, ζ̂2,0, ψ̂1,0, ψ̂2,0, α̂1,0 and α̂2,0 are obtained through

the offline identification based on EPSO technique discussed in Chapter 3. In this way,
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(B) Measured of input-output curves for 1Hz
input frequency.
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FIGURE 5.4: The input-output plot of the GMA without any control ef-
fort corresponding to Case 2 input trajectories.

the initial estimate for each parameter is set as ζ̂1,0 = ζ̂2,0 = 0.008, ψ̂1,0 = ψ̂2,0 = −0.002,

and α̂1,0 = α̂2,0 = −0.005. The parameter adaptation gain κ is set as 0.01.

Prior to the control implementation, we conduct several open-loop experiments to

have an insight of the hysteresis phenomenon in the GMA. Fig. 5.4 shows the plot of

input-output relations for the GMA without any control scheme. These experimental

data show that the hysteresis phenomenon in magnetostrictive based actuators are rate-

dependent. This behaviour can also be seen clearly in Fig. 3.12 through Fig. 3.19 of

Chapter 3. The shape of hysteresis loop is changing with respect to the input frequency.

In comparison to the open-loop condition of PEA stage in Chapter 3 and 4, the affected

hysteretic behaviour in GMA is more serious. Strong hysteresis effects are observed

even in low input frequency, particularly at 1Hz. In this case, it can be witnessed that

the output is amplified to a staggering seven times of the desired input reference.
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FIGURE 5.5: The tracking performance for the Ramp input case.

It is shown in Chapter 3 that with the help of EPSO technique, the proposed MBW

model (5.1) is able to capture the dynamic and hysteretic behavior of the GMA with a

sound accuracy. Furthermore, the proposed MBW model is infused with rate-dependent

property. Thus, the application of this model would help improving the tracking per-

formance in GMA.

Subsection 5.3.2.1 gives analysis and discussion about performance tracking with

respect to above mentioned three input cases, while subsection that follows further

analyse the sensitivity of parameters estimates and effect of adaptive gain κ in perfor-

mance tracking.

5.3.2.1 Performance Tracking

At first, reference signals of Case 1 are considered. Fig. 5.5 and Fig. 5.6 depict the

output tracking performance for the Ramp and Step-Ramp inputs respectively. It can

be clearly noticed that the real displacements of the GMA track the reference trajectories

very well. The tracking errors in the steady-state are recorded as within −0.01µm to

0.01µm for both inputs.

Next, the tracking experiments for sinusoidal input reference with different fre-

quencies are made, i.e., Case 2. Fig. 5.7 to Fig. 5.9 illustrate the graphical results

for the motion and tracking error with 5Hz, 10Hz, and 20Hz excitation frequencies.

In addition, the steady-state errors for the respective input frequencies are recorded as

±0.02 µm,±0.05 µm, and±0.1 µm respectively. Meanwhile, Fig. 5.10 depicts the results
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FIGURE 5.6: The tracking performance for the combination of Step-
Ramp input case.
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FIGURE 5.7: The tracking performance for the sinusoidal reference (A
5Hz input case).
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FIGURE 5.8: The tracking performance for the sinusoidal reference (A
10Hz input case).
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FIGURE 5.9: The tracking performance for the sinusoidal reference (A
20Hz input case).

of input-output relations in the closed-loop condition concerning 5Hz and 10Hz input

frequencies.

TABLE 5.2: The Summary of the Tracking Performance for Case 1 and
Case 2 Input Trajectories

Performance Index

Type of Input RMSE (µm) MAE (µm)

Step 0.0044 0.0174

Ramp 0.0060 0.0299

Step + Ramp 0.0054 0.0201

Sinusoidal (1 Hz) 0.0056 0.0237

Sinusoidal (5 Hz) 0.0175 0.0565

Sinusoidal (10 Hz) 0.0379 0.1197

Sinusoidal (20 Hz) 0.0877 0.3283

Sinusoidal (30 Hz) 0.1695 0.4605

Meanwhile, Table 5.2 summarizes the tracking performance in terms of RMSE and

MAE for Case 1 and Case 2 input references. The performance index for the inputs re-

lated to Case 1 are much better compared to Case 2. This situation is common because

less control effort is needed to regulate the GMA with input trajectories of Case 1 com-

pared to Case 2. Furthermore, the input trajectories of Case 2 are slightly complicated

than in Case 1.
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(B) Case 2 with 10Hz input frequency.

FIGURE 5.10: The plot of input-output relations with DMRAC scheme
(Closed-loop condition).
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FIGURE 5.11: The tracking performance for the case of mixed frequency
trajectory.

To confirm the effectiveness of the rate-dependent property in hysteresis compen-

sation, Case 3 is considered. The reference signal is composed of two sinusoidal waves

and is designed as yd = 3.0∗sin(2∗π∗3.5∗k∗0.0005)+1.5∗cos(2∗π∗1.5∗k∗0.0005). The

results pertaining to this mixed reference input are illustrated in Fig. 5.11. As can be

seen in Fig. 5.11, good tracking performance is obtained and the range of steady-state

error is within ±0.02µm.

The results of the parameter estimates of ζ̂1,k, ζ̂2,k, ψ̂1,k, ψ̂2,k, α̂1,k and α̂2,k corre-

sponding to above tracking performance (Case 1 - Case 3 input references) are illus-

trated in Fig. 5.12-5.14. As shown in these figures, it can be witnessed that in all cases

the estimates of ζ̂2,k, ψ̂2,k, and α̂2,k vary slowly compared to their counterparts.
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(A) Case 1 with Ramp input.
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(B) Case 1 with Step-Ramp input.

FIGURE 5.12: The variations of the parameter estimates for the Case 1
inputs.
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(A) Case 2 with 5Hz input frequency.
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FIGURE 5.13: The variations of the parameter estimates for the Case 2
inputs.
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(A) Case 2 with 20Hz input frequency.
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FIGURE 5.14: The variations of the parameter estimates for Case 2 and
Case 3 references.

In addition, it can be observed that the control efforts for each case are stable through-

out the experiments.

5.3.2.2 Sensitivity of Parameter Estimates

This Subsection provides analysis pertaining to sensitivity of parameter estimates when

their initial values are set at different points and far from their boundaries of true val-

ues. Additionally, the effect of adaptive gain κ is studied. Table 5.3 tabulates initial

points of each parameter estimate considered in this section. Note that identified ini-

tials (CS0) are the initial points used in experimental studies of the previous section. In

this section, we are interested to observe the behaviour of parameter estimates when

their initials or (one of the initials) are/is set 2.2 times (CS1), 10 times (CS2), and 100

times (CS3) farther from CS0.

TABLE 5.3: Initial points of respective parameter estimates ζ̂1,0, ζ̂2,0, ψ̂1,0,
ψ̂2,0, and α̂1,0, and α̂2,0.

Parameter Identified initial (CS0) 2.2x (CS1) 10x (CS2) 100x (CS3)

ζ̂1,0 0.008 0.0176 0.08 0.8

ζ̂2,0 0.008 0.0176 0.08 0.8

ψ̂1,0 -0.002 0.0044 -0.02 -0.2

ψ̂2,0 -0.002 0.0044 -0.02 -0.2

α̂1,0 -0.005 0.0011 -0.05 -0.5

α̂2,0 -0.005 0.0011 -0.05 -0.5



Chapter 5. Discrete Model Reference Adaptive Control 82

TABLE 5.4: Comparison of Tracking Performance Between CS0 and CS1
Cases.

Performance Index

Type of Input CS0-RMSE (µm) CS1-RMSE (µm)

Step 0.0044 0.0048

Step + Ramp 0.0068 0.0051

Sinusoidal (5 Hz) 0.0175 0.0174

Sinusoidal (10 Hz) 0.0379 0.0390

Sinusoidal (20 Hz) 0.0877 0.0906
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for Step-Ramp input.
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FIGURE 5.15: The variations of each parameter estimate for CS1 pertain-
ing to Case 1 input and the corresponding tracking performance.

First, a comparison of tracking performance between CS0 and CS1 cases are made.

Table 5.4 indicates the performance index in terms of RMSE for different types of input

trajectories. The adaptive gain κ is set to be the same in both cases, i.e., κ = 0.01. As can

be observed in Table 5.4, no significant changes are noticed by moving the initial point

of the estimates by 2.2 times from CS0. The graphical results related to CS1 case can

be found in Fig. 5.15 through Fig. 5.17. The variation of parameter estimates ζ̂2,k, ψ̂2,k,

and α̂2,k (denoted as G2 estimates in following statements) are plotted individually as

can be seen in Fig. 5.17. The results in Fig. 5.17 indicate that sensitivity of G2 estimates

are increasing with frequency changes. Almost no adaptation occurred when simple

input references are employed, or in other words, G2 estimates are stagnant in the case

of Step input. This phenomenon is natural and can be easily explained by referring

adaptive laws (5.13), (5.15), and (5.17). The associated term to G2 estimates is a product
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for Sinusoidal 20Hz input.
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FIGURE 5.16: The variations of each parameter estimate for CS1 pertain-
ing to Case 2 input and the corresponding tracking performance.

of difference terms νk and ru,k, thus give rise to slow variation and adaptation.

Meanwhile, Fig. 5.18 depicts the tracking performance related to CS2 case for Sinu-

soidal input (5Hz frequency) when only one parameter estimate is set slightly farther

from CS0. In this case, only ζ̂2,0 is set as 10 times farther from the others. The parameter

adaptation gain κ is set as 0.01. It can be seen that the variation of ζ̂2,k is very small

and almost insignificant in comparison to others. However, the performance tracking

result as shown in Fig. 5.18b indicate that even a single change in initial point affects

the tracking error where the recorded RMSE is about 0.0565 and is about 3 times higher

compared to the one tabulated in Table 5.2 (refer to Sinusoidal (5Hz)).

Next, CS3 case is considered. In this experimental study, two conditions are tested

and assessed. First, only the original parameter estimates ζ̂1,k, ψ̂1,k, and α̂1,k (G1 esti-

mates) are initialized at CS3. Second, only G2 estimates are initiated at CS3 while others

at CS0. The parameter adaptation gain κ is set as 0.005 for every assessment. Results

pertaining to both conditions are depicted in Fig. 5.19 and Fig. 5.20. As shown in Fig.

5.19, the G1 estimates are very sensitive, that fast adaptation can be seen even κ value

is relatively small. In spite of good tracking error in the steady state, the attitude of

control signal is less stable. On the other hand, when only G2 estimates are initialized

at CS3, large tracking error is observed as can be seen in Fig. 5.20 despite stable attitude

of control signal uk.

Finally, assessments on the behaviour of parameter estimates corresponding to dif-

ferent values of κ are made. Fig. 5.21 – Fig.5.26 provide the plot of each parameter
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FIGURE 5.17: The variations of G2 parameter estimates for CS1 case in
corresponding to different input trajectories..
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(A) The variations of each parameter estimate
for Sinusoidal 5Hz input.
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FIGURE 5.18: The variations of each parameter estimate for Case 2 input
and the corresponding tracking performance when only ζ̂2,0 is initiated

at CS2.
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FIGURE 5.19: Parameter variations for Case 2 input and the correspond-
ing tracking performance when only G1 parameter estimates are initial-

ized at CS3).
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(A) The variations of each parameter estimate
for Sinusoidal 10Hz input.
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FIGURE 5.20: Parameter variations for Case 2 input and the correspond-
ing tracking performance when only G2 parameter estimates are initial-

ized at CS3).
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FIGURE 5.21: The variations of parameter ζ̂1,k and ζ̂2,k estimates for Case
2 input (20Hz frequency) pertaining to different value of κ.
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FIGURE 5.22: The variations of parameter ψ̂1,k and ψ̂2,k estimates for
Case 2 input (20Hz frequency) pertaining to different value of κ.
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FIGURE 5.23: The variations of parameter α̂1,k and α̂2,k estimates for
Case 2 input (20Hz frequency) pertaining to different value of κ.

(A) The adaptation behaviour of ζ̂1,k. (B) The adaptation behaviour of ζ̂2,k.

FIGURE 5.24: The variations of parameter ζ̂1,k and ζ̂2,k estimates for Case
3 input case pertaining to different value of κ.
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(A) The adaptation behaviour of ψ̂1,k. (B) The adaptation behaviour of ψ̂2,k.

FIGURE 5.25: The variations of parameter ψ̂1,k and ψ̂2,k estimates for
Case 3 input case pertaining to different value of κ.

(A) The adaptation behaviour of α̂1,k. (B) The adaptation behaviour of α̂2,k.

FIGURE 5.26: The variations of parameter α̂1,k and α̂2,k estimates for
Case 3 input case pertaining to different value of κ.
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FIGURE 5.27: Parameter variations for Case 2 input with κ1 = 0.01, κ2 =
0.07 and the corresponding tracking performance when all parameter

estimates are initialized at CS1. (RMSE = 0.0909)
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TABLE 5.5: The Summary of the Tracking Performance for Case 2 ref-
erence (20Hz frequency) with different κ value (all parameter estimates

are initialized at CS3).

Performance Index

κ value RMSE (µm) MAE (µm)

0.005 3.5899 6.0959

0.05 2.8551 5.5836

0.1 2.1473 6.3543

TABLE 5.6: The Summary of the Tracking Performance for Case 3 input
with different κ value (all parameter estimates are initialized at CS3).

Performance Index

κ value RMSE (µm) MAE (µm)

0.001 1.2924 2.2789

0.01 0.1255 0.4662

0.05 0.1089 0.3074

0.1 0.1038 0.3299

0.5 0.0742 0.3495

0.7 0.2465 3.3889

estimate for two cases related to Case 2 input and Case 3 at different value of κ. For

Case 2, we consider Sinusoidal reference with 20Hz input frequency. In this case, three

different values of κ are studied. Meanwhile, for Case 3 input, six κ values are con-

sidered. In these experimental studies, the initial point of all estimates are set at CS3.

The behaviours of parameter estimates pertaining to Case 2 input are illustrated in Fig.

5.21 to Fig. 5.23. Since the input frequency is slightly high, experiments with smaller

κ values are studied. In this regard, κ is set as κ ≤ 0.1 to maintain the stability of the

closed-loop system. Comparing the six results in Fig. 5.21 – Fig. 5.23, it can be seen that

each parameter estimate is sensitive with respect to κ value. Large tracking errors are

obtained and the RMSE for each κ value is tabulated and shown in Table 5.5. A closer

inspection of Table 5.5 shows that RMSE value is reduced as κ is increased.

The sensitivities of parameter estimates pertaining to Case 3 input are depicted

through Fig. 5.24 to Fig. 5.26. It can be observed that as κ value increasing, the es-

timates become more sensitive, in particular ζ̂1,k, ψ̂1,k, and α̂1,k. Their behaviours are
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FIGURE 5.28: The variations of each parameter estimate for Case 2 input
with κ1 = 0.015, κ2 = 0.07 and the corresponding tracking performance

when all parameter estimates are initialized at CS2. (RMSE = 0.2338)

unstable when κ is increased over 0.5, as can be seen for example when κ = 0.7. Ob-

servation on the G2 estimates, i.e., ζ̂2,k, ψ̂2,k, and α̂2,k suggest that they are much stable

compared to G1 estimates due to small adaptation attribute. Meanwhile, Table 5.6 tab-

ulates the performance index in corresponding to this assessment. The best κ value for

this case is 0.5 as can be observed in Table 5.6. However, a closer inspection to Fig.

5.24a, Fig. 5.25a, and Fig. 5.26a suggest that the variations of G1 estimates are not so

stable, and may give problem to closed-loop system.

To improve the adaptation sensitivity of G2 estimates is quite straightforward. In-

tuitively, one can introduce individual adaptation gain to each adaptive law instead of

using a single adaptation gain κ so that the variation of each estimate can be appropri-

ately controlled. Fig. 5.27 and Fig. 5.31 show the behaviour of parameter estimates and

tracking performances of Case 2 and Case 3 respectively. In these examples, two adap-

tive gains κ1 and κ2 are used to control the adaptation attribute of the G1 estimates

and their counterparts. In addition, all estimates are initialized at CS1, CS2 and CS3

respectively. Significant difference is noticed when parameter variations of Fig. 5.27

are compared with the one in Fig. 5.16. Indeed, by tuning adaptive gains κ1 and κ2,

better tracking performance can be obtained even all the estimates are initiated slightly

far from their boundary of true values. However, this is only valid for lower input

frequencies. At higher frequencies, it is best to initiate the estimates within ≤ CS2.
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FIGURE 5.29: Parameter variations for Case 3 input with κ1 = 0.01,
κ2 = 0.1 and the corresponding tracking performance when all parame-

ter estimates are initialized at CS1 (RMSE = 0.0085).

(A) The variations of each parameter estimate.
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FIGURE 5.30: Parameter variations for Case 3 input with κ1 = 0.005,
κ2 = 0.3 and the corresponding tracking performance when all parame-

ter estimates are initialized at CS2 (RMSE = 0.0323).
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FIGURE 5.31: Parameter variations for Case 3 input with κ1 = 0.01,
κ2 = 0.2 and the corresponding tracking performance when all parame-

ter estimates are initialized at CS3 (RMSE = 0.0794).
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5.4 Concluding Remarks

In this chapter, an adaptive controller design methodology is presented. Its develop-

ment is based on the discrete-time modified Bouc-Wen model. Through the theoretical

analysis, we can see that the formulated adaptive controller assures the stability of the

closed-loop control system. Additionally, the effectiveness of the DMRAC scheme is

verified through a real case study. Experimental results have clearly exhibited excellent

output tracking performance via the designed control strategy.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

In the first part of the thesis, feasibility study of the DEB models towards hystere-

sis characterization is conducted. Through the theoretical and simulation analyses,

we learnt that this category of model provides a simple modeling framework with-

out compromising its underlying physical meanings. In addition, all the DEB models

are bounded. Besides, it is obvious that Duhem model is capable of describing com-

plex hysteresis curves that are akin to hysteresis phenomenon in the real applications.

However, it is a challenge to determine proper shape functions that best describe the

real hysteresis effects. Furthermore, a good model does not guarantee its viability from

a control standpoint. It is shown that only BW model is the most practical one with

regard to direct control fusion. The key point to this success lies in its unique structure

that allows the control designer to handle |u̇| term appropriately.

The second part of the thesis is devoted to modeling and control of the smart ac-

tuators. A new model modification is proposed to solve rate-independent property of

the original BW model. In this case, the special case of BW model is used as the basis

for developing the modified one and its establishment is realized in the discrete-time

domain. This consideration is taken to avoid numerical approximation which normally

degrades the system performance. Moreover, most of the equipments and experimental

test rigs are in digital environment. From numerical simulation results, it is observed

that the proposed model is capable of describing rate-dependent input-output relations.

Thus, the modified BW (MBW) model can be classified as a dynamic hysteresis model.

Then, model validation process is carried out to verify the capacity of MBW model in

terms of modeling and characterization of hysteretic smart actuators. The results show
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that estimated outputs of MBW model are well matched with the measured outputs

obtained from PEA, GMA, and IPMC. This confirms that MBW model is not unique

and shall be capable of fitting and matching the input-output relations of other smart

actuators.

Furthermore, the proposed MBW model is directly used in the development of con-

trol strategies. Two control architectures are developed in order to alleviate the hys-

teresis effects in the smart actuators; the first one is discrete nonlinear prescribed per-

formance control (DPPC) scheme which is formulated to compensate hysteresis effects

in the PEA stage; while the second one is a robust adaptive control strategy which

is designed for GMA. The experimental results substantiate that the proposed control

strategies have the capacity for improving the output tracking performance in the smart

actuators without compromising the closed-loop systems’ stability. These experimen-

tal results further confirm the capability of the MBW model. It is not only applicable

for modeling and characterization, but also towards control development for the bet-

terment of motion tracking problems in smart actuators that are affected by hysteresis

effects.

6.2 Recommendations and Future Works

This thesis has addressed the modeling and controller design of the smart actuators that

affected by hysteretic nonlinearity based on DEB hysteresis operator. Certainly, there

are still many open problems with regards to the analysis of hysteretic systems. A few

suggestions of future work could be considered as an extension to this study. It may

become specially interesting to delve into:

•Modeling. The work in this thesis mainly focuses on symmetric and rate-dependent

hysteresis. Since in some applications, hysteresis phenomena can be asymmetric, an

extension of this work is to establish results for asymmetric BW model or asymmetric

DEB hysteresis model.

• Other type of actuators. It might be of interest to extend the application of MBW

model for other type of actuators such as smart memory alloy (SMA) or even in other
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application fields including magnetorheological dampers, mechanical isolation sys-

tems and so forth.

• Tracking. Alternative stabilizing controllers could be designed and fused into MBW

model for further improvement of the motion tracking and regulation performance es-

pecially for high frequency reference inputs.
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Appendix A

Research Achievements

Journal Paper:

1. M. H. M. Ramli and X. Chen (in press), “Modeling and control of piezoelectric

actuators by a class of differential equations based hysteresis models”, Int. J. of

Advanced Mechatronic Systems.

International Conference Proceedings/Papers:

1. M. H. M. Ramli and X. Chen, "Control fusion strategy via differential equations

based hysteresis operator," 2016 IEEE International Conference on Mechatronics and

Automation, ICMA2016, Harbin, 2016, pp. 1445-1450. doi: 10.1109/ICMA.2016.7558776

2. M. H. M. Ramli and X. Chen, “An extended Bouc-Wen model based adaptive

Control for micro-positioning of smart actuators”, 2016 International Conference on

Advanced Mechatronic Systems, ICAMechs2016, Melbourne, VIC, 2016, pp. 189-194.

doi: 10.1109/ICAMechS.2016.7813445

3. M. H. M. Ramli and X. Chen, “Nonlinear discrete prescribed performance control

for Micro-Positioning of Smart Actuators”, IEEE 4th International Symposium on

Robotics and Intelligent Sensors, IRIS2016.
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