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ABSTRACT 

  Diamond like carbon (DLC) films and CVD diamond films have been 

widely utilized as protective coatings for tools and other materials. The 

attractive properties of this novel structure include high values of hardness, 

transparency in the infrared range, chemical inertness, low coefficient of 

friction and high wear resistance. By this properties diamond like carbon (DLC) 

films and CVD diamond films have applied in several important applications in 

the fields of mechanical manufacturing, solar energy devices, electric devices, 

and nano technology.  In the present study, CVD diamond films have applied 

in several applications in manufacturing field. First, CVD diamond films with 

thickness 20µm have coated in the WC (Co) disk specimen with the purpose 

to make micro-texture in the disk specimen. Second, the CVD-diamond 

coatings have coated in the cutting tools with the purpose to extend the tool 

life by recoating after ashing process.  

  There are many ways to make micro-texture and to remove coating 

materials from the substrates. Wet chemical etching, micro-EDM, 

photolithography, and plasma process are kind of method can be used to 

achieve this point. The advantage and disadvantage factors are resulted from 

each method. In the present study, hollow cathode oxygen plasma has been 

developed to make dry etching and ashing for each application. Hollow 

cathode plasma is proposed to generate high ion and electron density in the 

chamber. High ion and electron density are utilized to make micro-texture in 

the substrate and to remove coating materials from the sample.  

  Firstly, characterization of hollow cathode plasma system has done by 

varying pressure, RF-voltage, and DC-bias voltage. Langmuir probe and 



optical emission spectroscopy have utilized to measure ion, electron density 

and spectrum of hollow cathode plasma. The measurement result indicates 

hollow cathode plasma system has high ion density seven times higher in the 

order 1017-1018 m-3 than without using hollow cathode system. The optical 

emission spectroscopy indicates hollow cathode plasma system produce high 

intensity of oxygen atomic peak and it is effective for etching and ashing 

process. 

  Secondly, hollow cathode oxygen plasma has developed to make 

ashing for CVD-diamond coated end milling tools. The end milling tools have 

coated with CVD-diamond coating with thickness 15µm. The only oxygen gas 

has utilized to generate plasma inside the hollow cathode. The variations of 

pressure, RF-voltage, and DC-bias have done to describe the optimum 

condition for ashing process. The low damage of cutting tools after ashing 

process has achieved in the low RF- voltage and one hour ashing process. 

The SEM and optical microscope have utilized to identify surface profile of 

end milling tool after and before ashing processing. Raman spectroscopy has 

utilized to prove diamond coating has removed from the end milling tools 

surface. 

  Thirdly, hollow cathode plasma system has utilized to make micro 

texturing in the CVD diamond coating with the thickness 20 µm. The metal 

mask and only oxygen gas have utilized to cover diamond coating area and to 

generate plasma. After the present etching for 7.2 ks, the micro-texture has 

imprint in the diamond coating. The etching rate by using hollow cathode 

plasma system reaches to 10 µm/H. The SEM and surface profilometer have 

indicated the anisotropic etching result after etching process.  
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1. INTRODUCTION 

1.1 PLASMA 

Plasma is often referred to as the fourth state of matter [1]. As 

temperature increases, molecule become more energetic and transform in the 

sequence: solid, liquid, gas, and plasma. The figure 1.1 presents 

schematically the range of temperature, or particle energy, in which each of 

the four forms of matter occur in nature. 

 

Figure 1.1 State of matter versus temperature 

In the latter stages, molecule in the gas dissociate to form a gas of 

atoms and then a gas of freely moving charged particles, electrons and 

positive ions. This state is called the plasma state, a term attributed to 

Langmuir to describe the region of a discharge not influenced by wall or 

electrodes. It is characterized by a mixture of electron, ions, and neutral 

particles moving in random direction that, on average, is electrically neutral. In 

addition plasma are electrically conducting due to the presence of these free-

charge carriers and can attain electrical conductivities larger than those of 

metal such as gold and copper [2]. 
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Plasma occurs naturally, but also can manmade. Although somewhat 

rare on earth, plasma occurs naturally and comprises the majority of the 

universe, encompassing among other phenomena, the solar corona, solar 

wind, and earth ionosphere [3]. In the earth atmosphere, plasma is often 

observed as a transient event in the phenomenon of lightning strokes. 

Because air is normally non-conducting, large potential differences can be 

generated between clouds and earth during storms. Lightning discharges that 

occur to neutralize the accumulated charge in the clouds take place in two 

phases. First, an initial leader stroke progresses in steps across the potential 

gap between clouds or earth. This leader stroke creates a low degree of 

ionization in the path and provides condition for the second phase, the return 

stoker, to occur. The return stroke creates a high conducting plasma path for 

the large current to flow and neutralize the charge accumulation in the clouds 

[4]. Aurora is also other types of natural plasma in the earth and easily to be 

found in the north and south poles of the earth.  

 

Figure 1.2 Operating regions of natural and manmade plasma 
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Figure 1.2 shows the classification of plasma in term of electron density 

and electron temperature. This figure provides a representation of the electron 

temperature in electron volt and electron densities (cm-3) typical of natural and 

manmade plasmas. Electron temperature is expressed in electron volt (eV; 1 

eV is equal to approximately 11600K. Manmade plasma ranges from slightly 

above room temperature to temperatures comparable to the interior of stars. 

Electron densities span over 15 orders of magnitude. However, most plasmas 

of practical significance have electron temperature of 1 to 20 eV with electron 

densities in the range 106 to 1018cm-3 [5]. 

Plasma generation and stabilization in the laboratory and in industrial 

devices are not easy, but very promising for many modern applications, 

including thermonuclear synthesis, electronic, laser, and many others. Most of 

computer hardware is made based on plasma technologies, as well as the 

very large and thin TV plasma screen [6]. Plasma offers two main 

characteristic for practical applications. They can have temperatures and 

energy densities greater than those produced by ordinary chemical means. 

Furthermore, plasma can produce energetic species that can initiate chemical 

reaction difficult or impossible to obtain using ordinary chemical mechanisms. 

The energetic species generated cover a wide spectrum, e.g., charge particle 

including electron, ion, and radical; highly reactive neutral species such as 

reactive atoms (e.g. O, F, etc) [7]. 
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1.2 PLASMA PHYSICS  

1.2.1 BASIC GAS DISCHARGE 

Plasma refers to an ionized gas, in which approximately the same 

number of electron and ions. The electron density (ne) and ion density (ni) are 

substantially equal to another, and they are referred to as the plasma density 

[8]. Because electrons are able to travel freely within the plasma, it has 

conductive property. When a radio frequency (RF) power is applied on a pair 

of electrodes in chamber, electrons are accelerated by an electric field 

generated by the RF power, acquire kinetic energy, and collide with atom and 

molecule. If the kinetic energy of an electron is greater than the ionization 

energy, the electron in the outermost shell of the atom or molecule is expelled. 

As a result, the neutral atom or the molecule turns into an ion. On the other 

hand, the electron that has been expelled from the molecule or the atom adds 

to the first colliding electron to now make a total two electron. These electron 

are then accelerated under the electric field, collide with other atoms and 

molecule, and generate new ion and electrons. The number of ion and 

electron increase as in an avalanche and eventually exceed a threshold level 

over which a resulting discharge begins and creates plasma [9]. 

1.2.2 PLASMA PARAMETER 

The plasma is classified in to complete ionized plasma, in which 100 % 

of electrons and ions are ionized, and weakly ionized plasma, in which the 

degree of ionization is low and a mixture of ions, electron, and neutral atoms 

and molecules coexist. As a result, plasma parameter from each type has 

differences. Table 1.1 represents typical values for the plasma parameter 
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associated with arc discharge plasma, which is strongly ionized plasma, and a 

glow discharge plasma, which is weakly ionized plasma [10] . 

Glow discharge plasma is characterized by a lack of thermal 

equilibrium between electron temperature Te and gas temperature Tg. An 

electron temperature corresponds to the energy of the electrons, and its 

relationship to the kinetic energy 1
2
𝑚𝑚𝑒𝑒𝑣𝑣𝑒𝑒2 is expressed as 

1
2
𝑚𝑚𝑒𝑒𝑣𝑣𝑒𝑒2 = 3

2
 𝑘𝑘 𝑇𝑇𝑒𝑒     ......(1) 

Where me is the electron mass, ve is the electron velocity, and k is 

Boltzmann’s constant.   

Table. 1 Type of plasma and plasma parameters 

Type of plasma 
Plasma 
density 
(cm-3) 

Electron 
temperature 

Te(K) 

Ion 
temperature 

Ti (K) 

Gas 
temperature 

Tg (K) 

Arc 
discharge 

Strongly 
ionized 
plasma 
(high-

temperature 
plasma) 

>1014 6000 6000 6000 

Glow 
discharge 

Weakly 
ionized 
plasma 
(low-

temperature 
plasma) 

109-1012 ~104 300-1000 300 

 

Because electron very light, they are accelerated by the electrical field 

and acquire a large kinetic energy. The average electron energy in a glow 

discharge plasma is several electron volt. Say the electron energy is 2 ev; 

then the electron temperature Te is 23200 K, according to Eq. (1). On the 

other hand, the temperature of the neutral atoms and molecules, which is the 
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gas temperature Tg, is around room temperature (293K). In other words, 
𝑇𝑇𝑒𝑒
𝑇𝑇𝑔𝑔

  is 

around 80, and electron temperature Te and gas temperature Tg are not in a 

thermal equilibrium. Although the electrons hav an energy level comparable to 

high temperature of 104 K or higher, the chamber and the wafer remain low 

temperature because the electron mass is small. For this reason, glow 

discharge plasma is also referred to as a low-temperature plasma. Because 

electrons have enough energy for causing the excitation, ionization, and 

dissociation of atoms and molecules, with the gas temperature remaining at 

close   to the room temperature, diverse types of reactions are possible at low 

temperature. This is the reason the glow discharge plasma is used form 

semiconductor monitoring. 

An arc discharge is strongly ionized plasma, and its plasma density is 

1014 cm-3 or greater. The electron temperature Te, ion temperature Ti, and gas 

temperature Tg are in a thermal equilibrium, and Te = Ti = Tg is approximately 

6000K. For this reason, the arc discharge is referred to as a high-temperature 

plasma [11]. 

1.2.3 COLLISION PROCESS IN PLASMA 

 Electrons that have gained energy in plasma collide with atoms and 

molecules. This collisions are categorized as elastic collisions and  inelastic 

collisions. Figures 1.3 shows the collision process in plasma. With an elastic 

collision, only the kinetic energy changes; the internal energy does not 

changes. These types of collision tend to take place when the electron energy 

is low. In the figure 1.3 the electron is bounced back in a different direction. 

Because a portion of the electron’s energy is transferred into the kinetic 
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energy of the atom, the atom slightly gains a velocity. The electron loses a 

small amount of energy through the collision. With an inelastic collision, the 

internal energies are converted, and excitation, ionization, dissociation, and 

electron attachment take place [12].   

 

Figure 1.3 Collision processes in a plasma 

The figure 1.3 represent collision process in plasma is divided into four 

type collisions. 

a. Excitation  

A colliding electron provides energy to the bound electron in an atom 

and enables it to jump to a higher energy level. In general, the excited 

state is unstable, and the excited electron would be able to remain in 

this state for only around 10-8 s, and then return to the ground state. 

Photon is emitted during this transition. The plasma glows because of 

this principle. An excitation reaction step is described as follows; 

A + e  A* + e  A + e + hv 
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where A represents a neutral atom, and A* represent A in an excited 

state, h is Planck’s constant, and v is the frequency of the emitted light 

b. Ionization  

As explained before, an electron in the outermost shell is expelled 

when the energy of the colliding electron is larger than the ionization 

voltage, and the neutral atom turn into a positive ion. This reaction 

step is described as follows; 

A + e  A+ + 2e 

c. Dissociation 

Dissociation occurs when the energy given by the colliding electron is 

larger than the binding energy of the molecule. The reaction step is 

described as follows;  

AB + e  A + B + e 

When a molecule is dissociated, its by products are chemically more 

active than the original molecule and turn into highly reactive particles. 

A particle in this activated stated is called a radical. It has been 

reported that CF4 would easily be dissociated into a CF3 radical (CF3
.) 

and F radical (F.) once excited [7]. This reaction step is described as 

follows: 

CF4    CF4
* CF3

. + F’ 

d. Electron attachment 

The colliding electron attaches to the atom and turns it into a negative 

ion. This reaction step is described as follows; 

A + e = A- 
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1.3 PLASMA GENERATION 

1.3.1 DC DISCHARGES 

Space and laboratory plasma are classified by their electron 

temperature (Te), and charge particle density (n) [13, 14]. A glow discharge is 

a kind of plasma consisting of equal concentration of positive and negative 

charges and a large number of neutral species. The DC-glow discharge 

plasma has been used for plasma application in the low and intermediate 

pressure region in modern technology [15]. Glow discharge plasma is a tool 

for heating, sputtering, etching, nitriding, and ionization as well as an activator 

for gaseous atoms and molecule. It is well known that a large number of ion, 

electron, and excited radical coexist in plasma.  A wide variety of particles 

exits in the discharge in addition to ion and electrons, including for example 

radical, excited species, and various fractured gas molecules created by 

collisions between electronic and gas molecules or atom [16]. 

 

 

 

 

 

Figure 1.4 The schematic of DC glow discharge 

The simple configuration of DC glow discharge plasma is depicted in 

the figure 1.4. Two plane metal plate are separated by a distance, d, in a 

chamber reactor filled with a particular gas at a pressure, p. Breakdown of the 

gas is achieved by applying an electric field or direct-current (dc) with cathode 

and anode biased negatively and positively, respectively. When the voltage 
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between the plates is low, the gas is a near-perfect insulator. As the voltage is 

increased, small fractions of electron present in a gas are accelerated towards 

the anode making collision with the background atoms. Some of these 

collisions create positive ion which are then accelerated towards the cathode. 

When the ion strikes the cathode, electrons are liberated from the metal 

surface as a result of neutralization (secondary electron emission). This 

process gives rise to an entire avalanche of electron leading to gas 

breakdown and discharge formation [17]. The voltage at which breakdown 

occurs is describe by Paschen’s law. The breakdown voltage is found to 

depend only on the product p, d for a given gas and cathode material. At low 

p, d value, the breakdown voltage is small because of too few collisions (low 

pressure or small gap). At high p, d value, the breakdown voltage is high 

because of too many collisions (high pressure or large gap). 

1.3.2 CAPACITIVE RADIO FREQUENCY DISCHARGE 

Capacitive radio frequency discharge is also the most common types of 

discharges and the associated plasma processes. Commonly, this system 

utilizes parallel plate and the workhorse frequency is 13.56 MHz. Under these 

conditions, the electrons have a thermal energy of a few eV to bring atoms 

into excited states and dissociate molecule, which facilitates chemical 

reactions. On the other hand, the heat content of the electron gas is still small 

because of the low electron density. This allows bringing the plasma into 

contact with sensitive surface. This process is called cold heat [18]. 

Figure 1.5 represents typically capacitive radio frequency discharge 

plasma in common. It is mentioned by the parallel plate discharge belong to 

the capacitive RF discharge. By this condition the RF electric field results from 
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surface charges on electrode or dielectric. This distinguishes it from inductive 

discharges where the electric field is generated by a time varying magnetic 

field from an external antenna.  

 

Figure 1.5 Typical capacitive radio frequency discharge plasma 

The radio frequency (RF) type has advantage point compare with direct 

current (DC) type. When a dielectric substrate is put on one of the electrodes 

of parallel plate reactor, the DC current is interrupted and the plasma will seek 

a connection to the uncovered part of electrode. This hardly gives the desired 

homogeneous contact between plasma and substrate. However, when an RF 

voltage is applied, a displacement current will flow in the substrate that 

establishes the connection between plasma and electrode and provides 

homogeneity [19]. The parallel plate discharges fall into different classes of 

operation. First, the applied RF voltage determines whether the discharge 

operates in the α-regime, which is governed by ionization from electron 

avalanches, or in the γ – regime, where electrons are produced at the 

electrodes by secondary emission from ion bombardment. Second, the two 

RF electrodes of the discharge can have equal or different areas. Third, the 
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discharge can be operated through a blocking capacitor, which leads to a DC 

self bias from rectifying the RF voltage in the sheath region [20]. 

1.3.3 INDUCTIVELY COUPLED PLASMA 

Inductively coupled plasma (ICP) became relevant for the 

semiconductor industry because of the necessity to achieve higher plasma 

density of ni = (1-3) x 1017 m-3 in low pressure (p = (0.11-2) Pa) discharges. 

Higher densities lead to faster reaction rate that boost the economy of the 

process [21]. Capacitive discharges were limited to achieve this regime 

because the plasma density was only increasing with the square root of the 

applied power. Moreover, the necessity to transport the applied power through 

the sheath region generated high voltage drop across the sheath, and ions 

gained energies of several hundred eV from the sheath potential, which could 

damage the integrated circuits. Inductive power transport to the plasma keeps 

the voltage drop across the sheath low and leads to moderate ion energies of 

(24-40) eV [22].  

 

Figure 1.6 Typically ICP plasma system, a) ICP plasma with a helical coil 

wound around discharge tube, b) ICP with a flat spiral coil on a quartz 

window 
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An ideal ICP acts likes a transformer with the primary being a coil that 

is positioned close to the plasma, and the plasma forming a single-turn 

secondary. These typical arrangements for helical and flat coil design are 

sketched in the Figure 1.6. ICP plasma can be operated in a low-power 

electrostatic mode, or E mode, which is mostly found in the plasma density 

range 1014-1016 m-3. The real inductive mode or H mode is found for higher 

plasma density of 1016-1018 m-3 [6]. The mechanism of E and H mode is 

illustrated in the Figure 1.7. 

 

Figure 1.7 The mechanism process of a) E mode and b) H mode in the 

ICP plasma system 

The E-mode is characterized by an RF electric field that originates from 

the RF voltage drop across the exciter coil ICP discharge. Plasma density in 

the E-mode is low and lead to a skin depth that is larger than the plasma 

dimension. The E-mode resembles the parallel plate discharge and leads to 

energetic ions from the sheath region. It is possible to suppress the E-mode 

by using a so-called Faraday shield consisting of a thin grounded copper 

sheet with slits that are oriented a right angle to the current flow in the 

antenna.   
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The H-mode as depicted in the figure 1.7 b) deposits the RF energy in 

the plasma by accelerating electrons by the ring-shaped induction field inside 

the skin layer. The electron flow represents a ring-current that has the 

opposite direction as the RF current in the excited coil. This current system is 

the single winding of an air-core transformer, which consist of the multi-

winding exciter coil and the skin layer of the plasma [23]. 

1.4 PLASMA APPLICATION 

Plasma technology has applied in many sectors, such as industrial 

sector, in the biomedical sector, nano technology sector and etc. In the 

industrial sector, plasma technology has applied for many purpose and 

function. One of the famous applications in this sector is for ashing or etching 

process. Plasma etching and ashing can be generated in many ways and type 

from plasma system. Recently, dry plasma etching and ashing has chosen for 

MEMS/NEMS fabrication due to high accuracy and short time processing [24].  

 

Figure 1.8 ICP plasma etching in the Si substrate 
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ICP plasma system has utilized to make etching process in the Si 

substrate as illustrated in the Figure 1.8. In this result anisotropic profile has 

obtained and imprinted in the Si substrate bu using low pressure gas [25].   

In the biomedical sector, plasma has grown to replace the conventional 

method. Plasma applied for sterilization process. Plasma has utilized to kill 

the bacteria or virus in the medical instrument by treatment process [26]. With 

the high temperature in the plasma is expected to kill the bacteria or virus in 

the medical tools. Plasma has grown as scalpel in medical sector for helping 

doctor during operation process. One kind of the development plasma scalpel 

is depicted in the figure 1.8 [27]. 

 

Figure 1.9 The application plasma technology for scalpel 
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1.5 THE PURPOSE OF THIS STUDY 

The overall objective of the present study is in the understanding of the 

hollow cathode plasma system characteristic and applied for plasma 

application processing. Plasma generation can be done in many process and 

type. Each type has different behaviour and characteristic. Plasma 

characterization has become important process have to do before apply in 

some application process. 

Hollow cathode plasma system has developed to obtain high ion and 

electron density. As we know, high ion and electron density are expected from 

each plasma system because it’s useful for application process. In this study, 

hollow tube has placed inside the chamber to generate hollow cathode 

plasma. Hollow cathode plasma system is expected to have high ion density 

and electron density inside the hollow tube. Quantitative plasma diagnosis 

has utilized to measure and characterize hollow cathode plasma density by 

using Langmuir probe and Optical emission spectroscopy. 

CVD diamond coatings have been widely utilized as protective coating 

of mechanical, functional and fashion-oriented parts besides tool and dies. 

CVD-diamond coating is the hardest coating material compare with other 

coating material. MEMS/NEMS is a key technology sensor for electronic 

devices with high speed performance. Most of these devices under 

development are mainly based on the silicon wafer. However, silicon has 

relatively poor mechanical properties; e.g. low Young’s modulus of 130 GPa 

and low tribological properties. CVD-diamond diamond coating has grown up 

to replace silicon as material for MEMS/NEMS [28]. As we know, CVD 

diamond coating is a hard coating material and difficult in fabrication process. 
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Hollow cathode oxygen plasma etching with high plasma density is a solution 

to process CVD diamond coated for MES/NEMS.  

CFRP (carbon fiber reinforced plastic) has grown to be a key structural 

composite material especially in aerospace and automobile industries. CFRP 

is difficult to be machined because of its high strength in tension and 

brittleness in compression [29].  Tooling with diamond coating become a 

solution to be free from the about difficulties. However its tool life is so short 

and the WC (CO) tool price is quite expensive, one of the solution is the used 

diamond coating must be recycle before reuse for practice. Many studies 

were reported in the literature on this removal of the used diamond coating. 

Mechanical and chemical polishing, EDM, laser, chemical ashing are kind the 

way to remove diamond coating from the substrate [30]. Certainly, there is 

advantage and disadvantage point from each process. Nowadays, high rate 

and fast ashing process is required to remove diamond coating. Importantly, 

low damage to the substrate material after ashing process is expected from 

each process. An alternative process is needed to solve this problem. Hollow 

cathode plasma ashing system is design to solve this problem. High ion and 

electron density inside hollow cathode is effective to remove the used CVD 

diamond coating material. And also, the rotating system has developed to 

make homogeneous plasma ashing in the CVD-diamond coating tools.  
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2. EXPERIMENTAL PROCEDURES 

2.1 INTRODUCTION 

Plasma ashing and etching are the famous method used to remove 

coating film from substrate. This method generally consists of the chamber, 

the electrode, the plate, the substrate, the carrier gas supply, and the RF or 

DC generator [1].      

 The electrons are able to travel freely to collide with atoms and 

molecules inside the chamber. The ions and new electrons are produced by 

this collision. The reactive species are transported and adsorb on the target 

film. The reaction take place at the surface of the target film and etching or 

ashing process is starting [2]. The etching or ashing process can be controlled 

by modifying the plasma parameters.  

Plasma systems are generally falls into several categories: DC, RF, 

ICP and hollow cathode plasma. The hollow cathode plasma has some 

advantage in term of stabilization of the plasma, high ion and electron density, 

and as result powerful for etching or ashing process [3].  

2.2 HOLLOW CATHODE OXYGEN PLASMA SYSTEM CONFIGURATION 

 Hollow cathode oxygen plasma has utilized to remove coating material 

from the substrate. Hollow cathode plasma consists of the hollow tube, the 

vacuum chamber, the plasma generator, the control unit, and the carrier gas 

supply. The chamber with diameter 11 cm is neutral in electricity; RF dipole 

electrode and DC-bias work independently to generate RF and DC plasma, 

respectively as shown in Fig.2.1 below [4]. The ionized species and activated 

radical in the RF plasma are attracted to the DC bias plate with kinetic energy. 

Either RF-plasma or DC plasma or, both are ignited by switching on either or 



 23 

both on the control panel. In addition, there is no mechanical matching box for 

RF plasma generation in this system. Input and output powers are 

automatically matched by frequency adjustment around 2 MHz. After placing 

the diamond coated specimen, the chamber is evacuated to the base 

pressure, less than 5 x 10-3 Pa. The pure oxygen gas with the purity of 99.99% 

is supplied as carrier gas to the specified pressure [5].  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 High density plasma systems 

  The hollow tube is placed inside the neutral chamber and made from 

stainless steel. There are two kind of hollow tube with different size and shape 

in this experiment. For Ashing process, the cylindrical shape with diameter 2.5 

cm and length 10 cm has utilized in this study. And also, rotation system has 

used in the whole of the experiment time to make homogeneous ashing result.  

For etching process, the cuboids shape with dimension 2 x 1 x 5 cm has 
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utilized to make etching process. Both of the hollow tubes are depicted in the 

Fig. 2.2. 

 

 

 

 

 

 

 

 

 

Figure 2.2 Hollow tube shape and dimension. a) for etching, and b) for 

ashing process 

 Different from the conventional hollow cathode plasma generator, this 

hollow is directly connected to DC-bias. Oxygen gases are introduced to the 

chamber. Due to the pressure gradient between chamber and hollow tube, 

oxygen gas flow inside the hollow tube. The plasma ignition is done by 

switching on RF plasma generation and DC-bias. As a result oxygen plasmas 

are formed inside the hollow tube. 

2.3 HOLLOW CATHODE OXYGEN PLASMA CHARACTERIZATION 

2.3. 1. CHARACTERIZATION BY USING LANGMUIR PROBE 

 The centralized generations of hollow cathode oxygen plasma provide 

high electron and ion densities. Variation in pressure, DC-bias, and RF-

voltage give different result in plasma density.  The plasma characterization is 

needed to understand and to describe the hollow cathode plasma. In this case, 
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plasma characterization has done by using Langmuir probe and optical 

emission spectroscopy [6]. The schematic diagnostic is depicted in Fig. 2.3.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 The schematic plasma characterization by using Langmuir 

probe and optical emission spectroscopy 

 Plasma parameter has measured with a single Langmuir probe 

analysis (Impedans ALP System). The probe has radius 3.5 x 10-4 m, length of 

0.01 m, and resistance of 36 ohm.  Plasma density has measured in all area 

of hollow tube by moving the probe position from outside to inside of the 

hollow tube. In this condition, only oxygen gas is utilized without using sample. 

The pressure, DC-bias, and RF voltage are varied to describe the plasma 

density and to get the optimum condition for ashing or etching process [7]. 

The plasma parameter such as ion density (ni), electron density (ne), electron 

temperature (Te), and plasma potential are measured and transferred to 

display.   
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Figure 2.4 Typical I-V curves characteristic 

 The Langmuir probe works with the principle of I-V curves and divided 

in three regions as depicted in Fig. 2.4. The first region is the region to the left 

of Vf where the probe bias is increasingly more negative, with the respect to 

the plasma potential. The electrons are repelled and the probe current is 

dominated by the positive ions. This region is called Ion saturation condition. 

Moving from Vf to Vp the probe collects increasingly more electron current as 

the potential barrier formed between the probe and plasma decreases 

(becoming 0 at Vp). The electron current increases exponentially when the 

electrons are in thermal equilibrium. This region is called electron retardation 

condition. The last condition is to the right of Vp the probe potential attracts 

plasma electrons and electron saturation occurs. This region is called electron 

saturation condition [8]. 

 

 



 27 

2.3.2. CHARACTERIZATION BY USING PHOTONIC MULTICHANNEL 

ANALYZER (PMA 11) 

 The photonic multichannel analyzer (PMA-11) has utilized to measure 

and characterize the spectrum from hollow cathode oxygen plasma. The 

PMA-11 is compact spectral measurement apparatus that combines a 

spectrometer and optical detector into one unit. An optical fiber with a 1 mm 

effective diameter is used and mounted in the chamber during plasma etching 

and ashing process [9]. The set-up experiment setting as depicted in fig. 2.5. 

 

Figure 2.5 Hollow cathode spectrum measurement by using PMA-11 

The optical fiber has mounted in the quartz window on the top of the 

chamber perpendicularly to the sample. The lights from plasma in the hollow 

cathode are detected by optical detector. This measurement is transferred to 

the computer. The spectrum software inside the computer processes this data 

and then displayed the spectrum in the computer screen as online. The peaks 

from the spectrum represent atomic, molecule, activated molecule and radical 
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peaks from the plasma. In this study, oxygen gas was utilized to generate 

hollow cathode plasma. Diamond coated was placed inside the hollow 

cathode. During the plasma processing, hollow cathode oxygen plasma attack 

to the diamond coating. The peaks from oxygen atomic, oxygen molecule, 

and activated molecule were displayed in the computer as online.    

2.4 PREPARATION OF DIAMOND COATING FOR ETCHING  

The hollow cathode oxygen plasma was proposed to make plasma 

etching in the diamond coating. In this case diamond has coated in the WC 

(Co) substrate in cylindrical shape. The thickness of diamond coating reaches 

to 20 µm as depicted in the fig. 2.6.a Micro line was the goal in this step. A 

stainless sheet mask as depicted in fig. 2.6.b with the thickness of 50 µm was 

used for masking to make micro line pattern in the diamond coating [10]. 

 

  

 

 

 

 

 

 

Figure 2.6 The specimen for etching process, a) diamond coating on WC 

(Co) , b) micro lines mask on the diamond coating 

The WC (Co) specimen has diameter 10 mm and thickness 5 mm. The 

stainless steel mask has dimension 30 x 30 mm. The stainless steel mask 

was placed on top of WC (Co) diamond coating. A tape has utilized to make 

a) b) 
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the stainless steel mask stay on the position during the etching process. The 

diamond coating and stainless steel mask were placed inside the hollow 

cathode. The plasma etching condition was showed in the table below. 

Table. 1 The plasma etching experiment set-up 

RF- voltage (V) 250 

DC-bias (V) -550 

Pressure (Pa) 30 

Time (s) 7200 

 

2.5 PREPARATION OF CUTTING TOOLS DIAMOND COATING FOR 

ASHING 

The other purpose from hollow cathode oxygen plasma was used to 

make homogenous and perfect plasma ashing on the end-milling tools. The 

end-milling tools have a length 7 cm and thickness 15 µm of diamond coating. 

The cutting tools were made from WC (Co) material. This material is a hard 

material which is characterised by an extraordinary hardness and wear 

resistance. The end-milling tool is depicted in the figure 2.7. In this study, the 

end milling tool was rotated with the constant speed 4 rpm. The experiment 

condition was set in RF=100 V, DC-bias -500 V, and pressure 45 Pa [11]. The 

end-milling tool was placed inside the hollow tube and tightening with the 

screw to keep in the position. The rotation machine was started and kept 

constant during the experiment. The only oxygen gas was used and 

introduced inside the chamber. The ashing process was set in 3600 second 

and no additional time.      
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Figure 2.7 CVD-diamond coated end-milling tools with the film thickness 

of 15 µm 

2.6 MEASUREMENT ANALYSIS BY USING OPTICAL MICROSCOP 

The optical microscope has utilized to check the specimen after ashing 

and etching result. The optical microscope made by Shimadzu with the series 

number STZ-168-TL has utilized in this study. This microscope has advantage 

smooth zooming mechanism, sharp images, large focusing working area, and 

easy to use. The specimen after ashing and etching has cleaned by using 

alcohol, after that the specimen was checked by using optical microscope to 

get the surface condition. In this case, the magnification of microscope can be 

change from 1.0 to 7.5 times [12]. The specification of optical microscope 

STZ-168-TL as depicted in the table 2 below. 
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Table.  2 The specification of microscope STZ-168-TL 

Model STZ-168-TL 

Total Magnification 7.5 x ~ 5.0 x (1.125x ~ 320x by option) 

Number of view 23 mm 

An objective lens Zoom type 0.75x ~ 5x zoom ratio of 1:67 

Eyepiece  WF10x 

Dioptre adjustment range ±50 

Eye width adjustment 

range 
52 ~ 79 mm 

Lens barrel 

Three eye 350 tilt barrel 3600 rotation strut 

slide rack and pinion two stage method 

eyepiece sleeve inner diameter 30 mm  

Working distance 113 mm 

The maximum field of view 30.7 mm 

Size and weight 330 x 340 x 398 mm and 7 kg 

Lightning systems  
The incident light source 12 V 10 W 

halogen 

 

The result from optical microscope has transferred and displayed in the 

computer. This microscope has integrated with the computer software to 

check and modify the image result. The image result was saved in jpeg, tif, 

and bmp file. The optical microscope STZ-168-TL model was depicted in fig. 

2.8.  
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Figure 2.8 The optical Microscope Shimadzu STZ-168-TL 

2.7 MEASUREMENT ANALYSIS BY USING SCANNING ELECTRON 

MICROSCOPE (SEM) 

The SEM (Scanning Electron Microscope) has utilized to measure the 

specimen before and after etching and ashing process. The SEM JCM-6000 

was made by Nikon has utilized in this study. This system consist of power 

supply, rotary pump, JCM-6000 base unit, PC, and LCD display as depicted in 

fig. 2.9. This compact electron microscope was a simple to operate as digital 

camera, but has the powerful electron optics of an SEM, with up to 60000 x 

magnification [13]. The SEM operation was via a touch screen and was 

simplified with auto focus, auto alignment, auto contrast and auto brightness 

controls. The neoscope operates in both low and high vacuum modes with 

three setting for accelerating voltage. The specification of SEM JCM-6000 

was depicted in table.3. 
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Table. 3 The specification of SEM JCM-6000 

Magnification  

Secondary electron image: x10 to x60,000 

Backscattered electron image: x10 to 30,000 

(when image size is 128 mm x 96 mm)  

Imaging mode 
Secondary electron image, backscattered 

electron image 

Accelerating voltage 

Secondary electron image: 5 kV, 10 kV, 15 kV (3 

stages) 

Backscattered electron image: 10 kV, 15 kV (2 

stages) 

Electron gun 
Small gun with cartridge filament integrating 

wehnelt 

Bias current Auto bias 

Specimen stage Manual control for X and Y: X:35 mm, Y: 35mm 

Maximum sample size 70 mm diameter x 50 mm height 

Image memory One, 1280 x 960 x 16 bits 

Pixels 640 x 480, 1280 x 960 

File format BMP, TIFF, JPEG 

Evacuation system Fully automatic, TMP : 1, RP : 1 

 

The sample was placed inside the JCM-6000 base unit. The high 

vacuum system has worked during the process. Focus and contrast were set 

automatically to get the clear image from the specimen on the display. The 

magnification was chosen from 50 x, 100x, 500x, and 600x as needed. The 

specimens were also rotated and change the tilt to get different image for 
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other side of the specimen. The tilt could be change from -150 to + 450 and 

the rotations reached to 3600. The image result has saved in computer and 

easy to transfer to other storage by using usb.  

 

 

 

 

 

 

  

 

 

 

 

Figure 2.9 JCM-6000 SEM system composition 

2.8 MEASUREMENT ANALYSIS BY USING SURFACE PROFILOMETER 

The surface profilometer was also utilized to check the surface from the 

specimen after etching and ashing. The profilometer has used to get 3D 

surface profile after plasma etching. The surface profilometer was made by 

Keyence with the type VW-9000 high speed microscope. These systems 

consist of computer display and optical lens as depicted in the figure 2.10. 

Surface profilometer VW-9000 has some advantage compare with the other 

system. This system enables accurate filming of high-speed motion that 

conventional microscopes cannot capture, able to record up to 230000 fps, 

set up and record in minutes, automatically determine changes in motion, an 
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LCD monitor, light source, and HDD build into an all-in-one design [14]. The 

specification of Keyence VW-9000 has depicted in the table 4. 

Table. 4 The specification of Keyence VW-9000 surface profilometer 

Size Color LCD (TFT) 10.4 

Dimensions • LCD : 210.4 mm (H) x 157.8 mm (V) 

Number of pixels 1024 (H) x 768 (V) XGA 

Display color Approx 16,000,000 colors 

Recording media 

• Semiconductor memory 8GB 

• Hard drive 500 GB (includes reserved 

system space of 100 GB) 

Image format 
• Video : AVI, JPEG, WMV 

• Image : JPEG, TIFF  

Light source 

• Lamp : specialized metal halide lamp 

• Color camera : 60 W high color rendering 

• Monochrome camera : 80 W high-

brightness 

• Lifetime : 2000 hours 

• Color temperature : 8000 K (color 

camera) , 6400 K (monochrome camera) 

Sensor input 

• Input channel number : 1CH 

• Measurement range : ±10 V, ±5 V, 

microphone 

• Input port : BNC, microphone jack 

• Resolution : 14bit 
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Power supply 

• Power supply voltage : 100 to 240 VAC ± 

10%, 50/60 Hz 

• Power consumption : 290 VA or less 

Video input 1024 (H) x 768 (V) XGA 

Weight 

• Controller (main unit) approx 11kg 

• Optical fiber cable approx 800 g 

• VW console approx 180 gr 

 

Keyence VW-9000 surface profilometer was easy to operate; the 

sample was placed on the table under the optical microscope. The software 

was selected in 3D mode photo image. The focus of optical lens was set and 

checked until the clear image show in the LCD display. After the clear image 

was gotten in the LCD display, the magnification of the lens was set and 

moved as needed to get the image from the specific area. Then, the figure will 

be captured and transferred to computer display. In the computer software, 

height, length, and distance of the figure can be measured by using software 

tools. The axis angle of the figure was possible to rotate until 3600 to get the 

image from each position. The image result was saved in jpeg, tiff file type 

and easy to transfer to other storage.    
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Figure 2.10 Surface profilometer VW-9000 high speed microscope 

 

2.9 MEASUREMENT ANALYSIS BY USING RAMAN SPECTROSCOPY 

Raman spectroscopy has utilized to check and prove the diamond 

coating has totally removed from the surface of specimen. InVia Raman 

spectroscopy made by Renishaw has utilized in this study. Invia Raman 

spectroscopy has high sensitivity for detecting weak signal, high speed in 

getting data, high resolution spectra, high stability, simple to use and safety. 

Invia Raman spectroscopy was integrated with high resolution of microscope 

as depicted in figure 2.11. Invia Raman microscopes support multiple lasers, 

with optimized beam path for each laser. The laser power was controlled 

manually for each measurement condition to get the optimum result from each 

sample [15]. 
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Figure 2.11 Invia Raman spectroscopy  

The sample was placed in the table inside the Raman spectroscopy 

machine. The sample was positioned as simple as possible to make laser 

checked the measurement area easily. In the plasma etching, the Raman 

spectroscopy has utilized to check the etched area and mask area. In this 

case the laser was directed to the both area to get the respond from diamond 

peak. The laser touched the sample surface in a few minute. The data from 

this measurement are transferred to the computer. The Raman spectroscopy 

software displayed the measurement result in the screen. The same condition 

was applied for plasma ashing. In this case the Raman spectroscopy has 

utilized to check the diamond peak on the end milling cutting tool before and 

after ashing process. The spectrum results before and after process have 

plotted and compared in one graph to get the information from ashing and 

etching process.   
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2.10 SUMMARY 

Plasma ashing and etching were utilized to remove coating material 

from the sample. High plasma density was effective to remove coating 

material even for hard coating material such as diamond films. Hollow 

cathode plasma was developed to achieve high plasma density. Hollow 

cathode plasma system was developed by using metal hollow tube and bias 

directly during plasma generation. The bright discharge was produced inside 

the hollow tube. The characterization of hollow cathode plasma was done by 

using Langmuir probe and Optical emission spectroscopy (OES). The 

variations of pressure, DC-bias voltage, and RF-voltage were also done in the 

present study.  The Langmuir probe was utilized to measure plasma 

parameters in the hollow cathode. Optical emission spectroscopy (OES) was 

utilized to measure the population inside the hollow cathode from the 

spectrum. 

Two kind of sample were employed to make etching and ashing 

process.  The first sample was a WC (Co) substrate in cylindrical shape. 

These substrates were coated with diamond film with the thickness 20µm. 

Metal mask with line width 100 µm has employed to make micro texturing 

onto WC (Co) substrate. The metal mask was installed above the diamond 

coating and fixed by using capton tape. The etching process was done by 

placing the substrate inside the hollow tube for 7200 second. The second 

sample was WC (Co) end milling tool with the length 7 cm and thickness 

15µm of diamond coating. The end milling tool was placed inside the hollow 

cathode and rotating with constant speed 4 rpm. The homogeneous plasma 

ashing and little damage to the original substrate were the goal from the 
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second sample. The ashing process was done for 3600 second in the present 

study. 

The analysis process after ashing and etching were done by using 

optical microscope, surface profilometer, SEM, and Raman spectroscopy. The 

optical microscope was employed with the purpose to check surface profile of 

substrate before and after ashing and etching process. Surface profilometer 

was utilized to check the surface profile of substrate after etching process in 

3D after etching process. SEM was employed to check surface profile of the 

substrate more detail after etching and ashing process. Raman spectroscopy 

was utilized to check the diamond peak after and before processing. The 

measurements were done by placing the laser pointer to the mask and 

unmask area of diamond coating. The results were compared in one graph to 

see the diamond coating has left from the unmask area. 
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3. THEORITICAL OF HOLLOW CATHODE PLASMA  

3.1 INTRODUCTION  

Hollow cathode discharges have been used for many years to produce 

plasma and ions for a large number of applications [1, 2].  Under typical 

operating conditions, hollow cathode plasma produces strongly ionized 

plasma with typical electron number densities of 1013 to 1015 cm-3 and electron 

temperatures of 1 to 2 eV [3].  As a plasma source, the hollow cathode has 

provided a valuable tool for research in atomic and molecular physic [4-6]. 

This device was used as a high current density ion source to heat plasmas in 

controlled thermonuclear reaction experiment. Moreover, the hollow cathode 

has been widely used as electron emitters in advanced ion thrusters, where 

they exhibit longer life time and greater reliability than oxide-coated or liquid 

metal cathodes [7]. Hollow cathode plasma provides high degrees of 

ionization, high electron density, and low contamination by cathode material. 

Despite their broad utility, the physical processes inside hollow 

cathodes are still poorly understood. The inherently complex interaction 

between the plasma and the cavity walls does not lend itself to empirical 

modelling, and microscopic data on the plasma properties are sparse.  By this 

point, the new model of hollow cathode plasma is developed in the present 

study.  The hollow cathode plasma has developed by using metal hollow tube 

and placed inside the chamber. The glow discharge will be seen inside the 

hollow tube during plasma generation by this configuration. Theoretical and 

simulation was developed to describe and understand the new model of 

hollow cathode plasma. 

  



 44 

3.2 ELECTRO-MAGNETIC ANALYSIS 

3.2. 1 Theoretical of hollow cathode plasma 

  The present theoretical study is intended to identify and describe the 

major physical laws governing hollow cathode plasma. The figure 3.1 exhibits 

the schematic model of hollow cathode plasma in the present study. The gas 

pressure was introduced inside the chamber and flowing inside the metal 

hollow tube. The different dimension from metal hollow tube and chamber 

establish the pressure gradient, especially in the metal hollow tube. The high 

pressure flows inside the metal hollow tube. The RF-generator has applied 

and effect in electrons mobility inside the chamber. The electrons are 

accelerated by an electric field generated by the RF-generator, acquire kinetic 

energy, and collide with atom and molecule.  At the same time, direct DC-bias 

has applied in the metal hollow tube. As a result, electric fields have also 

generated in the metal hollow tube inside the chamber. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 The schematic of hollow cathode plasma 
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  Due to DC-bias voltage has higher than RF-voltage; the high electric 

fields are generated in the metal hollow tube area. The high percentage of 

ionization process localize in the hollow tube area. Theoretically, the electron 

in the metal tube is described by the Richardson-Dushman equation: 

   J = A T2 e-eФ/kT,                                      (3.2-1) 

Where A is a constant with a value of 120 A/cm2K2, T is the temperature in 

Kelvin, e is the charge, k is Boltzmann’s constant, and Ф is the work function. 

The temperature correction for the work function is describe by the below 

equation; 

   Ф=Ф0 + α T, (3.2-2) 

Where Ф0 is the classically reported work function and α is an experimentally 

measured constant. This dependence can be inserted into Eq. (3.2-1) to give 

   J = A e-eФ/kT T2 e-eФ0
/kT = D T2 e-eФ0

 /kT, (3.2-3) 

Where, D is a material-specific modification to the Richardson-Dushman 

equation.  

In the presence of strong electric fields at the surface of the cathode, the 

potential barrier that must be overcome by the electron in the material’s 

conduction band is reduced, which result effectively in a reduced work 

function. This effect was first analyzed by Schottky, and the effect of the 

surface electric field on the emission current density was written by 

   J = D T2 exp �–𝑒𝑒Ф𝑜𝑜
𝑘𝑘𝑘𝑘

�exp [ � 𝑒𝑒
𝑘𝑘𝑘𝑘
�� 𝑒𝑒𝑒𝑒

4𝜋𝜋𝜀𝜀𝑜𝑜
 ], (3.2-4) 

Where, E is the electric field at the cathode surface. This equation becomes 

significant inside hollow cathode where the plasma density is very high and 

the electric field in the sheath become significant. 
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  High electric field in the metal tube area makes the electrons are 

difficult to leave the hollow tube. The free electrons are rappelled from each 

side of the hollow tube wall and stay in the centre of the hollow tube. The 

pressure provides gas molecule inside the hollow cathode. In this point, free 

electrons inside the hollow tube are ready to make ionization process. As a 

result, ion and secondary electron are generated inside the hollow cathode. 

The ionization is occurred many times and secondary electron support for 

ionization process. As a result, localize ionization process are produced by 

using hollow cathode and provide high plasma densities inside the hollow 

tube.   

3.2. 2 Simulation of hollow cathode plasma 

 The simulation model was build to study electric field distribution in the 

hollow cathode plasma system.  By using J-MAG software, the simple model 

of hollow cathode plasma was build to study the distribution of electric field in 

the hollow cathode plasma. First, the model was build without hollow cathode 

plasma. Second, the hollow cathode plasma was build inside the first model. 

The comparison from both model were studied to get the information about 

the distribution of electric field inside the hollow cathode plasma. 

  The plasma modelling has described in the Figure 3.2 without using 

hollow cathode device. The figure 3.2 represents the electric field distribution 

inside the chamber during plasma generation.  Figure 3.2 a) exhibits the RF-

electrode in 250 V and DC-bias (-) 100 V. The result indicates the strong 

electric fields are concentrated in the RF-electrode area. In other hand, the 

DC-bias plate has weak electric field in this step. The short distance between 

the RF-electrode and DC-bias produce strong electric field due to high voltage 
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differences. As a result, the electric field distribution can be seen as green 

colour in this region. In the figure 3.2 b), the DC-bias has higher than RF-

electrode. In this case the DC bias was (-600) V and RF-voltage 250 V. The 

electric field distribution has changed and toward to DC-bias area. The strong 

concentrations of electric field stay in the DC-bias area. The electric field 

distribution between RF-electrode and DC-bias show the same trend with 

figure a) but has lower electric value.   

 

Figure 3.2 The electric field distribution in the plasma system without 

hollow cathode by using a) high RF voltage and low DC bias voltage, b) 

low RF voltage and high DC-bias voltage  

 The hollow cathode plasma model was built as depicted in the Figure 

3.3. In this model, the hollow cathode was built in the cylindrical shape and 

was placed between RF-electrode and DC-bias plate. The RF-electrode was 

set in 250 V and DC bias was – (400) V. The electric field distribution toward 

to DC-bias due to high value of DC-bias compare with RF-electrode. The 

location between electrode and DC-bias show the same trend with the 
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previous model. The hollow cathode produces the strong electric field 

distribution as mention with yellow colour. 

 

Figure 3.3 The electric field distribution in the hollow cathode plasma 

The hollow cathode plasma model was placed in the DC-bias plate. In 

the same time the high voltage was applied in the DC-bias plate. By this 

condition, strong electric field distribute to DC-bias plate area. The hollow 

cathode has also affected by the strong electric field. The short distance 

between hollow tube and DC-bias plate produce high electric field.  The 

electric field distribution covers the hollow cathode area by this effect.  These 

modelling results support the experiment process and prove that hollow 

cathode has strong electric field and produce high plasma density. 

3.3 PLASMA ANALYSIS 

Plasma modelling has developed to understand plasma processing in 

theoretically. 1-dimension plasma model has build in the present study as 

depicted in the figure 3.4 by using COMSOL software. The plasma chamber 
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was modelled with the square shape with dimension 5 cm of the length. The 

thickness of cathode model was 0.2 cm and was placed inside the chamber. 

In the modelling process, argon gas was utilized and introducing inside the 

chamber. The chamber was grounded and the cathode was given negative 

voltage from – 350V to -450 V. The plasma parameter has measured in the z-

axis from the cathode and the upper side of chamber. 

    

 

 

 

 

 

 

Figure 3.4 The schematic of 1 dimension plasma model 

Plasma has generated in the chamber by applying DC-bias voltage in 

the cathode. The high electric field occur in the chamber and ionizing the 

neutral gas. The positive ion and electron are resulted from this process. 

Positive ions accelerate towards the cathode and electrons are repelled from 

cathode due to Coulomb Law. The ionization process produces more ions and 

electrons. The secondary electrons with sufficient energy have a role in new 

ionization process. The secondary ions move towards to the cathode and to 

sustaining the discharge.  The electron density and mean electron energy are 

computed by using drift-diffusion equation. Convection of electron due to fluid 

motion is neglected. The equation for the number of electron density as 

depicted bellow [8] 

d=5 cm 

r=0.2 cm 

4.8 cm 

Cathode 
Ground 

Simulated measurement direction (1D)  
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𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑛𝑛𝑒𝑒) + ∇. [−(𝜇𝜇𝑒𝑒 .𝑬𝑬)𝑛𝑛𝑒𝑒 − 𝑫𝑫𝑒𝑒 .∇𝑛𝑛𝑒𝑒] = 𝑅𝑅𝑒𝑒  (1) 

Where 𝑛𝑛𝑒𝑒  is electron density (m-3), 𝜇𝜇𝑒𝑒  denotes the electron mobility 

which is either a scalar or tensor (m2/(V.s)), 𝑬𝑬 is the electric field (V/m), 𝑫𝑫𝑒𝑒  

denotes the electron diffusivity which is either a scalar or tensor, and 𝑅𝑅𝑒𝑒  is the 

electron rate expression (1/m3.s). The migration of the electrons due to the 

electric field and diffusion of electrons from regions of high electron density to 

low electron density are represents in the second term on left side of equation 

2 and the electron density rate are represent in the first term on left side of 

equation 1.The equation for electron energy density is: 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑛𝑛𝜀𝜀) + ∇. [−(𝜇𝜇𝜀𝜀 .𝑬𝑬)𝑛𝑛𝜀𝜀 − 𝑫𝑫𝜀𝜀 .∇𝑛𝑛𝜀𝜀] + 𝑬𝑬. [−(𝜇𝜇𝑒𝑒 .𝑬𝑬)𝑛𝑛𝑒𝑒 − 𝑫𝑫𝑒𝑒 .∇𝑛𝑛𝑒𝑒] = 𝑅𝑅𝜀𝜀  (2) 

Where 𝑛𝑛𝜀𝜀  is electron energy density (V.m-3), 𝜇𝜇𝜀𝜀  denotes the electron 

energy mobility (m2/(V.s)), 𝑬𝑬 is the electric field (V/m), 𝑫𝑫𝜀𝜀  denotes the electron 

energy diffusivity (m2/s, and 𝑅𝑅𝑒𝑒  is the energy loss/gain due to inelastic 

collisions (V/m3.s). The migration of the electrons due to the electric field and 

diffusion of electrons from regions of high electron density to low electron 

density are represents in the second term on left side of equation 2 and the 

electron density rate are represent in the first term on left side of equation 1. 

This equation for electron energy density is solved in conjunction with 

equation 2. Remember that subscribe 𝜀𝜀  is refers to electron energy. The 

heating of the electrons due to an external electric field are represents on the 

left side equation third term. For a Maxwellian electrons energy distribution 

function, the following relationships hold:  

𝑫𝑫𝑒𝑒 = 𝜇𝜇𝑒𝑒𝑇𝑇𝑒𝑒 ,𝜇𝜇𝜀𝜀 = �5
3
� 𝜇𝜇𝑒𝑒 ,𝑫𝑫𝜀𝜀 = 𝜇𝜇𝜀𝜀𝑇𝑇𝑒𝑒  (3) 
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Here Te is electron temperature correlates with electron energy. The electron 

temperature correspondent with mean electron energy with equation: 

𝜀𝜀̅ = 𝑛𝑛𝜀𝜀
𝑛𝑛𝑒𝑒

, and  (4) 

 𝑇𝑇𝑒𝑒 = �2
3
� 𝜀𝜀̅  

3.4 DISCUSSION 

The result has achieved by setting the gas temperature at 400K, DC-

bias -400V, and gas pressure 70 Pa. The plasma parameters have measured 

in the area between cathode and top of chamber. The plasma parameter 

distribution from this modelling is depicted in the figure 3.5. 

 

 

 

 

 

 

 

 

 

Figure 3.5 The electron and ion density distribution at t = 0.1s 

The modelling result indicates the ion and electron density have the 

same quantity in the chamber. The electron and ion density distribute from the 

cathode toward to the wall. The highest values of ion and electron density are 

resulted in the range 1 cm and near the cathode area. It is caused by high 

ionization process occurs in the cathode area. High supply of DC-bias voltage 

produces high quantity of electron for ionization, as e result much more 
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secondary electrons are produced in this area. The secondary electrons with 

sufficient energy collide with neutral atoms and enhance the ionization result.  

Both of electron and ion density have high value in the cathode area. In the 

range 2 to 5 cm show the decreasing trend from ion and electron density. It is 

caused by the electron and ions are repelled towards to the wall. The highest 

value of plasma density reach to 2.6 x 1018 m-3 and the lowest value reach to 

1.36 x 1015 m-3. The quantity of electron and ion density in this modelling 

relative have the same value and prove that plasma is quasi-neutral (ne=ni). 

 

 

 

 

 

 

 

 

 

Figure 3.6 The electron temperature distribution at t=0.1s 

The electron temperature distribution is depicted in the figure 3.6. The 

figure indicates the high electrons temperature occurs in the cathode area in 

the range 1 cm. It is caused by high different potential from cathode and the 

wall accelerates electrons. The electrons travel to the wall with high speed 

and as a result high electron temperature occur in this distance. The 

decreasing of electron temperature due to the electrons collides with the 
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argon gas in the chamber. The electron lost their energy due to the collision. It 

is expressed by low electron temperature in the distance more than 2 cm. 

The pressure has varied in the range 30 to 150 Pa. The effect in the 

electron density has depicted in the figure 3.7.  

 

 

 

 

 

 

 

 

 

Figure 3.7 The effect of pressure in the electron density 

The pressure has a significant effect in the electron density distribution. 

The figure 3.7 indicates the electron density increase by increasing the 

pressure. In the low pressure a few gas are introduced in the chamber. The 

electrons ionize the neutral gas and as a result ion and secondary electron 

are produced after ionization. By increasing the gas pressure, the quantities of 

neutral gas are increase inside the chamber. The collisions for ionization 

process are increased inside the chamber. As a result, high ion and electron 

density are produced in the high pressure.  

 The variation of DC-bias has also applied in the present study. The 

DC-bias voltage has varied in the range – 200 V to – 600 V. The variation 

result has depicted in the figure 3.8.  
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Figure 3.8 The effect of DC-bias voltage in the ion density 

The DC-bias voltage has a role in supply the energy to the electrons for 

ionization processing. In the low DC-bias voltage, electrons get a low energy 

supply to make collision with neutral gas. By increasing the DC-bias, high 

supply energy is gotten to the electrons. As a result, electrons have capability 

collide with neutral gas more than one time. In other hand, the secondary 

electrons still have high energy to make the next collision with neutral atoms. 

The percentage of ionization process enhances many time and result in high 

ions density. The distribution result indicates the high concentration of ion 

density in the area bellow 1.8 cm. It is caused by this area are near with 

cathode and the cathode supply DC-bias voltage. The electrons are supplied 

with high energy and the ionization process occurs many times in this region. 

In the area far from cathode, the electrons energy are lower than near the 

cathode and reduce the ionization process. As a result, the ion densities in 
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this area become smaller than near cathode. The same trend of the ion 

distribution has done by Aflori et al [9], the ions density increase with 

increasing the power. It is means, power and DC-bias voltage supply energy 

to electron to enhance the ionization process inside the chamber.  

3.5 SUMMARY 

The theoretical and modelling of hollow cathode plasma system have 

done in the present study. The hollow cathode plasma produces high electron 

and ion density inside hollow cathode. It is caused by high probability of 

ionization process are taken place inside the hollow cathode plasma. High 

probabilities of ionizations are affected by high electric field in the hollow 

cathode plasma system. The high electric field cover the hollow tube and the 

free electrons inside the hollow tube are difficult to leave the hollow tube. The 

free electrons are repelled from each side due to the same charge and as a 

result free electrons oscillate and collide with neutral gas. The result from this 

collision is increase the ionization and produce high ion density inside the 

hollow tube. The electric field distribution modelling exhibit by using hollow 

cathode produce strong electric field in the hollow tube area and also from the 

theoretical explain the electrons in the metal tube are affected by temperature 

and electric field in the system. 

The plasma modelling has build in the one dimension by using Comsol 

software. The voltage and pressure variation have done in the present study. 

The pressure has significant effect in the plasma density. By increasing 

pressure, the population of neutral gas are increase inside the chamber. As a 

result ionization process occurs many times. High ion and electron density are 

resulted from this process. The DC-bias voltage has the same effect to the ion 
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and electron density inside the chamber. Low DC-bias voltage supplies a little 

energy to electron ionizing the neutral gas. As a result, low electron and ion 

density are produced in this condition. Conversely, high DC-bias voltage 

makes electrons have more energy to ionize the neutral gas. The collision 

occurs in many times due to electron and secondary electrons have sufficient 

energy to make ionization process. As a result, high ion and electron density 

are produced in this condition.  
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4. HIGH DENSIFICATION FOR ETCHING AND ASHING  

4.1 INTRODUCTION  

  Micro-texturing and micro-patterning has applied in many sector, such 

as electronic, industrial and manufacturing. The present electronic device has 

utilized micro-texture technology, especially in the sensor [1]. There are many 

ways to build micro-texture and micro pattern; e.g. by using chemical solution, 

lithography, laser, or dry process [2]. In the dry process, plasma etching is 

one kind of effective technique to build micro-texturing and micro-patterning 

on the specimen.  Reactive ion etching is the key technology to remove 

coating material from the specimen [3]. DLC (Diamond like carbon) and CVD 

diamond coating are kind of coating material used in fabrication technology [4].  

     In the dry etching and ashing process, a plasma density is an 

important factor for influence the etching and ashing result. The low plasma 

density gives weak bombardment during the etching and ashing process. 

Otherwise, high plasma density gives strong bombardment in the coating 

material, even for high coating material. Hollow cathode plasma is purposed 

to generate high plasma density and strong bombardment for hard coating 

material [5]. High concentrations of plasma density are effective to remove 

hard coating material. The characterization of hollow cathode plasma is 

required in this study to achieve the optimization condition and controlling 

during plasma etching and ashing process. Langmuir probe and Optical 

emission spectroscopy have utilized to make quantitative plasma diagnosis in 

this study [6]. Furthermore, quantitative plasma diagnosis is accompanied by 

theoretical understanding of hollow cathode plasma in this characterization.      
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4.2 QUANTITAVIE PLASMA DIAGNOSIS 

4.2. 1 Quantitative plasma diagnosis in the hollow cathode plasma by 

using Langmuir probe 

  Langmuir probe and Optical emission spectroscopy have utilized to 

make quantitative plasma diagnosis in the hollow cathode plasma systems. 

Ion density, electron density, electron temperature have measured by using 

Langmuir probe. Atomic peak, molecule peak, radical and activated molecule 

peaks have measured by using Optical emission spectroscopy. Commonly, 

plasma density has a range from 1015 – 1016 m-3 from each plasma system [7, 

-9]. Low concentration of plasma density has difficulty for an application, such 

as difficult to remove hard coating material. Hollow cathode plasma system 

has employed to solve this problem by increasing plasma density. 

Theoretically reason has proven hollow cathode plasma produce high 

concentration of ion and electron density as mention before [10].  

  The quantitative plasma diagnosis in the hollow cathode plasma has 

done by varying RF-voltage, DC-bias, and pressure respectively. First, Ion 

density and electron density have varied with changing of RF-voltage value, 

while pressure and DC-bias are fixed in 70 Pa and -600V, respectively. The 

results are depicted in the figure 4.1.  
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Figure 4.1 Electron (ne) and ion density (ni) from RF-voltage variation of hollow 

cathode plasma   

The RF-voltage has varied from 160 V to 250 V in this plasma system. In the 

low value of RF-voltage (160 V), the electron density reach to 1.2 x 1017 m-3 

and ion density reach to 2 x 1016 m-3. In the maximum value of RF-voltage 

(250V), the electron density reaches to 7.37 x 1015 m-3 and ion density 1.38 x 

1018 m-3. By increasing the RF-voltage, the ion density increases while the 

electron density decreases. This trade-off indicates that high ionization 

process takes place inside the hollow cathode plasma.  

  In second, the quantitative plasma diagnosis has done by varying 

pressure while DC-bias and RF-voltage were fixed in -450 V and 150 V, 

respectively. The pressure was varied from 60 Pa to 110 Pa in this plasma 

system. The electron and ion density from this measurement were depicted in 

the figure 4.2. 
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Figure 4.2 Electron (ne) and ion density (ni) from pressure variation of hollow 

cathode plasma 

In low pressure (65 Pa) electron density reach to 1.0 x 1016 m-3 and ion 

density reach to 7 x 1017 m-3. Otherwise, in the high pressure (105Pa) the 

electron density increase and reach to 7.5 x 1016 m-3 and ion density decrease 

to 1.5 x 1017 m-3. This trend indicates ion density decrease by increasing the 

pressure and accompany by increasing of electron density. The pressure has 

role in control population inside the hollow cathode plasma. 

  In third, DC-bias was varied from – 350 V to -650 V. Pressure and RF 

were fixed at 75 Pa and 250 V, respectively. As shown in figure 4.3, both 

electron and ion density increase with increasing the DC-bias. At the lower 

DC-bias, ne = 8.67 x 1014 m-3 and ni = 8.09 x 1016 m-3. By increasing the DC-

bias, both ne and ni increase up to 1.02 x 1017 m-3 and 1.24 x 1018 m-3, 
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respectively. This implies that DC-bias enhances the ionization process in the 

hollow cathode plasma.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Electron (ne) and ion density (ni) from DC-bias variation of hollow 

cathode plasma   

4. 2. 2 Spectrum analyses in the hollow cathode plasma by using optical 

emission spectroscopy (OES) 

  Optical emission spectroscopy has utilized to describe emission light 

spectrum of hollow cathode oxygen plasma. The hollow cathode oxygen 

plasma spectrum was shown in the figure 4.4. The wavelength of hollow 

cathode oxygen plasma has measured from 300 to 900 nm. The spectrums 

consist of oxygen atomic peaks, molecule peaks, and activated molecule 

peaks. The plasma parameter was fixed in pressure 60 Pa, DC bias -450 V, 

and RF-voltage 150V, respectively.   
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Figure 4.4 Emission light of hollow cathode oxygen plasma spectrum 

Two strong peaks were observed at 776.34 nm and 843.778 nm. The former 

was identified as an atomic oxygen (OI) and the latter corresponds to the 

oxygen atom transition O (3p5P  3s5S) and O (3p3P  3s3S) respectively. 

Other peaks in a range from 400 nm to 749 nm have weak intensities. That is, 

singly ionized oxygen (OII) at 433.988 nm, atomic oxygen (OI) at 615.164 nm 

and 635.23 nm, molecular species (𝑂𝑂2
∗) at 524.124 nm and (𝑂𝑂2

+) at 557.775 

nm are never dominant in the hollow cathode plasma. However, it has higher 

intensities for almost all species than the conventional oxygen plasma. For an 

example, the atomic oxygen peak (OI) at 777nm was reported to have peak 

intensity of 16000 counts. In this hollow cathode plasma, atomic oxygen peak 

at 776.34 nm has peak intensity by 20000. That is, hollow cathode oxygen 

plasma has more activated species than conventional oxygen plasma.   
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4. 2. 3 Comparison electron and ion density in the hollow cathode 

plasma and without hollow cathode plasma by using Langmuir 

probe 

  Langmuir probe has utilized to measure plasma density inside hollow 

cathode plasma and without hollow cathode plasma. The variation of pressure 

was chosen in this measurement due to pressure has contribute to determine 

population inside the chamber. Pressure was varied from 65 to 105 Pa while 

DC-bias and RF-voltage were fixed in -450 V and 150 V, respectively. First, 

langmuir probe has utilized to measure electron and ion density in the plasma 

system without using hollow cathode. The measurement result exhibit in the 

figure 4.5. 

 

Figure 4.5 Electron (ne) and ion density (ni) with pressure variation in the 

plasma system 

The measurement result exhibit in the low pressure ion density has high value 

and reaches to 1 x 1017 m-3. In the same pressure, electron density show low 
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value and reach to 1 x 1015 m-3. By increasing the pressure, ion densities are 

decrease and reach to 3 x 1016 m-3. However, electron densities are increase 

and reach to 3.5 x 1016 m-3. In the low pressure, the percentage of ionization 

is increase due to the collision between electron and oxygen molecule. 

However, in the high pressure the percentage of ionization are decrease due 

to electron collide each other inside the chamber. 

  In second, hollow cathode has utilized to measure electron and ion 

density with pressure variation. The plasma system was fixed in the same 

condition with the previous measurement. The measurement result was 

depicted in the figure 4.6. 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Electron (ne) and ion density (ni) with pressure variation in the 

hollow cathode plasma system 

The figure indicates ion density has high value in the low pressure, but at the 

same time was accompanied by low value of electron density. In the high 

pressure, much more electron stays inside hollow cathode and gives effect in 
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the low percentage of ionization process. The high value of electron density 

was accompanied by low value of ion density. Both of the measurement 

results have compared to get the differences from each system as depicted in 

the figure 4.7. 

 

Figure 4.7 Comparison on the variation of electron (ne) and ion density (ni) with 

the pressure variation in the plasma a) without hollow cathode plasma and b) 

with hollow cathode plasma 

  The figure 4.8 represents the same trend from without and with using 

hollow cathode plasma. Both of the systems produce high ion density in the 

low pressure. It is means low pressure is effective to make plasma processing 

and application. The differences from two systems are in the value from ion 

and electron density. In the low pressure without using hollow cathode, the ion 

density reaches to 1 x 1017 m-3. However, in the hollow cathode plasma 

system reach to 7 x 1017 m-3. It is mean by using hollow cathode plasma; the 

ion density is seven times higher than without using hollow cathode. It is 

caused by in the hollow cathode plasma system provide electric field barrier 

which make electron difficult to leave the hollow tube. The ionization has 
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taken placed and concentrated inside the hollow tube. The low pressures 

provide a few electrons and a few gas molecules inside the hollow tube. Due 

to electric field in the hollow tube the percentage of ionization is increase and 

the electron difficult to leave the hollow tube. 

4. 2. 4 Comparison spectrums in the hollow cathode plasma and without 

hollow cathode plasma by using optical emission spectroscopy 

(OES) 

 The optical emission spectroscopy has utilized to measure plasma 

spectrum from hollow cathode and without hollow cathode plasma. The 

plasma parameters were fixed with same condition with the previous 

measurement experiment.  Figure 4.8 compares the emissive light spectra 

from plasma with and without the hollow cathode. 

 

Figure 4.8 The optical emission spectroscopy comparison between a) without 

hollow cathode plasma, b) by using hollow cathode plasma 
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The oxygen ion { O+, O2+} or { OII, OIII, OIV} and activated oxygen molecules 

𝑂𝑂2
+  are seen in the both spectrum. Two strong peaks have identified with 

different intensity value from both systems. The peak intensity OI at 776.34 

nm without the hollow cathode is only 2.5 x 103 counts; while it reaches to 

around 2 x 104 counts with use of hollow cathode. The high intensity indicates 

the oxygen atom is a main species in the generated oxygen plasma and its 

population is enhanced by using hollow cathode.  

4.3 DISCUSSION 

  Hollow cathode plasma is a new method in the plasma system to 

generate high concentration of plasma density in the certain area. Hollow 

cathode plasma utilizes a hollow tube and placed inside the chamber. Plasma 

has generated inside the hollow tube. High concentration plasma density has 

concentrated inside the hollow tube. The quantitative plasma diagnosis has 

done by using Langmuir probe and Optical emission spectroscopy to measure 

plasma density inside the hollow tube. The result indicates by using hollow 

cathode system, plasma density reach to 1017 to 1018 m-3. The plasma density 

value from this system is higher compare with the other system.  

 Theoretically, gas was introduced inside the chamber. The different 

pressure has occurred inside the chamber due to the hollow tube has different 

diameter in dimension. By this effect, high pressure flow inside the hollow 

tube. RF and DC generation provide electric field barrier in the hollow tube 

area. The electrons are emitted from the dipole electrode and enter to hollow 

cathode. The electrons collide with the gas molecule and ionization process 

has taken placed inside the hollow tube. The confinements of electric field in 

the hollow cathode area make ion and electron difficult to leave hollow 
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cathode. The DC bias voltage value has a role in determine electric field force. 

This condition make electron difficult to leave the hollow tube and freely travel 

inside the hollow cathode area. In the position inside the inlet of the hollow 

cathode, the percentage of ionization is increased due to free electron ionize 

the gas molecule flow inside the hollow tube. The ion density concentrates in 

the central and near outlet of the hollow cathode.   

 

 

 

 

 

 

 

 

 

 

Figure 4.9 The glow discharge comparison by using a) hollow cathode plasma, 

b) without hollow cathode plasma 

  The figure 4.9 shows the different glow discharge from hollow cathode 

plasma and without hollow cathode plasma with the same condition. The 

strong bright light has shown in the plasma system by using hollow cathode 

and limited in the rectangular area. However, in the condition without hollow 

cathode the glow discharge show in all area of the chamber. Direct apply of 

DC bias to the hollow tube generate electric field barrier. The electrons 

movement are limited only inside the hollow tube.  By this condition, the 

percentage of ionization process increase and as a result high ion density 
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produce inside the hollow tube. The strong bright light represents high 

movement of electron inside the hollow tube for ionization process. In other 

hand, large size area of the chamber make electron freely to travel 

everywhere. The ionisation process occurs almost in all area of the chamber. 

There is no confinement area to limit the movement of electron. As a result 

low ion and electron density compare with the hollow cathode system.  

4.1 SUMMARY 

Hollow cathode oxygen plasma has developed in the present study. 

The characterization of hollow cathode plasma has done by varying pressure, 

RF-voltage, and DC-bias voltage respectively. The optical emission 

spectroscopy (OES) and Langmuir probe have employed to measure plasma 

density and spectrum of hollow cathode plasma. The only oxygen gas without 

has utilized to generate plasma. The characterization result has compared 

with the measurement result in the plasma without using hollow cathode. 

The RF voltage variation in the hollow cathode plasma has effect in the 

ion and electron density. By increasing RF-voltage, the ion density is 

increased and decreasing of electron density. RF-voltage has role in supply 

energy to the electron to make ionization process. High RF-voltage supplies 

high energy to electron for ionization process. As a result, increase the ion 

density inside the hollow tube. Pressure has also varied in the present study. 

The pressure has a role in determine the population inside the chamber. Low 

pressure supply a few gas inside the chamber, but increase the ionization 

process. In the low pressure, a few gases enhance the percentage of 

ionization process. The effective collisions occur in the low pressure and as a 

result increasing the ion density. However, in the high pressure supply much 
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more gas in the tube. The electron collide each other and decreasing the 

percentage of ionization. As a result, high electron density accompany with 

low ion density in this condition. DC-bias voltage variation has a result in 

increase ion and electron density. High DC-bias supplies high energy to make 

ionization process. The electrons have sufficient energy to make collision to 

the neutral gas many times and the secondary electrons still have high energy 

to make simultaneous collision for ionization process. The optical emission 

spectroscopy provides high intensity of oxygen plasma by using hollow 

cathode. High intensity of oxygen atomic peaks indicates high density of 

oxygen plasma inside the hollow tube. High plasma density is effective for 

bombardment to the sample surface. 

The hollow cathode plasma characterization has compared with the 

plasma characterization without using hollow tube. The comparison result 

indicates hollow cathode plasma systems provide high ion and electron 

density in the order 1017 to 1018 m-3. In the plasma system without hollow 

cathode provides ion and electron density in the order 1016 to 1017 m-3. In the 

pressure variation, hollow cathode system has ion density 7 times higher 

compare with without using hollow cathode. The optical emission 

spectroscopy comparison result indicates hollow cathode plasma produce 

high intensity almost in all peaks compare with without using hollow cathode. 

High intensity provides strong bombardment during plasma processing. The 

glow discharges of hollow cathode and without hollow cathode provide 

different strong brightness of discharge. Hollow cathode plasma has strong 

and bright discharge in the hollow tube area and without hollow cathode the 

glow discharge are spread in the chamber area.  
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5. PLASMA ETCHING OF DIAMOND COATING  

5.1 INTRODUCTION 

Micro-electromechanical system (MEMS) has a characteristic length of 

less than 1 mm but more than 100nm; it is composed of electrical and 

mechanical components. Nano-electromechanical system (NEMS) refers to 

nanoscopic devices that have characteristic length of less than 100 nm with 

electrical and mechanical components [1]. MEMS/NEMS have been utilized in 

variety of engineering areas; e.g. biomedical, environmental, transportation, 

manufacturing, robotic, and computing system [2]. Basically, MEMS has been 

used for micro electrode, pure sensor, or lab-on-chip. Most of MEMS 

fabrication techniques are mainly based on the silicon (Si) because of the 

available surface machining technology [3]. However, silicon has relatively 

poor mechanical properties; e.g. low Young’s modulus of 130 GPa and low 

tribological properties.  Diamond coating by CVD (Chemical Vapour 

Deposition) has grown as a next generation to replace silicon since the 

diamond has unique properties such as high hardness, low friction coefficient 

and available to work in high temperature [4-8]. 

A promising sensor and micro device require for fine micro-texturing on 

the diamond coating. Micro-EDM, laser, wet-etching, and lithography have 

been utilized to make micro-texturing onto the diamond films; in each method, 

its disadvantage more than its advantage [9-10]. The RF-DC oxygen plasma 

etching system has developed for micro-texturing onto diamond coating 

material [11]. The hollow cathode has placed inside the chamber of RF-DC 

oxygen plasma etching to generate high plasma density. The CVD diamond 

coated WC (Co) with metal masks was prepared to make micro-patterning by 
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using RF-DC oxygen plasma etching. The hollow cathode oxygen plasma 

etching has high etching rate 10 µm/ H for diamond films [12]. With this 

advantage, hollow cathode oxygen plasma etching is expected to make fine 

and fast rate etching into CVD diamond coating. Optical microscopy, SEM, 

surface profilometer and Raman spectroscopy have utilized to evaluate the 

surface profile and micro-texturing of CVD diamond coating before and after 

etching process. 

5.2 OPTICAL MICROSCOPY ANALYSIS 

The optical microscopy was utilized to measure surface profile from CVD 

diamond coated specimen after plasma etching. The magnification of the 

microscope was set to get the clear image in the computer display. Figure 5.1 

shows the surface profile of CVD diamond coated WC (Co) specimen after 

plasma etching process.  

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Surface profile of CVD diamond coated WC (Co) specimen 

after etching process 
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The magnification 1x from the optical microscopy was chosen to get the full 

image of the surface after etching process. The figure 5.1 exhibits the view 

from the top side of the specimen. The result indicates micro-texturing has 

imprinted in the all surface of diamond coated specimen. From this side, the 

line pattern has imprinted successfully in the centre and left side of the 

sample and indicates by clear image result. In the down side of the sample, 

the black view represent, there was a diamond in the un-mask area. It caused 

by the metal mask was not perfectly adhering in the specimen surface. This 

condition makes the ion bombardment direction not perpendicular to the 

diamond coating. The ion bombardment attack to the metal mask an repeal to 

another direction. As a result a little diamond coating stays in the un-mask 

area.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Surface profile of CVD diamond coated WC (Co) specimen 

after etching process in the centre area 
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The magnification of the optical microscope was changed to 5 x and 

concentrated to the centre area of the specimen. Figure 5.2 represent the 

centre area of specimen after etching process.  The clear image has showed 

from the figure 5.2. The line pattern has formed in the centre area of the 

specimen. The homogeneous plasma etching has done in the un-mask area. 

The flat surface has showed in all area of CVD diamond coated specimen. 

The un-straight pattern has formed in several line of the specimen surface. It 

caused by imperfect shape of metal mask surface. The ion bombardment 

attack in unmask area and follow the metal mask shape. The straight line 

shapes of metal mask provide straight line of micro-texturing.  

5.3 SEM ANALYSIS 

The scanning electron microscope (SEM) was utilized to check surface 

profile of CVD diamond coated specimen in detail.  Figure 5.3 represent SEM 

image from the specimen after plasma etching process.  

  

Figure 5.3 Surface profile of CVD diamond coated WC (Co) specimen 

after etching process by using SEM 
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The SEM image result indicates in clearly micro-texturing has formed in all 

CVD diamond coated specimen area.  The flat surface area has formed in the 

un-mask area. It is mean diamond coating has removed from the surface 

specimen during etching process. The line pattern has formed in several lines 

as depicted in the figure. It indicates the metal mask is effective to protect 

diamond coating from ion bombardment in the mask area. The magnification 

of SEM was improved to check micro-texture more detail in limited area as 

depicted in the figure 5.4. 

 

Figure 5.4 Micro-texturing in the CVD diamond coating after etching 

process 

The homogeneous plasma etching has formed by using hollow cathode 

plasma systems. In this figure, the differences from mask and un-mask area 

are clearly seen. The homogeneous micro-line has formed in the un-mask 

area, while the diamond coating still in the mask area. Two hour or 7200 

second was effective to make micro-texturing in the CVD diamond coating 

specimen by using hollow cathode plasma etching system.   
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5.4 SURFACE PROFILOMETER ANALYSIS 

Surface profilometer was also utilized to get 2D and 3D image on the 

CVD diamond coated specimen after etching process. Figure 5.5 exhibit 2D-

surface profile image after etching by using surface profilometer.  

 

Figure 5.5 2D surface profile images after plasma etching process 

Figure 5.5 represent surface profile of the specimen after etching process. 

The different colour represent different in depth of the surface area. The blue 

colour shows the un-mask area and all area have the same colour. Its means 

the homogenous plasma etching has successfully eliminate diamond coating 

in the surface area. The orange colour represents the mask area and from the 

both side have the same colour. It is indicated metal mask success preventing 

diamond coating area from electron bombardment during plasma etching 

process. The etching process has reached nearly 18.70 µm for two hours 

process and it is proved by the different colour from blue to orange.  
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 Figure 5.6 represents 3D-surface profile of CVD diamond coated 

specimen after plasma etching process. The figure shows clearly the 

anisotropic surface shape of the specimen after etching.  

 

Figure 5.6 3D surface profile images after plasma etching process 

The micro-line has depicted in the figure 5.6. The depth after etching reaches 

to 18.70 µm and the line width of the sample reaches 97.33 µm. The etching 

rate from this process reaches to 9.35 µm/H. Fast rate in plasma etching 

comes from plasma density bombardment inside the hollow tube. High 

electron and ion density are preserved by the electromagnetic confinement in 

the hollow tube. Then, bare diamond coating is removed from the substrate; 

while the metal mask endures against the oxygen plasma. The oxygen 

plasma only reacts with diamond coating on the un-mask region. The edge-

sharpness reveals that the anisotropic etching takes place to form a stepwise 

microgroove in corresponding to the initial line pattern in masking.   
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5. 5 RAMAN SPECTROSCOPY ANALYSES 

Raman spectroscopy has utilized to measure and check the diamond 

coating in the mask and un-mask area. The measurement result has depicted 

in the figure 5.7.  

 

Figure 5.7 Comparison of Raman spectroscopy on the mask and un-

mask area 

The Raman laser was directed to the mask and un-mask area. The mask 

areas are characterized by typical Raman spectrum with the sp3 strong peak 

at 1330 cm-1. Since its intensity reaches to almost 5500 counts, these regions 

remain to be the same as the diamond coating before etching process. The 

mask area results are mentioned with the black line. On the etched area, no 

significant peaks are detected in the range 1280-1440 cm-1. It is proves that 

the diamond coating is completely remove from the un-mask area as 

mentioned with the red line.  The comparison results have proved that hollow 

cathode plasma has effective to make micro texturing in the diamond coating. 
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5.6 DISCUSSION 

Hollow cathode plasma etching has produced high ion and electron 

density. With use of the line-patterned stainless steel mask plate, the micro-

grooves are machined into the diamond coating WC (Co) substrate.  

 

Figure 5.8 Micro-texturing in the CVD diamond coating by using a) 

optical microscope and b) SEM 

Figure 5.8 a) depicts the alignment of CVD-diamond micro-lines formed on 

the WC (CO) surface. Although the width between lines fluctuates and burrs 

are formed in part, the regular lines with thickness of 18.70 µm, corresponding 

to the original CVD diamond film thickness are formed on the WC (Co) 

surface by the present homogeneous etching. Figure 5.8 b) shows a typical 

micro groove between two diamond lines. This micro-groove width or the 

distance between two lines on the WC (Co) bottom surface is 97.33µm; the 

side surfaces of diamond line have sharp edge again the substrate after 

etching process. Assuming that the un-mask line has the width of 100µm is 

completely removed away, the etched side surface of diamond line stand on 

the WC (Co) bottom surface with the tangential gradient by tan (Ɵ) = 18.70 

µm / 1.33 µm = ((100 µm – 97.33 µm) /2) = 14.0. Since Ɵ = 870., the CVD 
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diamond micro-lines are formed as a regularly rectangular line on the WC (Co) 

substrate.  

 

 Figure 5.9 Homogeneous plasma etching in CVD diamond coating 

The anisotropic etching has obtained by using hollow cathode oxygen 

plasma as depicted in the figure 5.9. Different from the conventional plasma 

[13-15], the etching process only by O2 is driven by chemical reaction and 

physical bombardment. In the former, direct oxidation of carbon based films 

by C (in the diamond film) + O (in plasma)  CO (carbon mono-oxide) is 

responsible for etching. Hence, if this direct oxidation process were retarded 

by another chemical reaction, the etching rate could be lowered. In the letter, 

the physical bombardment effect in etching is enhanced by increasing the DC-

bias to accelerate the flux of oxygen ions onto the specimen surface. In 

particular, the confined plasma in the hollow cathode device has a capacity to 

drive the etching process. In fact, the etched micro-groove pattern has the 

same size and dimension as the original mask pattern.  

5.7 SUMMARY 

The hollow cathode plasma has employed to make anisotropic plasma 

etching in the CVD diamond coated material. WC(Co) disk in cylindrical shape 

has coated with diamond film as a substrate. The thickness of diamond 
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coating films reach to 20µm. The metal mask has employed as a mask to 

make micro-texture in the substrate material. The etching result has indicated 

micro-texture has imprinted in the substrate after process. The optical 

microscope and SEM indicate clear figure for the micro texture. The anistropic 

etching has resulted in all area of the subtarte. The etching process has done 

in 7200ks. The metal mask is effective to block and repeal the oxygen ion 

bombardment during etching process. The surface profilometer has utilized to 

check the surface profile in 3D after etching process. As a result, 

homogeneus and anisotropic have depicted as a blue color in the bottom of 

surface and 870 of the sharp edge again the surface.  The line width after 

etching process reach to 97.33µm as the same with the metal mask line width. 

Raman spectroscopy has employed to check the diamond has removed from 

the substrate. First, laser pointer has directed to the mask area in which there 

is a diamond film. Second, laser pointer has directed to the un-mask area. 

The comparison result indicates there is no diamond peak in the un-mask 

area. It is indicated the diamond films have removes homogeneously from the 

subtrates. 
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6. PLASMA ASHING OF DIAMOND COATING  

6.1 INTRODUCTION 

Plasma etching and ashing have become effective means to remove 

coating material from the substrate. The differences from etching and ashing 

are the removed area. In the plasma etching, the selective areas are removed 

from the surface. The other areas are protected by using mask or resistant 

material. But in the plasma ashing, all coating areas are removed from the 

surface [1,2]. With this advantage, plasma etching and ashing has applied in 

many sector such as industrial, technology, transportation and etc [3-6]. 

CVD-diamond coated WC (Co) cutting, drilling, and end-milling tools have 

been widely utilized for dry machining of the carbon fiber reinforced plastic 

(CFRP) or thermos-plastic (CFRTP) component an parts in the airplanes and 

automobiles [7,8]. This material is used for construction of main cabin and 

wings, a hundred of thousands holes must be machined or drilled into 

CFRP/CFRTP for each airplane in dry by using the diamond coated tools. 

Since the number of airplanes is expected to be doubled in the next eight 

years, the above tooling cost significantly increases in the total production 

cost. Event at present, the carbon fibers in CFRP/CFRTP have high strength 

and stiffness enough to make fatal damage and defect to the diamond coating 

of machining tools; the used or damaged diamond coated tools are often 

exchanged with new ones during machining and drilling process. Since the 

tools substrate is made from WC (Co), the substrate materials have to be 

recycled in many times and reused as long as possible [9-11]. 

Many studies were reported in the literature on this ashing or removal of 

diamond coatings. Chemical ashing, EDM, mechanical and chemical polishing 
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were difficult to removed diamond coating from the substrates [11-15]. The 

new system has proposed to make perfect removal of diamond coating in fast 

rate without any damage to the WC (Co) tool substrates. 

The hollow cathode plasma ashing has proposed to solve this problem. 

The hollow cathode device is developed to dense the oxygen atoms and ions 

as well as electrons. In order to make full use of these activated species in the 

plasmas, the CVD-diamond coated tools are rotated in the hollow tube during 

plasma ashing process.        

6.2 SCANNING ELECTRON MICROSCOPE (SEM) ANALYSIS 

The hollow cathode oxygen plasma ashing has utilized to remove CVD-

diamond coated material in the end milling tools under the condition listed in 

Table 1. The scanning electron microscope (SEM) has employed to measure 

end milling tool surface after ashing process. The plasma ashing result under 

the condition number one is depicted in the figure 6.1. 

Table 6.1 The plasma ashing experiment set-up 

 
RF-voltage 

(V) 

DC-bias  

(V) 

Pressure  

(Pa) 

Processing 

time (ks) 

1. 250 650 30 3.6 

2. 250 500 45 3.6 

3. 100 500 45 3.6 

 

The plasma parameter has varied to get the optimum condition on ashing 

process. The only oxygen gas with purity 99.99% has used to generate hollow 

cathode oxygen plasma ashing. Each plasma parameter has a role and 

influence in the plasma ashing result.   
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Figure 6.1 Ashed specimen by the present processing by the condition 

no 1 in the table 1. a) Outlook of ashed CVD-diamond coated tool, b) A 

top tooth of ashed tool after cleansing, and c)SEM image of tooth edge 

The hollow cathode plasma ashing has utilized in the cutting tool by using 

the condition no 1 and the result as depicted in the figure 6.1. The figure a) 

represent the CVD diamond coating has removed from the cutting tool surface. 

It is indicated by the green colour after ashing process. Before ashing process, 

the cutting tool has a black colour represent the diamond coating. The green 

colour comes from the oxidation of tungsten and cobalt on the tool surface 

during ashing process.  The figure b) represents the ashed cutting tool after 

cleansing. The ultrasonic vibration machine has used to clean cutting tool 

after ashing process. The result from this point shows no residual of CVD 

dimond coating were left event on the top toot surface. The figure c) shows 

the SEM image on the edge of cutting tools. The results show sharp tooth 
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edge and there was no damage even after ashing process. The high RF 

voltage, high DC bias and low pressure are effective to promote the physical 

bombardment in ashing process but give the risk of oxidation of tool substrate. 

 

Figure 6.2 Ashed specimen by the present processing by the condition 

no 2 in the table 1. a) Outlook of ashed CVD-diamond coated tool, b) A 

top tooth of ashed tool after cleansing, and c)SEM image of tooth edge 

The experiment condition no 2 was employed in the cutting tools and the 

ashing result as depicted in the Figure 6.2. Compare with the condition no 1, 

in this condition the DC-bias voltage value was decreased to -500 V and 

pressure was increased to 45 Pa. The figure 6.2 a) represents the cutting 

tools has different colour after ashing process compare with the condition no 1. 

In this result, the yellow and green colour becomes thinner than figure 6.1 a). 

It is indicated the oxidation in the condition no 2 becomes lower than condition 

no 1. Figure 6.2 b) shows the cleansing result by using ultrasound vibration 
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machine. The result has the same result with the condition no 1 and proves 

that no carbon dust and tints were present after cleansing.  The figure 6.2 c) 

show the SEM image of the edge and tooth surface. The outer diameter (Dm) 

of top tooth after ashing was measured and compared to the calculated one 

(Dc) by subtracting the coating thickness from the outer diameter of coated top 

tooth. If Dm is much less than Dc, the tooth edge and surface are significantly 

removed to lower the tool substrate life in recycling. Hence, D= Dc – Dm plays 

an important parameter to evaluate the microscopic damage of tool tooth. The 

experiment condition no 2 has result in D reach to 9.7µm. This value is 

prohibited to make recycling process because tolerance in reduction of tooth 

diameter by a single shot of ashing is 5µm.  

 

Figure 6.3 Ashed specimen by the present processing by the condition 

no 3 in the table 1. a) Outlook of ashed CVD-diamond coated tool, b) A 

top tooth of ashed tool after cleansing, and c)SEM image of tooth edge 
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The experiment condition was set in the condition no 3 and the result as 

depicted in the Figure 6.3. The experiment set-up was modified with the 

purposed to get the optimum condition and minimize the damage of the 

cutting tools. In this condition, the RF-voltage was reduced to 100 V and 

others parameter were keep with the same condition with the previous one. 

The figure 6.3 a) shows the surface colour after ashing is covered by thin 

grey-colored film. This colour is different compare with the previous ashing 

result. Figure 6.3 b) represent the same result with the previous result that 

there was no residual diamond coating after cleansing process. Figure 6.3 c) 

depics the microscopic image of top tooth edge. The original small holes were 

doted on the tooth surface; they were made by chemical treatment before 

diamond coating as a nucleation site of diamond films. By using this condition 

the D reach to 1.1 µm. This D value is allowed to make recycling and re 

coating of WC (Co) end milling tool. 

6.3 RAMAN SPECTROSCOPY ANALYSIS 

The Raman spectroscopy was utilized to check diamond coating in the 

CVD diamond coated end milling tool before and after plasma ashing process.  

Figure 6.4 represent Raman spectroscopy result peaks comparison from 

diamond peak before and after ashing process. The method to indentify 

diamond peak was same with plasma etching process. The Raman 

spectroscopy laser was directed to diamond coating in the cutting tool surface 

before etching. The diamond peaks was identified in the wavelength 1330 cm-

1. The same process was done for the end milling cutting tool after ashing 

process. The diamond peaks was plotted in one graph to get the differences 

before plasma ashing and after plasma ashing process. 
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Figure 6.4 Comparison of Raman spectra on the mask area before and 

after ashing process 

The black line indicates the diamond peak has identified in the cutting 

tools surface. The diamond peak has a intensity nearly 5000 a.u and detected 

in the wavelength 1330 cm-1.  The red line represents the diamond peaks has 

no intensity in the same wavelength with the black line. The comparison result 

show high intensity indicated diamond peak is stayed in the cutting tool 

surface. However, the red line indicated no diamond in the cutting tool surface. 

This result has proved diamond coating has completely removed by using 

hollow cathode oxygen plasma ashing. 

6.4 SIMULTANEOUS ASHING PROCESS 

The single coulomn of hollow cathode was effective to remove diamond 

coating in the cutting tools surface. For mass production, the simultaneous 

plasma ashing is effective to remove diamond coating in the cutting tools by 
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one process operation. The geometric design of single hollow device is 

expanded to a double-columned hollow cathode one, where each tool in the 

either hollow cathode is immerged into the oxygen plasma state. Both tools in 

the double-columned hollow are controlled to rotate with the DC-bias applied 

both to the hollows and tools. 

 

Figure 6.5 On-line observation on the plasma states which are 

independently confined in each hollow of the double-columned ashing 

systems  

Figure 6.5 depicts the snap-shot of double-columned hollow during the 

ashing process. The ion and electron densities become lower outside of the 

hollows; while the oxygen plasma are confined in each hollow to have much 

higher electron and ion densities.  During the  ashing process by using this 

double-columned hollow cathode device, two diamond-coated tools are 

immerged into the above oxygen plasma sheath and rotated in the hollows. 
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The same plasma parameter condition was set to make double column hollow 

cathode plasma ashing. But in this case time processing was set for 7200 

second. The ashing result from this measurement is depicted in the Figure 6.6. 

 

 

Figure 6.6 Tooth surface of ashed CVD-diamond coated tools by using 

double columned hollow cathode device 

The single column of hollow cathode was effective to remove diamond 

coating in the cutting tools surface. For mass production, the simultaneous 
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plasma ashing is effective to remove diamond coating in the cutting tools. 

Figure 6.6 show the optical microscopic image of ashed tool for 7.2ks. 

Although the residual diamond dusts are slightly left as dot, the whole CVD-

diamond film is removed away from the toot surface. Little residual are also 

seen even on the back surface of teeth; this demonstrate that the rotating 

tools surface should be homogeneously subjected tothe oxygen plasma flux in 

the confined plasma sheath in the hollows. Figure 6.6 b) shows the top view 

of ashed teeth. Little or nearly zero loss of teeth is detected in this ashing 

experiment. This suggests that the multi-columned hollow cathode device is 

possible for simultaneous ashing to remove the used CVD-diamond films in 

the mass of tens of tools at the same time. 

 6. 5 DISCUSSION 

The hollow cathode plasma ashing has utilized to remove CVD diamond 

coated end milling tool from the tool surface. The plasma parameter has given 

influence for the ashing result. Three cutting tools has ashed away by using 

hollow cathode plasma system and has deferent result as depicted in the 

Figure 6.7.  The ashing result indicates the oxidation has taken place in the 

cutting tools. The oxidation occurs due to the high bombardment of ion and 

electron density on the cutting tool surface.  In the hollow cathode oxygen 

plasma, the RF-voltage is the main influence factor to generate oxidation. The 

RF-voltage has a role to control plasma density population inside the hollow 

cathode. High value of RF-voltage effects in high ionization process in the 

hollow cathode plasma and as result high population plasma density inside 

the hollow tube. In the experiment set up no 1, high RF-voltages accompany 

with high DC bias. This combination produces high population plasma density 
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and high speed of plasma density bombardment. The plasma density attack 

to the cutting tools surface rapidly and as a result high oxidation was take 

place in the cutting tools after ashing process. 

 

Figure 6.7 The end milling cutting tools after ashing process 

In the experiment set up no 3, the RF-voltage was lowered to 100 V. The 

population of plasma density was decreased significantly. However, this 

condition was combined with low pressure and high DC-bias. Low pressure 

results in high plasma density and high DC-bias result in high speed of 

plasma bombardment. By this combination, the bombardment of plasma 

density was controlled during the ashing process. The bombardment was not 

damage to the cutting tools surface and produce low oxidation result. 

The SEM result has compared the surface profile before and after hollow 

cathode plasma ashing in the CVD diamond cutting tools. The comparison 

result from this measurement was depicted in the Figure 6.8. The figure 

represent the crystal structure of diamond coating and WC(Co) cutting tool 

before and after plasma ashing process. 
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Figure 6.8 The surface comparison result of cutting tools a) before 

ashing, b) after ashing process  

The figure a represents the diamond crystal has stayed in the cutting tools. 

The diamond crystal structure has a big size and uneven surface. After ashing 

process, the diamond crystals have attacked by oxygen ion bombardment. 

The crystal diamonds has removed from the cutting tool surface. The figure 

6.8 b) represent the original WC (Co) crystal surface. Compare with figure a) 

the crystal in the figure b) is smaller and far in distance. By this comparison 

result, hollow cathode oxygen plasma ashing is effective to remove hard 

coating material without damage to the original tool substrate. 

6. 6 SUMMARY 

The hollow cathode plasma system has employed to remove diamond 

coating from the substrate. Homogeneous plasma ashing and low damage to 

the end milling tools substrate have achieved by using hollow cathode plasma. 

The RF-voltage, DC-bias voltage, and pressure have varied to get the 

optimum condition for ashing process. Three condition of plasma ashing have 

utilized to remove diamond coating from the substrate. High RF-voltage, High 

DC-bias, and low pressure as set in condition one has a result in high 

oxidation after ashing process. The second condition has set with lowering the 
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DC-bias voltage. The oxidation occurs less than the first condition, but the 

surface damage reach to 9.7µm.  The third condition has set in low RF-

voltage during ashing process. The result indicates a good result; no oxidation 

is taken place after ashing process. The surface damage after ashing reaches 

to 1.1µm. By this result, the recoating of end milling tool can be done after 

ashing process. In the ashing process, RF voltage has a big role to supply 

energy for ionization and generated the ion population for ashing. The Raman 

spectroscopy has employed to check the diamond has removed from the 

surface. The graph comparison indicates the diamond peak does not appear 

after ashing process. The result prove hollow cathode plasma ashing is 

effective to remove diamond coating from the substrate. The SEM has also 

indicated the original surface profile of WC (Co) end milling after ashing 

process. The simultaneous ashing system has employed toward to industrial 

application.   
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7. DISCUSSION 

7.1 INTRODUCTION 

The present study has two fundamental aims, first is to characterize 

and develop hollow cathode plasma system. Second, the developed hollow 

cathode plasma system is applied for plasma technology sector event for 

small scale (laboratory) or big scale (manufacturing).  The hollow cathode 

plasma system is a new developed method to generate high plasma density 

inside the hollow tube. The high plasma densities are obtained by setting 

plasma system parameter, respectively. Pressure, DC-bias, RF-voltage, time, 

gas flows are kind of plasma system parameter are need to be controlled to 

obtain high plasma density.  

 Langmuir probe and optical emission spectroscopy have utilized to 

make quantitative plasma diagnosis in the hollow cathode plasma. The 

measurement result indicates the high plasma densities are obtained by using 

hollow cathode system. The high plasma density is obtained in the one 

location inside the hollow tube. The other location inlet and outlet of hollow 

cathode are needed to characterize more detail. This process has proposed 

to discover the plasma density distribution measurement inlet and outlet of the 

hollow cathode. The quantitative diagnosis result is used to determine the 

highest concentration location of plasma density.  

 The optical emission spectroscopy is effective to describe the atomic, 

molecule, activated molecule, and radical during plasma process. In the 

plasma application process, the optical emission spectroscopy is utilized to 

predict the end of ashing or etching process. The time evolution method is 

online method during plasma processing. The method is done by focusing to 
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the influence peak from this process. The influence peak is the peak from the 

plasma generation which reactive with the coating material.  

7.2 THE ROLE OF PLASMA PARAMETER IN THE HOLLOW CATHODE 

PLASMA  

The hollow cathode plasma system has succeeded to generate high 

plasma density.  The hollow cathode plasma system also effective to remove 

coating material from the substrate and has proven from plasma etching and 

ashing process. The plasma parameter has a role in influence the plasma 

density during the plasma generation. The RF-voltage has role in the 

ionization process from hollow cathode plasma. Low RF voltage value has a 

low percentage of ionization process. In this condition, electrons do not have 

sufficient energy to ionize the gas molecule inside the chamber. As a result, 

electron density is increase and ion density is decrease. However, high RF 

voltage values supply more energy to make ionization. The electrons have 

sufficient energy to ionize the gas molecule inside the chamber. The 

percentage of ionization is increase and as a result high ion density and low 

electron density. 

Pressure has a role in control population of plasma density inside the 

chamber. In the low pressure, a few gas molecules are introduced inside the 

chamber. The electron with sufficient energy collides with the gas molecule 

and makes ionization process. Much more electron collides with gas molecule 

than itself. High percentage of ionization are taken place occur in the low 

pressure. As a result, high ion density and low electron density are happen in 

the low pressure. In other hand, by increasing the gas pressure supply much 

more gas molecules inside the chamber. And also, electric field barrier in the 
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hollow cathode plasma makes electron inside hollow tube difficult to leave the 

hollow tube. In the same time, huge amount of gas molecules is introduced 

inside the hollow tube.   With this condition, the percentage of electron collide 

itself is higher than collide with gas molecule. This condition produce low 

percentage of ionization process and as a result high electron density 

accompany by low ion density 

The DC-bias has effect in enhance the ionization process in the hollow 

cathode plasma. Both of ion and electron densities increase by increasing the 

DC-bias. Since the DC-bias is directly applied to the hollow cathode, the 

confinement of free electron is significantly dependent on the DC-bias. In case 

of low DC bias, both electron and ion penetrate easily into hollow tube. Low 

electron and ion density is resulted by this condition. Increasing the DC-bias, 

both electron and ion are difficult to leave from hollow tube by strong electric 

field barrier. The the electron and ion density increase by increasing the DC-

bias. 

7.3 THE PLASMA DENSITY DISTRIBUTION INSIDE THE HOLLOW 

CATHODE PLASMA 

The characterization of plasma density in the hollow cathode plasma 

system has done by varying plasma parameter respectively. Langmuir probe 

has utilized to measured plasma density from each condition and variation.  

However, the measurement process has done in one point spot or un-

movable location. Plasma density distribution measurement from inlet to outlet 

of the hollow cathode has done by using Langmuir probe. Langmuir probe has 

controlled in stepwise motion from inlet to outlet of hollow cathode. The 

plasma density measurement result is depicted in the Figure 7.1  
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Figure 7.1 Ion and electron density distribution in the hollow cathode plasma 

from inlet to outlet 

The Langmuir probe has utilized to measure plasma density 

distribution in the hollow cathode plasma from inlet to outlet. Since the origin 

x=0 is away from the inlet of hollow by 4 cm and the length of hollow is 8 cm, 

the probe detects the variation of electron and ion density distribution in the 

inside of hollow cathode tube from x = 4 to 12 cm. At the inlet position, ni = 

1.28 x 1017 m-3 and ne = ni = 7.11 x 1016 m-3. Move to central of hollow 

cathode, ion density is increase but electron density is decrease. And in the 

outlet position, ni = 2.76 x 1018 m-3 and ne = ne = 1.6 x 1018 m-3. The 

decreasing of electron density is effected by ionization process. Most of 

electron recombined with the O+ species to form the high oxygen atom flux at 

the hot spot with ionization. Otherwise, the ion density is increase from the 
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inlet to the outlet position. It describes the ionization is enhanced in the hollow 

cathode device, especially at the hot spot, the oxygen ion density increase 

exponentially from the inlet to the outlet of the hollow. The ion density is 

decrease after outlet position. It is caused by there is no electric field barrier to 

hold ion density stay in limited area. So the ion density is free to move to all 

direction in the chamber. Compare with the inlet spot, this spot has higher ion 

and electron density. The plasma density distribution characterization 

describe inside hollow cathode plasma produce high ion density, the 

maximum ion density reaches to 3 x 1018 m-3 at the vicinity of outlet. This spot 

with high ion density is suitable to make complete ashing of CVD diamond 

coating on the tool substrate. 

7.4 TIME EVOLUTION OF SPECIES DURING PLASMA ETCHING AND 

ASHING PROCESS 

The optical emission spectroscopy (OES) is also utilized to monitor the 

reactive peaks during plasma process. The reactive peak comes from the 

reaction from plasma and the coating material. In this case, the oxygen 

plasma has reacted with the carbon in the CVD diamond coating to produce 

CO peak. The CO peak has detected in the wavelength 287.79 nm. The 

online monitoring has done by plotting the intensity of CO peaks again the 

time. Figure 7.2 represent the time evolution of the CO-peaks and O peak 

again the time. The oxygen peaks with the same wavelength has plotted in 

the same graph to make easily understanding about time evolution process. 

The red line represents the oxygen atomic peak at the wavelength 287.79 nm 

without any specimen in the chamber. The intensity of O-peak is constant by 

1145 count irrespective of time.  The black line shows the time evolution of 
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the CO peak at the same wavelength as the O peak. The black line trend 

shows different trend with the O peak. It is indicated there is some reaction in 

this wavelength during plasma etching or ashing process. 

 

Figure 7.2 The comparison from CO-peak and oxygen peaks at the wavelength 

287.79 nm  

The CO peak has high intensity in the beginning plasma processing. Its 

intensity keep to be high until 1000 s. In this condition the diamond react with 

the activated oxygen atom inside the hollow cathode to form more carbon 

monoxide.  After 1000 s, the peak intensity gradually decreases. The residual 

diamond layer becomes thinner through etching or ashing by the chemical 

reaction of C (in the diamond) and O  CO and ion bombardment. The CO 

peak reduction intensity becomes saturates nearly 7.2ks. This termination 

condition is employed to stop the etching process to protect from over etching 
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or ashing. This method is effective not only to describe the etching behaviour 

with the time but also to predict the termination of etching process.    
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8. CONCLUSION 

The following conclusions can be drawn from the present study: 

1. The hollow cathode oxygen plasma behaviour was described by varying 

RF-voltage, DC-bias, and pressure. The ion density was increased by 

increasing RF-voltage and DC-bias. Low pressure in the hollow cathode 

plasma produces high ion density. The order value of ion and electron density 

from hollow cathode plasma system is higher than the common plasma 

systems. (e.g. ne= 1017 m-3 , ni= 1018 m-3 by using hollow cathode plasma, and  

ne= 1015 m-3 , ni= 1015 m-3 by using the common plasma systems). 

 

2. The characterization of plasma density distribution inlet to outlet of hollow 

tube provides the different value from each spot. The inlet spot has a low ion 

density and high electron density. Move to outlet spot, the ion density is 

increased and accompany by decreasing of electron density. The electron 

inside hollow tube was trapped and difficult to leave the hollow tube due to the 

confinement electric field in the hollow tube. The electron attack to gas 

molecule and increase the ionization process.  

 

3. The hollow cathode plasma etching provides high etching rate and 

anisotropic etching. The average etching rate is 10 µm/ H event for diamond 

coating. The micro-texturing has succeeded to imprint in the diamond coating 

surface with the metal mask and 7200 second etching process.  
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4. Perfect ashing of the used CVD diamond coating without any damage and 

defects onto the WC (Co) substrates was completed by using hollow cathode 

device. Short leading time by 3.6 ks or 1 hour in the present ashing process is 

also attractive to tooling companies which offer suffer from long ashing time 

over 20 hours. 

 

5. The simultaneous plasma ashing was developed by using multi-columned 

of hollow cathode plasma in the one chamber. The ashing result of CVD 

diamond coating has the same characteristic with the single hollow tube. 

Completed ashing of two diamond-coated tools by the present system proves 

that a mass of used CVD-diamond end-milling tools in the order of tens 

should be simultaneously ashed away by the present method.   
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