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Abstract 

 

This dissertation is concerned with piezo electric actuators (PEA), especially 

modelling and displacement control of them. Piezo electric actuators have been widely 

used in micro and nanopositioning applications due to their fine resolution, rapid 

responses, and large actuating forces. Unfortunately, piezo electric actuators exhibit 

strong hysteresis nonlinearity that reduces the accuracy and that may lead to the 

instability of the whole system. The control of piezo electric actuators to overcome the 

hysteresis phenomenon has emerged as a hot topic in recent years. 

The main object of this thesis is the control design to overcome the hysteresis 

phenomenon so that the system can track the reference signal. To solve the problem, 

mathematical models of the hysteretic system are discussed and controllers are developed 

for micro-position tracking control of the PEAs. Tracking performance of compensated 

system is validated using experimental results. 

The hysteresis nonlinearity is described by 3 kinds of modelling methods, which are 

second order linear model, Prandlt-Ishlinskii (PI) hysteresis model, and pseudo discrete-

time Bouc-Wen model. Accuracy of the models is shown by experiments. 

Based on these models, four model-based control methods are proposed. The 

feedforward compensation, which is based on identified PI model, is introduced. Because 

the feedforward compensation technique runs on open-loop fashion, the positioning 

accuracy is low. In order to improve the performance of PEA, PI control, model 

predictive control (MPC), and adaptive model predictive control (AMPC) are discussed. 

Experimental results show that PI control and MPC have better performances than 

feedforward compensation even though they are based on linear identified model. Lastly, 

a model reference adaptive control using pseudo discrete-time Bouc-Wen model is 

proposed. This method can guarantee the closed-loop system stability. Experimental 

results show the effectiveness of proposed method. 
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Â     : A constant 



 

 

 

 ir̂̂    : Coefficients of the inverse operator 

ir̂    : Thresholds of inverse operators 

 ky
id    : Reference outputs 

pK    : Proportional gain 

iK    : Integral gain 

P    : Cost function 

 iky |ˆ    : The i
th

 step predicted output from time step k   

 iku |ˆ    : The i
th

 step predicted incremental input from time step k   

pN    : Number of predicted steps 

  and     : Weighting coefficients 

 kx     : The state vector 

A , B , C    : Known system matrices  

 ku    : Control increment  

 ,,    : Unknown hysteresis parameters 

 ke    : Tracking error 

 kux    : Input variable 
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Chapter 1: Introduction 
 

 

Piezo electric actuators (PEA) have been widely used in the fields of micro and 

nanopositioning such as atomic force microscopes [1], [2], [3], adaptive optics [4], computer 

components [5], machine tools [6], aviation [7], internal combustion engines [8], 

micromanipulators [9] due to their sub nanometer resolution, large actuating  force, and rapid 

response. However, PEA possesses a natural unavoidable hysteresis phenomenon which is 

nonsmooth nonlinearity. Because of the unknown hysteresis, the performance of PEA is 

limited especially for those cases requiring speed and accurateness [10]. If the actuators run 

in an open-loop fashion, the positioning accuracy cannot be achieved. Therefore, control of 

systems considering hysteresis nonlinearities is important and the development of control 

techniques to overcome the hysteretic effects is a challenging task. 

The goal of this thesis is to design controllers to overcome the hysteresis phenomenon so 

that the system can track the reference signal. To achieve the goal, a linear model and 

mathematical models of the hysteretic system are discussed. These models are then utilized in 

control methods to improve the performance of PEAs. Tracking performance of compensated 

system is validated using experimental results. 

 

1.1 Working Principles of Piezo Electric Actuator 

 

Pierre and Jacques Curie discovered the piezo electric effect in 1880. Pierre Curie had 

previously studied the relations of pyro electricity and crystal symmetry, and this must be the 
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driving force to seek electrification from pressure. In the following year, Lippmann predicted 

the existence of the inverse piezo electric effect from thermodynamic considerations, and 

then the Curies verified this before the end of 1881 [11]. 

Piezo electric actuators are based on the inverse piezo electric effect. In inverse piezo 

electric effect, voltage is applied to an asymmetrical crystal lattice, causing the material to 

deform in a certain direction [12]. 

1.2 Hysteresis 

Hysteresis is the time-based dependence of a system’s output on current input and past 

input. In PEAs, hysteresis exists in voltage-displacement relationship as shown in Fig. 1.1. It 

can be seen in that the hysteresis can be treated as composed of three types of components, 

which are the major loop that spans the whole input range, the minor loop that only spans 

portions of input range, and the initial loading curve.  

Hysteresis occurs in both relatively static operations and dynamic operations. If the 

influence of the rate of change of the input can be ignored, then the hysteresis is referred to as 

rate independent, otherwise rate dependent. As hysteresis being the major nonlinearity of 

PEAs, compensation of hysteresis has always been a major concern in modelling and control 

of PEAs. 

 

Fig. 1.1 Hysteresis of a PEA 

 

1.3 Modelling of PEAs 

With the emergence of PEAs in industry, which are capable of generating larger 

displacement under applied voltage, significant efforts have been made in the study of 
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electromechanical behavior of piezoelectric actuators. Piezo electric actuators have been used 

in the design of different advanced structures, e.g. large-scale space structures, aircraft 

structures, satellites, and so forth. Because of the importance of their application, the 

modelling of piezoelectric actuators has received significant attention from the research 

community. 

The linear electromechanical model reported in [13] is an early example of PEA models. 

But it cannot represent the nonlinear behaviors in PEA due to its linear and static nature. 

Researchers have developed a lot of models for describing the hysteresis nonlinearities 

characteristic. In order to describe the basic physical principle of smart materials, physics-

based models try to establish the hysteresis model through the relationship of energy, 

displacement and so on [14], [15] and [16]. The physics-based model of one hysteretic 

system usually cannot be applied in another system [17]. So, the physics-based model lacks 

generality. Starting from the characteristics of the hysteresis curve, some hysteresis models 

try to describe the hysteresis curve directly by using the effective mathematical model. These 

models can be classified as differential-equation-based hysteresis models and operator-based 

hysteresis models. Prandlt-Ishlinskii (PI) model is based on the sum of elementary stop or 

play operators [18], [19], [20] and [21]. The accurateness of PI model depends on the number 

of these operators. Preisach model and Krasnosel’skii- Pokrovskii model are parameterized 

by a pair of threshold variables [22], [23], [24], [25] and [26]. Applications of Bouc-Wen 

model to simulate the hysteresis are reported in [27], [28], and [29]. Wen [27] applies Bouc-

Wen model for hysteresis in vibration of mechanical systems. Ismail et al. [28] adopt Bouc-

Wen model to describe hysteresis nonlinearity in magneto rheological dampers. Lin and 

Yang [30] use Bouc-Wen model to model hysteresis behavior in piezoelectric actuators. 

Researches on Duhem model can be found in [31], [32], and [33]. 

1.3.1 Preisach Model 

The Preisach model is a commonly used hysteresis model employs a simple integral 

formula to describe the hysteresis effect, 

          ddtuty ,
ˆ,  (1.1) 

where   ,  is the weighting function of the hysteresis operator with two parameters 

 and   which correspond to “up” and “down” switching value of input, respectively.  tu  is 
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the input voltage.   tu ,
ˆ  is the relay operator. Outputs of relay operator only have two 

values 1  and 1 , which is shown in Fig. 1.2.  

u




+1

-1



 

Fig. 1.2 Relay operator 

The hysteresis can be regarded as the integral of the hysteresis operator in the α-β plane, as 

shown in Fig. 1.3. 

P
P-

(u, u)





u(t0)a)






P+

P-

L(t)



b)



u(
ta)

P+

P-

L(t)



c)



u(
t b
)

P+

P-

L(t)





d)

u(
t)

 

Fig. 1.3 Hysteresis mapping in Preisach model 

When the input voltage increases monotonically from  0tu  to  atu , the interference line 

L(t) moves horizontally from min   to  atu . In the integral region below the 

interference line,    1ˆ
, tu ; and above this line,    1ˆ

, tu  . Therefore, the output 

displacement  ty  can be written as 

       



pp

ddddty  ,,  (1.2) 
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As the input voltage decreases monotonically from  atu  to  btu , the interference line 

L(t) moves vertically from  atu  to  btu  . To the left of the interference line, 

   1ˆ
, tu and to the right,    1ˆ

, tu . In general, the output of the hysteresis equals to 

the integral of the hysteresis weighting function in the P+ region, and this leads to the 

memory effect of hysteresis. The Preisach model can describe a wide range of hysteresis 

accurately, but the lack of physical meaning makes it difficult to understand. Also, digital 

implementation requires lots of calculations. 

1.3.2 Prandlt-Ishlinskii Hysteresis Model 

One of the well-known operator-based models, which is used to characterize the hysteresis 

in PEAs and other types of smart materials, is the classical PI model that utilizes two 

essential hysteresis operators, namely, the play operator and the stop operator. 

1.3.2.1 PI Model Using Stop Operator 

The rate-independent stop operator is illustrated in Fig. 1.4. Conceptually, this operator 

determines the linear stress-strain  wu ;  relationship as in the Hook’s law, when the stress is 

less than the yield stress, r . In analytical form, assume that  KCm ,0  is the space of piece-

wise monotone functions. For arbitrary input    KCku m ,0 and 0r , where 

Kkkk n  ...0 10 are intervals in  K,0  such that the function u  is monotone on each 

subintervals  1, ii kk  the output of the stop operator is expressed as  

     11 00;   wuewuE rr  

          iirr kwuEkukuekwuE 11 ;;    (1.3) 

    urruer ,max,min   (1.4) 

Then the output of the Prandlt-Ishlinskii hysteresis model using stop operator is defined by  

      drkwuErpky r

R

;
0  (1.5) 

where  rp  is the density function, satisfying   0rp , and R  is a positive constant. 

The Prandlt-Ishlinskii hysteresis model (1.5) is approximated by the discrete form as 

follows: 
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      kwuErky
N

i

ri i
;

1




   (1.6) 

where N is the number of the adopted stop operators for modelling, and  ir  are the 

weighted coefficients for the threshold ir .  

 

w

u

-r

+r

0

 

Fig. 1.4 Stop operator 

 

1.3.2.2 PI Model Using Play Operator 

The rate-independent play operator is demonstrated in Fig. 1.5. This operator implies the 

reciprocating motion of a piston inside a cylinder with length r2 , where the instantaneous 

position of center of piston is defined by u and w  as input and output subsequently. In 

analytical form, for any input    KCku m ,0  and 0r , the play operator is inductively 

defined by 

     11 00;   wufwuF rr  

        irr kuFkufkwuF ,; 1   (1.7) 

    wruruwufr ,min,max, 1   (1.8) 
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where 1w  defines the initial state. 

u

w

-r
r

 

Fig. 1.5 Play operator 

Then the output of the Prandlt-Ishlinskii hysteresis model using play operator is defined by  

        drkuFrpkAuky r
R


0

 (1.9) 

where A  is a constant,   rp  is the density function, satisfying   0rp , and R  is a positive 

constant. 

The discrete form of classical PI model using play operator can be written as follows: 

        kuFrkAuky
N

i

ri
i






1

  (1.10) 

where N is the number of the adopted play operators, and  ir  are the weighted coefficients 

for the threshold ir .  

It should be note that the classical PI model can only describe the symmetric hysteresis. To 

be able to describe the asymmetric hysteresis curve, the classical PI model has to be modified. 
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1.3.3 Maxwell Resistive Capacitor Model (MRC) 

Similar to the PI hysteresis model, the MRC hysteresis model represents the hysteresis by 

putting n  spring-slider elements in parallel, each of which consists of a linear spring with 

stiffness ik  in series with a Coulomb friction block having a breakaway force if  (see Fig. 

1.6). The constitutive behavior of the Maxwell-slip friction model can be described by  

 
      

        








iii

iii

i
ftxtxtxkiftx

ftxtxtxkif
tx






sgn

sgn0
 (1.11) 

      



n

i

ii txtxktf
1

 (1.12) 

N1

N2

Nn

x

x1

x2

xn

1



n

k1

k2

kn

.

.

.

F

 

Fig. 1.6 The physical interpretation of the MRC hysteresis model 

where x  is the input displacement, F  is the output force, ik , ix  and iii Nf   are the 

spring stiffness, block position, and breakaway force of the i
th

 spring-slider element, 

respectively. 

When the displacement increases or decreases continuously, the gain between the force 

and the displacement changes piecewise linearly, this is used to fit the nonlinear gain between 

the input and output in the hysteresis loop. The sliding elements come to stick when the 
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movement changes direction, which is used to characterize the sudden switch of the gain at 

the endpoint of the hysteresis loop. 

 

1.3.4 Duhem Model 

The generalized Duhem model is also a candidate for hysteresis. It can be described by 

           

      tutxhty

txxtugtutxftx

,

0,0,, 0



 
 (1.13) 

where x  is the state, 0x  is the initial state, u  and y  are respectively the input and output of 

the hysteresis, f , g  and h  are continuous functions. 

If the following parameters are given:       
  

 
 

  

  















tdu

tud
tx

tdu

tud
txtutxf





 ,, ; 

       Ttututug   ,  ;         tuhtutxty 0  ; where    max 0,u t u  and 

   min 0,u t u  then the Duhem model can be changed into the Bouc-Wen model [34]. 

1.3.5 Bouc-Wen Model 

The Bouc-Wen model has received an increased interest in recent years. Due to its 

capability to form a range of shapes of hysteretic cycles which match the behavior of a wide 

class of hysteretic systems. It can be seen in Fig. 1.7 that a force F  corresponding to the 

point 0xx   is not unique, there are four values of F . Therefore, the force at the instant time 

t  depends not only on the displacement at the time t  but also on the past values of the 

displacement. Introducing an assumption: 

A1: Fig. 1.7 remains the same for all increasing functions  .x between 0 and 1x , for all 

decreasing functions  .x  between the values 1x  and 2x , etc. 

The aforementioned assumption is called rate-independent property [17]. The form of the 

function F  is described as 
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dt

dx

dt

dx
signFxg

dt

dF




























 ,,  (1.14) 

Consider the following equation 

   tutF

dt

xd


2

 (1.15) 

for some given input  tu  and initial conditions    00 , txt

dt

dx
 and  0tF  at the initial time 

instant 0t , Equations (1.14) and (1.15) can describe the hysteresis oscillator. 

F

A1

A3

A2

A0

A4

x4
x0

x
x2

x1

 

Fig. 1.7 Force and displacement for a hysteresis functional 

However, due to the nonlinearity of the function g , it is difficult to give the explicit 

solutions of Equation (1.14) [35]. Applying a variant of the Stieltjes integral, the function F  

is defined as follow 

       sdxVFtxtF
t

t

t

s
1

2  (1.16) 
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where   ,1t  is the time instant, which is given after the force and the displacement is 

defined. t

sV  is the total variation of x  in the time interval  ts, . The function F  can be 

chosen manually such that it satisfies some mathematical properties of the hysteresis 

properties. An example of F is as follow 

  





N

i

u

i
ieAuF

1

   (1.17) 

where iA  are shown in Fig. 1.7 and 0i . Equations (1.15)-(1.17) can be written in the 

form 

 tuZx

dt

xd N

i

i  
1

2
2

  (1.18) 

0

dt

dx
AZ

dt

dx

dt

dZ
iii

i  , Ni ,,1  (1.19) 

Equations (1.18) and (1.19) are known as the Bouc model. Later, Wen [16] extended the 

Equation (1.19) to describe the restoring forces with hysteresis as follow: 

nn zxzzxxz    1  (1.20) 

1.3.6 Bashash and Jalili Model 

Bashash and Jalili [36] introduced an intelligence rule for representing piecewise 

hysteresis. They used an exponential expression to describe the hysteresis curve between two 

extreme points in the voltage-displacement plane 

        112211
11,,,, xvvekxvxvvFvx

vv


  (1.21) 

where 
   1

12

12 11









vv
e

vv

xx
k

 , and  11, xv  and  11, xv  are the two arbitrary extreme 

points. The predicted ascending hysteresis path can be represented by: 

         





A

i

UUAiULUULLA ii
vvvHvFvvvHxvxvvFvx

1

111111 1
,,,,,,,,  (1.22) 
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where H is the Heaviside function. The same equation predicts the descending hysteresis path. 

When the intelligence rule is applied to feedforward control, determining the inverse of the 

intelligence hysteresis model is not difficult. Bashash and Jalili reduced the nonlinearity of 

hysteresis from 14 to 1%. However, all of the extreme points must be considered in 

predicting the hysteresis path. Therefore, its implementation is difficult. 

 

1.4 Displacement Control 

 

Piezo electric actuators are widely used in applications requiring high resolution and 

accuracy. However, hysteresis reduces the open-loop positioning accuracy. If high accuracy 

is required, these nonlinearities need to be compensated. The compensation is usually 

accomplished by means of two control method: feedforward control, where nonlinear 

hysteresis models are typically used [37], [1], [10]; feedback control, where various 

displacement sensors are used [38], [39], [40], [41], [42], and [43]. 

 

1.4.1 Feedforward Control 

The basic idea of feedforward control is the inverse compensation. The approximate 

inverse hysteresis model is used to cancel the effects of hysteresis. Assume an actuator with 

an approximate mathematical model H . The inverse model 1H  is calculated based on 

identified model H . In no load condition the open-loop feedforward compensation has been 

shown effective in [1], [44-48]. 

However, one major disadvantage of the open-loop feedforward is that their positioning 

performances are highly sensitive to disturbances and modelling errors. In practice, 

feedforward control is commonly combined with feedback control, as shown in Fig. 1.8. 
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Feedforward

controller

Feedback

controller
PEA

yuyd

-

 

Fig. 1.8 Inverse feedforward based feedback control 

1.4.2 Iterative Learning Control 

Iterative learning control (ILC) does not require accurate hysteresis models. An iterative 

controller generates the control action at present based on the tracking error and the control 

action of the previous iteration, as shown in Fig. 1.9. 

Piezo Actuator

H[u(t)](jw) Ga(jw)
vk(jw)

ILC

xk(jw) xd(jw)uk(jw)

uk+1(jw)
+

+

+ -

 

Fig. 1.9 Iterative learning control
 

The control action of ILC is given by 

              jwxjwxjwGjwjwujwujwu kdmakk  



1

.10 ,0    (1.23) 

where  jwG ma

1

.

  is the frequency response model of the system,  jw  is the frequency-

dependent iterative coefficient,  jwuk  and  jwxk  are the Fourier transform of the input and 

output at the k
th

 iteration respectively. The goal of ILC is to generate a feedforward control 

that tracks a specific reference signal and rejects the repeating disturbance. As such, the 

control performance is highly robust for system uncertainties. Moreover, it can significantly 

increase the manipulation bandwidth without reducing the positioning precision. However, 

ILC is an open-loop control. For non-repeating disturbance or system uncertainties, a 
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feedback controller is required as well. In spite of this, ILC has been widely used in 

nanopositioning, such as in the control of automated teller machine (ATM), because a plant 

model is not required, it has self-learning adaptability, and it is robust. 

 

1.4.3 Feedback Control 

 

Feedback control schemes as shown in Fig. 1.10 can lead to strong suppression of 

unknown effects including disturbances, modelling errors, as well as improvement in position 

control performance hence they are widely used. 

A classical control technique such as PID control is widely used because of its simplicity 

[49], [50], [51], [52]. However, because PID control is limited in bandwidth while dealing 

with strong uncertainties [53], advance control techniques, such as sliding model control [54-

58], adaptive control [59-65], model predictive control [66], [67] are required. 

Feedback

Controller
PEA

yuyd

+ -

 

Fig. 1.10 A feedback control scheme for PEAs 

1.4.3.1 Sliding Mode Control 

 

Sliding mode control (SMC), which is sometimes known as variable structure control 

(VSC), is characterized by a discontinuous control action which changes structure upon 

reaching a set of predetermined switching surfaces. This kind of control may result in a very 

robust system and thus provides a possibility for achieving the goals of high-precision and 

fast response. Some promising features of SMC are listed below: 

• The order of the motion can be reduced 

• The motion equation of the sliding mode can be designed linear and homogenous, 

despite that the original system may be governed by non-linear equations. 
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• The sliding mode does not depend on the process dynamics, but is determined by 

parameters selected by the designer. 

• Once the sliding motion occurs, the system has invariant properties which make the 

motion independent of certain system parameter variations and disturbances. Thus the system 

performance can be completely determined by the dynamics of the sliding manifold. 

Consider the system defined below 

      mn RuRxtxutxBtxfx  ,,,,,    (1.24) 

where  txf ,  and  txB ,  are assumed continuous and bounded and the rank of  txB ,  is m. 

The discontinuous control is given by 

   
   













0,

0,

xiftxu

xiftxu
u




  (1.25) 

where  txu ,  ,  txu ,  and  x  are continuous functions. Since  txu ,  undergoes 

discontinuity on the surfaces   0xi ,   0xi  is called the switching surface or the 

switching hyperplane. 

Let   0 xxS   be a switching surface that includes the origin 0x  . If, for any 0x  in S , 

 tx  is in S  for all 0tt   , then  tx  is a sliding mode of the system and the switching surface 

S  is called a sliding surface or sliding manifold. A sliding mode exists, if in the vicinity of 

the switching surface S, the tangent or the velocity vectors of the state trajectory always point 

towards the switching surface. 

Existence of a sliding mode requires stability of the state trajectory towards the sliding 

surface   0 xxS   at least in the neighborhood of S , i.e., the representative point must 

approach the sliding surface at least asymptotically. This sufficient condition for sliding 

mode is called reaching condition and state trajectory under the reaching condition is called 

the reaching mode or reaching phase. The largest neighborhood of S  for which the reaching 

condition is satisfied is called the region of attraction. 

In order to guarantee desired behavior of the closed-loop system, the sliding mode 

controller requires infinitely fast switching mechanism. However, due to physical limitations 
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in real-world systems, directly applying the above control will always lead to some 

oscillations in some vicinity of the sliding surface, i.e., the so called chattering problem. The 

main limitations come from the implementation of controllers in digital computers which 

work on discrete-time principles and cannot allow infinitely fast switching. 

1.4.3.2 Adaptive Control 

 

The modelling error, parameter uncertainty and the changes to the system’s environment 

will result in differences between the desired and real situations. An effective way to solve 

this problem is to use adaptive control. Adaptive Control covers a set of techniques which 

provide a systematic approach for automatic adjustment of controllers in real time, in order to 

achieve a desired performance when the parameters of the plant dynamic model are unknown 

and/or change in time. The foundation of adaptive control is parameter estimation. Common 

methods of estimation are recursive least squares and gradient descent. Lyapunov stability is 

used to derive these update laws and show convergence criterion. Fig. 1.11 shows an adaptive 

control system, where u  and y  are system input and output, respectively. 

u y
Plant

Adaptation

Scheme

Desired

Performance

Reference

Adjustable

Controller

Controller
Parameters

 

Fig. 1.11 Adaptive control system  

 

1.4.3.3  Intelligent Control 

 

Essentially, two main types of intelligent control have been widely used, i.e., fuzzy logic 

control and neural network control. Researchers have encountered significant challenges in 

active vibration suppression using the traditional control method. Therefore, intelligent 

control attracts great attention. The characteristics of fuzzy control are that it can use 

http://en.wikipedia.org/wiki/Parameter_estimation
http://en.wikipedia.org/wiki/Recursive_least_squares
http://en.wikipedia.org/wiki/Gradient_descent
http://en.wikipedia.org/wiki/Lyapunov_stability
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subjective experience and intuition. It provides a new idea in solving complicated system 

control problems. In addition, the neural network which has learning and adaptive abilities 

can approximate the continuous function in arbitrary precision. It is able to conduct a large 

number of operations quickly. So, the neural network control has a great potential in the 

identification and control of nonlinear and uncertain systems, especially in piezo-positioning 

mechanism. 

 

1.4.4  Charge Control 

In 1981, a patent was granted for the use of charge control to reduce the hysteresis effect 

of PEAs [68]. Many researchers combined the use of charge control with other feedback 

control methods to reduce hysteresis nonlinearity [69], [70], [71], [72]. A grounded load 

charge amplifier is illustrated in Fig. 1.12, where sR  and LR  are resistances sC  and LC  are 

capacitors, refv  is the applied reference voltage, Lq  and 
CLq  represents the load charge and 

actual charge respectively.  

Rs

RL

Cs

CL

vP

qLC

qL

vref

+

+

-

+

-

 

Fig. 1.12 Grounded load charge amplifier 

The transfer function between the load charge and the reference voltage is: 
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Thus, 
     
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At frequencies above 
RC

1 , the charge of the amplifier can be used to reduce the 

hysteresis effect. The results show an 89% reduction in the hysteresis. However, charge 

control requires hardware support which increases the difficulty and cost in applications. 

 

1.5 Objectives 

 

From these backgrounds, this dissertation aims at developing control techniques to 

improve the PEAs performance and implementing them digitally. To fulfill this requirement, 

the following objectives are set. 

1. Model the PEAs to describe their behavior. 

Hysteresis is an important nonlinear effect in PEAs. To develop the control scheme for the 

PEA, it is necessary to introduce the appropriate models. 

Linear system identification method, which is based on the relationship between inputs 

(voltage) and outputs (displacement), is applied to obtain the nominal linear PEAs model. 

Hysteresis nonlinearities in PEAs are neglected. 

To describe the hysteresis in PEAs, two hysteresis models are proposed which are classical 

PI model and pseudo discrete-time Bouc-Wen model. The PI model is validated by 

experimental results; also the explicit inverse model can be generated.  

In comparison with classical PI model, the pseudo Bouc-Wen model has less parameters, 

the model structure is simple and can be used directly for model based control. 



 

Chapter 1: Introduction 

19 

 

2. Controller design 

In order to compensate for the hysteresis and improve the performance of PEA, an output 

tracking feedforward compensation approach will be developed. The inverse classical PI 

model is adopted. The performance of this method is shown by experimental results. 

Also, this thesis considers applications of PID control, model predictive control and 

adaptive model predictive control on PEAs with the proposed linear system identification 

model. To demonstrate the effectiveness of the developed methods, experiments will be 

carried out on a PEA with varying sampling rates. 

To have a further look into model based control, this thesis introduces adaptive control 

based on pseudo discrete-time Bouc-Wen model. The stability and zero steady state error of 

the proposed method will be theoretically proven. The experimental results show the 

effectiveness of the proposed method. 

 

1.6 Hardware for Experiments 

 

The PEA using for experiments is PFT-1110 (Nihon Ceratec Corporation) as shown in Fig. 

1.13. Table 1.1 shows the actuator specifications. The displacement is measured by the 

noncontact capacitive displacement sensor (PS-1A Nanotex Corporation) which has 2-nm 

resolution. Specifications of the sensor are shown in table 1.2. Fig. 1.14 shows the 

experimental schemes. Input/output data are handled by an interface board AIO-163202F-PE 

installed on PCI-Express bus. The board includes high precision 16-bits analog inputs (32 

channels) and 16-bits analog outputs (2 channels) with sampling rate up to 500kHz. The 

control program is implemented on computer in C language. 
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Fig. 1.13 Piezo electric actuator PFT-1110 

 

Table 1.1 Piezo electric actuator PFT-1100 specifications 

Specifications PFT 1110 

Operating temperature range -20~85 
o
C 

Maximum operating voltage 150V 

Maximum displacement ≥ 83 μm 

Hysteresis 15 ± 3% 

Maximum generated force ≥ 800N 

Resonance frequency 5 ± 3kHz 

Capacitance 10.8μF ± 20% 

Dielectric loss ≤ 3.0% 

Insulation resistance ≥ 100 MQ 
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Dimension: L x ɸ (mm) 125.9 x ɸ40 

High stiffness  

 

Table 1.2 Sensor  PS-IA specifications 

Specifications PS-IA 

Basic output voltage range 0~10 V 

Frequency characteristic DC~1 kHz 

Operating temperature limit 10~40
o
C 

Resolution 2 nm 

External Dimension 110W x 30H x 162D mm 

Weight 335 gr 

 

 

Fig. 1.14 Experimental schemes 

 

1.7 Composition of The Dissertation 

 

This dissertation is structured as follows: 
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Chapter 2 discusses a simple open-loop control known as feedforward compensation. First, 

the classical PI hysteresis model is adopted and identified. Then, an inversion of Prandlt-

Ishlinskii model is calculated to design the controller. The tracking performance is verified by 

experiments at different reference signal frequencies and magnitudes. 

In Chapter 3, a conventional PI controller is designed base on linear system identification. 

The strength and weakness of the method is also discussed. 

To utilize the linear system identification model, model predictive control and adaptive 

model predictive control are proposed in Chapter 4. These methods are proved to have a 

better tracking performance comparing to simple PI control. 

In Chapter 5, a model reference control base on pseudo discrete-time Bouc-Wen model is 

proposed. The control law is simple and easy to be implemented. The control algorithm 

ensures the stability of the closed-loop system. Experimental results show the effectiveness of 

the proposed method. 

Chapter 6 concludes this thesis and discusses the future works. 
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Chapter 2: Feedforward 

Compensation 
 

 

 

2.1 Introduction 

 

This chapter concerns with controller design based on feedforward compensation 

technique using classical PI hysteresis model in discrete-time formulation [73]. 

Feedforward compensation (open-loop) schemes are usually employed in application in 

which position feedback is difficult to implement due to mechanical constraints such as 

atomic force microscopes [1-3]. In such schemes, the inverse model of the PEA to be control 

is calculated and implemented to PEA. The inverse model generates an input voltage to PEA 

according to desired displacement, such that the PEA produces an output that tracks the 

reference output. Usually, the inverse of the transfer function is cascaded with the plant. In 

this thesis, a feedforward controller which is based on Prandlt-Ishlinskii hysteresis model is 

designed. 

One major disadvantage of the open-loop control schemes is that their positioning 

performances are highly sensitive to unknown effects such as model errors and disturbances. 

2.2 Identified PI Model Parameters 

 

The threshold of play operator (1.10) is applied in the Prandlt-Ishlinskii model as 

Nrrr  ...21  and N  is chosen as 16. The constant A  and the weighted coefficients are 

identified off-line by curve fitting toolbox in MATLAB using experimental data. This tool 
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box uses Levenberh-Marquardt algorithm, which will be discussed in Appendix, to identify 

model parameters.  The input    1.1001.0**06.0*20  kku  2/*3001.0***2sin  k  

1.1  is applied to the PEA for identification, the sampling time period is chosen as 0.001 s. 

Table 2.1 shows the identified parameters. 

Table 2.1 Identified parameter Prandlt Ishlinskii model 

Number Threshold ir  Parameter  ir  A 

1 1 0.3209 0.5 

2 2 0.0011  

3 3 0.0172  

4 4 0.0205  

5 5 0.0173  

6 6 0.0158  

7 7 0.0158  

8 8 0.0188  

9 9 0.0111  

10 10   0.0010  

11 11 0.1161  

12 12 0.5591  

13 13 0.0010  

14 14 0.0010  

15 15 0.0010  

16 16 0.0010  
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Fig. 2.1 shows comparison of the experimental and simulation results. The difference 

between measure output and calculated output is shown in Fig. 2.2. 
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Fig. 2.1 Comparison of measured output and model output 
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Fig. 2.2 Difference between measured output and calculated PI model output 

It should be mentioned that, the identified parameters are not unique; they depend upon 

the nature of hysteresis of PEAs. Furthermore, the relationship between input and modelling 

error is still some kinds of hysteresis (as in Fig. 2.3). Thus, the compensation is difficult. 
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Fig. 2.3 Input and output error 

The validity of the Prandlt-Ishlinskii model employing play operators are examined by 

comparing the model output with the measured data, as shown in Fig. 2.4. The results clearly 

suggest that the model can describe the hysteresis properties of PEAs. 
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Fig. 2.4 Comparison of hysteresis loop 
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2.3 Open-Loops Control Scheme 

Open-loop control schemes are a conventional control for PEA. Fig. 2.5 depicts block 

diagram of open-loop controller. The object here is to find an appropriate inversion from the 

identified model. 

Inverse Feedforward

Compensation
PEA

yuyd

 

Fig. 2.5 Block diagram of open-loop control schemes 

In this section, the inverse Prandlt-Ishlinskii model is introduced as a feed forward 

compensator for purpose of control PEA. 

From the identified data in Table 2.1, an explicit inverse of the Prandlt-Ishlinskii can be 

formulated analytically. 

According to [74], the control input is calculated as follow 

        kyFrkyAku d

N

i

rid
i






1

ˆˆˆˆ   (2.1) 

where )(ku is the control input, )(kyd  is the reference signal, Â  is a constant;  ir̂̂  are the 

coefficients of the inverse operator; N is the number of operators, ir̂  are the thresholds of 

inverse operators. All these parameters will be calculated based on identified parameters from 

Prandlt-Ishlinskii hysteresis model as follows 
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Table 2.2 shows the calculated results. 
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Table 2.2 Inverse Prandlt-Ishlinskii model parameters 

Number Threshold ir̂  Parameter  ir̂̂  Â  

1 0.5 0.4762 2 

2 1.0011 0.0016  

3 1.5183 0.0395  

4 2.0388 0.0443  

5 2.5561 0.0355  

6 3.0719 0.0309  

7 3.5877 0.0296  

8 4.1065 0.0334  

9 4.6176 0.0192  

10 5.1186 0.0017  

11 5.7347 0.1497  

12 6.7938 0.2676  

13 7.2948 0.0005  

14 7.7958 0.0005  

15 8.2968 0.0005  

16 8.7978 0.0005  

 

2.4 Experiment of Open-Loop Schemes 

This section shows the experimental results of open-loop control. The experiments are 

conducted with four reference outputs which are     mπ*kkyd 0005.0*2sin101  , 

  kyd2   mkπ* 0005.0**102sin10 ,   mkπyd 0005.0**30*2sin103  and   kyd4



 

Chapter 2: Feedforward Compensation 

29 

 

    m*k.π*+*kπ* 0005.0*502cos30005.0*52sin7 . The sampling period is chosen as 

0.0005s. The offset voltage of the driver is set to 30V. 

Fig. 2.6 shows the control input for the first experiment which is 1Hz. The tracking result 

is shown in Fig. 2.7. 
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Fig. 2.6 Control input of feedforward compensation (1Hz) 
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Fig. 2.7 Tracking error of feedforward compensation (1Hz) 
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Fig. 2.8 shows the control input for the experiment with  kyd 2  which is 10 Hz. The 

tracking result is shown in Fig. 2.9. 
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Fig. 2.8 Control input of feedforward compensation (10Hz) 
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Fig. 2.9 Tracking error of feedforward compensation (10Hz) 

Fig. 2.10 shows the control input for the experiment with  kyd 3  which is 30Hz. The 

tracking result is shown in Fig. 2.11. 
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Fig. 2.10 Control input of feedforward compensation (30Hz) 
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Fig. 2.11 Tracking error of feedforward compensation (30Hz) 

Fig. 2.12 shows the control input for the experiment with  kyd 4 . The tracking result is 

shown in Fig. 2.13. 
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Fig. 2.12 Control input of feedforward compensation with multiple frequencies signal 
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Fig. 2.13 Tracking error of feedforward compensation with multiple frequencies signal 

 

2.5 Discussion 

Experimental results shows that the feedforward controller based on inverse PI model can 

compensate the hysteresis nonlinearities in PEAs. Moreover, the identification procedure and 

the inverse calculation are simple. However, the accuracy is low. When the frequency is 30 
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Hz, the error even exceeds 20%. To improve the performance of PEAs, a combination of 

feedback control and feedforward compensation is desired. 
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Chapter 3: Conventional PI control 
 

 

3.1 Introduction 

 

One major disadvantage of the open-loop control schemes is that their positioning 

performances are highly sensitive to unknown effects such as model errors and disturbances. 

Due to this disadvantage, it is necessary to develop more effective control strategies to 

improve PEA performances. This chapter considers a conventional PID control method for 

PEAs. The advantage of PID control is that it is easy to be implemented. 

 

3.2  PEAs Model Based on Linear System Identification 

 

This section proposes a PEA model derived by linear system identification method [75]. 

System identification is based on statistical method and assumes that objectives are black-

boxes. The obtained model is simple and can be used as a nominal model of model-based 

control methods. It should be noted that nonlinearities of PEAs is neglected because this is 

only the linear system identification method. A structure of the identified model should be 

selected. In this identification, Auto-regressive exogenous (ARX) model is applied because 

ARX model is suitable for least square method and is usually used for system identification. 

The identified PEA model  zG  has second-order denominator and first-order numerator 

polynomials, and is expressed as follows: 

 
 

  2

2

1

1

2

2

1

1

1 






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zaza

zbzb

zU

zY
zG  (3.1) 
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where  zY  is z-transformation of PEA displacement;  zU  is z-transformation of applied 

voltage; and 1b , 2b , 1a , 2a are plant parameters. 

Equation (2.1) can be rewritten as 

         2121 2121  kyakyakubkubky  

 T  (3.2) 

where           2,1,2,1  kykykukuk
T ,  Taabb 2121 ,,,   is the parameter 

vector which is to be identified; Equation (3.2) is linear, so the vector of   can be readily 

identified by using the least squares method as follows 

Let N  be the number of sampling cycles for input and output data. Define  
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Y  , (3.4) 

they give: 

  YAAA TT 1
  (3.5) 

The input       1.12/*30005.0***2sin1.10005.0**06.0*20   kkku  is 

applied to the PEA for identification, the sampling time period is chosen as 0.0005 s. Fig. 3.1 

shows the input signal and measured output signal. 
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Fig. 3.1 Input and output signal for identification 

First, by using least square method, the values of 1b , 2b , 1a , and 2a  are approximated. 

Afterwards, the identified parameters are validated by comparing the input-output 

relationship of the model and of the PEA. During this step, the parameters can be manually 

refined if required. 

As the result, the identified parameters are shown in table 3.1. 

Table 3.1 Identification results of linear PEA model using least square method. 

Parameters 1b  2b  1a  2a  

Value 0.02623 0.007647 -0.9549 0.01666 

 

Fig. 3.2 shows the difference between the measured output and the model output. It should 

be mentioned that the hysteresis nonlinearities of PEA is neglected because the introduced 

model is only the linear model.  
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Fig. 3.2 Comparison of measured output and identified output 

 

3.3 Conventional PI Control 

 

PID control is a traditional control technique for many kinds of mechanical systems. In 

this thesis, only PI control is used. Fig. 3.3 shows the block diagram of a PI controller. 

 

Fig. 3.3 Block diagram of PI control 

 

 

PEA 

K p 

K i 1/z 

u(t) y(t) e(t) y d (t) 
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3.4 Experiment of PI Control 

The experiments of PI control are also conducted with the same four reference 

trajectories  kyd1 ,  kyd 2 ,  kyd 3 , and  kyd 4  as in Chapter 2. The proportional and integral 

gains pK and iK  are chosen by Ziegler–Nichols method, and by trial and error; pK and iK  

are 0.926 and 1819, respectively. The sampling time in these experiments is 0.0005 s. 

Fig. 3.4 shows the control input for the experiment with  kyd1  which is 1 Hz. The 

tracking result is shown in Fig. 3.5. 
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Fig. 3.4 Control input for  kyd1  (1 Hz) in PI control 



 

Chapter 3: Conventional PI control 

39 

 

0 1 2 3 4 5
-20

0

20

D
is

p
la

c
e
m

e
n
t 

( 
m

)
 

 

0 1 2 3 4 5
-0.2

0

0.2

Time (s)

O
u
tp

u
t 

e
rr

o
r 

( 
m

)

Desired output

Measured output

 

Fig. 3.5 Tracking result for  kyd1  (1 Hz) in PI control 

 

Fig. 3.6 shows the control input for the experiment with  kyd 2  which is 10 Hz. The 

tracking result is shown in Fig. 3.7.  
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Fig. 3.6 Control input for  kyd 2  (10 Hz) in PI control 
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Fig. 3.7 Tracking result for  kyd 2  (10 Hz) in PI control 

Fig. 3.8 shows the control input for the experiment with  kyd 3 which is 30 Hz. The 

tracking result is shown in Fig. 3.9. 
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Fig. 3.8 Control input for  kyd 3  (30 Hz) in PI control 
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Fig. 3.9 Tracking result for  kyd 3  (30 Hz) in PI control 

Fig. 3.10 shows the control input for the experiment with  kyd 4  which is a multiple 

frequencies signal. The tracking result is shown in Fig. 3.11. 
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Fig. 3.10 Control input for multiple frequencies signal in PI control 
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Fig. 3.11 Tracking result for multiple frequencies signal in PI control 

4.1 Discussion 

 

It can be seen that PI control has better performance than feedforward compensation using 

inverse PI model. At low frequency, the PI control works well. At high frequencies, 

conventional PI control can no longer provide accuracy. As can be seen in Fig. 3.9, at 30 Hz, 

the tracking error is more than 20%.   
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Chapter 4: Model Predictive Control 

and Adaptive Model Predictive 

Control 
 

 

 

4.1 Introduction 

In Chapter 3, a conventional PI control is adopted to the control of PEAs. At low 

frequency reference signals, conventional PI control shows its effectiveness. However, 

conventional PI control performance is poor because it is based on linear system 

identification model. Thus, it cannot get a good tracking performance when the hysteresis 

nonlinearities are strong. 

 To utilize the linear PEA model, this chapter introduces model predictive control method. 

Once the linear model parameters are identified, the control law is easy to be implemented. 

Due to the modelling error, MPC tracking performance is not so high. Thus, this chapter also 

proposes adaptive model predictive control to control the PEAs. 

4.2 Model Predict Control 

4.2.1 Methodology 

 

Model predictive control (MPC) is an advanced method of process control [76]. Model 

predictive controllers rely on dynamic models of the process; most often are 

linear empirical models obtained by system identification. The main advantage of MPC is the 

fact that it allows the current time step to be optimized, while keeping future time steps in 

http://en.wikipedia.org/wiki/Process_control
http://en.wikipedia.org/wiki/Empirical
http://en.wikipedia.org/wiki/System_identification
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account. This is achieved by optimizing a finite time-horizon, and then only the current time 

step is implemented. Fig. 4.1 shows the basic structure of MPC. 

 

Fig. 4.1 Basic structure of MPC 

Model Predictive Control (MPC) is a multivariable control algorithm that needs the 

following information: 

(I1) Internal dynamic model of the process. 

(I2) History of past inputs and outputs. 

(I3) Optimization cost function P  over the receding prediction horizon, to calculate the 

optimum control inputs. 

The optimization cost function is given by: 

           
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|ˆ||ˆ   (4.1) 

where  iky |ˆ  is the i
th

 step predicted output from time k ,  ikyd | is the i
th

 step reference 

signal from time k,  iku |ˆ  is the difference between i
th

 step predicted input from time k  

and control input at time k, pN  is the number of predicted steps;   and   are weighting 

coefficients. 

Consider dynamic system 
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     kBukAxkx 1  

   kCxky   (4.2) 

where  ky  is the system output;  ku  is the system input;  kx  is the state vector; A , B , 

and C  are known system matrices. 

An incremental state space model can also be used if the model input is the control 

increment  ku . This model can be written in the general state space form by taking into 

account that      1 kukuku . The following representation is obtained by combining 

this expression with (4.2): 
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Cky  (4.3) 

Defining a new state vector as       Tkukxkx 1 , the incremental model takes the 

general form: 

     kuNkxMkx 1  

   kxQky   (4.4) 

where the relationship between  QNM ,, and  CBA ,, can easily be obtained by comparing 

(4.2) and (4.4). 

In order to minimize the cost function (4.1), output predictions over the horizon must be 

computed. Predictive outputs can be obtained by using (4.4) recursively, resulting in: 

     

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 
1

0

1ˆˆ
j

i

ijj ituNQMkxQMjky  (4.5) 

Now, the predictions along the horizon are given by 
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 (4.6) 

For simplicity, denote 

    UHkxFkY  ˆˆ  (4.7) 

Where       Tp kNkykkykkyY |ˆ|2ˆ|1ˆˆ    is the predicted future output, 

      TpNkukukuU 11    is the vector of future control increments, the 

matrix H  defined as  
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00

, and matrix F  is 

defined as  TN
pQMQMQMF 2 . 

Consider the case where   1i  and    i . The control sequence u is calculated 

minimizing the cost function (4.1), that can be written as: 

         UUYkxFUHYkxFUHP
T

d
T

d  ˆˆ  (4.8) 

An analytical solution exists that can be calculated as follows 

    kxFyHIHHU d
TT ˆ

1



  (4.9) 

It should be note that only  ku  is sent to the plant and all the computation is repeated at 

the next sampling time. 

4.2.2 Experiment of MPC 

 

In this thesis the nominal model used for MPC has the form as in Section 3.2. 
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The transfer function (3.1) is changed into state space as follow: 
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Introduce new state      kukuku  1 , Equation (4.11) becomes 
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For simplicity denote 
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In this thesis, 3 steps ahead are predicted. It means 3pN . 

Now, the predictions along the horizon are given by 

 
 
 

   
     

       













































21ˆ

1ˆ

ˆ

3ˆ

2ˆ

1ˆ

23

2

kuQNkuQMNkuNQMkxQM

kuQNkuQMNkxQM

kuQNkxQM

ky

ky

ky

 

 
 

 
 


























































2

10

00

ˆ
23

2

ku

ku

ku

QNQMNNQM

QNQMN

QN

kx

QM

QM

QM

 (4.13) 
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F , the solution that provides the optimum 

input difference as: 



 

Chapter 4: MPC and AMPC 

48 

 

 
 
 

    kxFyHIHH

ku

ku

ku

d

TT ˆ

2

1
1


























  (4.14) 

The matrices H and F can be easily calculated by 2121 ,,, bbaa . From Section 3.2, 

9549.01 a , 01666.02 a , 02623.01 b , and 007647.02 b . The weighting coefficients 

are chosen as   1i  and 1.0 . 

In order to have a good comparison between control methods, the experiments of MPC are 

also conducted with the same four reference trajectories  kyd1 ,  kyd 2 ,  kyd 3 , and  kyd 4  

as in other control techniques. The sampling time in these experiments is 0.0005 s. 

Fig. 4.2 shows the control input for the experiment with  kyd1  which is 1 Hz. The 

tracking result is shown in Fig. 4.3. 
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Fig. 4.2 Control input for in MPC (1 Hz) (3 predictive steps) 
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Fig. 4.3 Tracking result for MPC (1 Hz) (3 predictive steps) 

 

Fig. 4.4 shows the control input for the experiment with  kyd 2  which is 10 Hz. The 

tracking result is shown in Fig. 4.5. 
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Fig. 4.4 Control input for MPC (10 Hz) (3 predictive steps) 
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Fig. 4.5 Tracking result for MPC (10 Hz) (3 predictive steps) 

Fig. 4.6 shows the control input for the experiment with  kyd 3  which is 30 Hz. The 

tracking result is shown in Fig. 5.7. 
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Fig. 4.6 Control input for MPC (30 Hz) (3 predictive steps) 
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Fig. 4.7 Tracking result for MPC (30 Hz) (3 predictive steps) 

Fig. 4.8 shows the control input for the experiment with  kyd 4 . The tracking result is 

shown in Fig. 4.9. 
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Fig. 4.8 Control input for MPC with multiple frequencies signal (3 predictive steps)  
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Fig. 4.9 Tracking result for MPC with multiple frequencies signal (3 predictive steps)  

4.3 Adaptive Model Predictive Control 

Since the modelling error exists, the performance of MPC is limited. In this section, an 

adaptive parameter estimation algorithm is applied to the MPC in order to compensate 

parameter changing of the PEAs linear model due to hysteresis nonlinearities. This updates 

the parameters of the nominal model (4.10) by using recursive least squares method. The 

experiments results show the effectiveness of proposed method. 

4.3.1 Least Squares Algorithm 

Consider the single-input single output system which can be describes as 

          11 11   kuqbkyqaky  (4.17) 

where  

  11

10

1   n

nqaqaaqa   

  11

10

1   m

mqbqbbqb  , m  and n are known. 

In this section the least squares algorithm is adopted to estimate system parameters online. 

Let   be the vector of unknown system parameters  
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 Tmn bbbaaa ,,,,,,, 1010   (4.18) 

Then Equation (4.17) can be written as  

   )1(  kky T  (4.19) 

where             1,,2,1,1,,2,1)1(  mkukukunkykykykT   

The least squares algorithm can be expressed as 
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 (4.21) 

where  k̂  is the estimated parameter vector of   with  0̂  is given,  kP  is the covariance 

matrix with  1P  is any positive define matrix 0P . Usually, 0P  is chosen as IP 0 , where 

  is a positive constant, I  is the identity matrix. 

Note that, the convergence of   k̂  to   is not proven or claimed. 

 

4.3.2  Experiment of AMPC 

 

This section shows the effectiveness of the AMPC. The nominal model is still chosen as in 

section 4.2.2. 

Equation (4.10) can be written as  

   )1(  kky T  (4.22) 

where     TT
bbaa 21214321 ,,,,,,   ;         2,1,2,1)(  kukukykykT  

The estimated parameter vector           Tkkkkk 4321
ˆ,ˆ,ˆ,ˆˆ    is updated by Equations 

(4.20) and (4.21) on real-time basis. Then, it is used for computing the future predictive input 
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difference as in Equation (4.16) by calculating matrix H and F  . The weighting coefficients 

are chosen as   1i  and 1.0 . The initial values of  0̂  and  1P  are chosen as  

 T2.02.02.02.0  and I1.0 , respectively. 

The experimental conditions are same as those in the experiment of MPC. However, in 

order to have a better look at computation cost, this section conducts experiments with 

predictions of 3 steps and 5 steps ahead. 

4.3.2.1 Experiment of AMPC with 3 Predictive Steps 

 

Fig. 4.10 shows the control input for the experiment with 1Hz sinusoid reference signal. 

The estimated parameters are shown in Fig. 4.11. 
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Fig. 4.10 Control input for AMPC (1 Hz) (3 predictive steps) 



 

Chapter 4: MPC and AMPC 

55 

 

0 1 2 3 4 5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Time (s)

E
s
ti
m

a
te

d
 p

a
ra

m
e
te

rs

 

 


1


2


3


4

 

Fig. 4.11 Estimated parameters for AMPC (1 Hz) (3 predictive steps) 

Fig. 4.12 shows the tracking result. The tracking error is shown in Fig. 4.13. It can be seen 

that the maximum error at steady state is about 0.4%. 
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Fig. 4.12 Tracking results for AMPC (1 Hz) (3 predictive steps) 
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Fig. 4.13 Tracking results for AMPC (1 Hz) (3 predictive steps) 

Fig. 4.14 shows the computation time of the first experiments. 
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Fig. 4.14 Computation time for AMPC (1 Hz) (3 predictive steps) 

The experiment is also conducted with higher frequency references, which are 10 Hz and 30 

Hz.  

Fig. 4.15 shows the control input for the experiment with 10Hz sinusoid reference signal. 

The estimated parameters are shown in Fig. 4.16. 
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Fig. 4.15 Control input for AMPC (10 Hz) (3 predictive steps) 
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Fig. 4.16 Estimated parameters for AMPC (10 Hz) (3 predictive steps) 

Fig. 4.17 shows the comparison between measured output and desired output. The tracking 

error is shown in Fig. 4.18. It can be seen that the maximum error at steady state is about 2%. 
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Fig. 4.17 Tracking results for AMPC (10 Hz) (3 predictive steps) 
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Fig. 4.18 Tracking error for AMPC (10 Hz) (3 predictive steps) 

The computation time is shown in Fig. 4.19. 
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Fig. 4.19 Computation time for AMPC (10 Hz) (3 predictive steps) 

Fig. 4.20 shows the control input for the experiment with 30Hz sinusoid reference signal. 

The estimated parameters are shown in Fig. 4.21. 
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Fig. 4.20 Control input for AMPC (30 Hz) (3 predictive steps) 
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Fig. 4.21 Estimated parameters for AMPC (30 Hz) (3 predictive steps) 

Fig. 4.22 shows the comparison between measured output and desired output. The tracking 

error is shown in Fig. 4.23. It can be seen that the maximum error at steady state is about 8%. 
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Fig. 4.22 Tracking results for AMPC (30 Hz) (3 predictive steps) 
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Fig. 4.23 Tracking error for AMPC (30 Hz) (3 predictive steps) 

The computation time is shown in Fig. 4.24. 
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Fig. 4.24 Computation time for AMPC (30 Hz) (3 predictive steps) 

The last experiment for 3 predictive steps is with multiple frequencies reference signal. Fig. 

4.25 shows the control input for the experiment with complex reference reference signal. The 

estimated parameters are shown in Fig. 4.26. 
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Fig. 4.25 Control input for AMPC with combinative sinusoid signal (3 predictive steps) 
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Fig. 4.26 Estimated parameters for AMPC with multiple frequencies signal (3 predictive steps) 

Fig. 4.27 shows the comparison between measured output and desired output. The tracking 

error is shown in Fig. 4.28. It can be seen that the maximum error at steady state is about 

0.8%. 
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Fig. 4.27 Tracking results for AMPC with multiple frequencies signal (3 predictive steps) 
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Fig. 4.28 Tracking error for AMPC with multiple frequencies signal (3 predictive steps) 

The computation time is shown in Fig. 4.29. 
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Fig. 4.29 Computation time for AMPC with multiple frequencies signal (3 predictive steps) 

 

4.3.2.2 Experiment of AMPC with 5 Predictive Steps 

 

In order to have a better look inside the performance of AMPC technique, another 

experiment is conducted with 5 predictive steps. For the purpose of comparison, it is only 

required the tracking error and the computation time of the experiment. 

Fig. 4.30 shows the tracking error with experiment at 1Hz. The computation time is shown 

in Fig. 4.31. 
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Fig. 4.30 Tracking error for AMPC (1HZ) (5 predictive steps) 
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Fig. 4.31 Computation time for AMPC (1 Hz) (5 predictive steps) 

Fig. 4.32 shows the tracking error with experiment at 10Hz. The computation time is 

shown in Fig. 4.33. 
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Fig. 4.32 Tracking error for AMPC (10HZ) (5 predictive steps) 
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Fig. 4.33 Computation time for AMPC (10 Hz) (5 predictive steps) 

The tracking error and computation time with 30 Hz frequency reference signal are shown 

in Fig. 4.34 and Fig. 4.35, respectively. 
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Fig. 4.34 Tracking error for AMPC (30HZ) (5 predictive steps) 
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Fig. 4.35 Computation time for AMPC (30 Hz) (5 predictive steps) 

Lastly, the experimental results with complex reference signal are shown in Fig. 4.36 and. 

4.37. 
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Fig. 4.36 Tracking error for AMPC with multiple frequencies signal (5 predictive steps) 
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Fig. 4.37 Computation time for AMPC with multiple frequencies signal (5 predictive steps) 

4.4 Discussion 

 

Through the experiments of MPC and AMPC, it can be seen that the system have better 

performance comparing to PI control. Unlike the conventional PI control, MPC still works in 

high frequency. As it can be seen in Fig. 4.7, even at 30 Hz frequency, the maximum tracking 
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error of MPC is only 8%. The performance of AMPC at steady state is almost the same with 

MPC as can be seen in Fig. 4.13, Fig. 4.18 and Fig. 4.23 for frequencies at 1 Hz, 10 Hz, and 

30 Hz, respectively. The advantage of AMPC is that the model parameters need not to be 

identified. However, one drawback of MPC and AMPC is the computation effort. The 

average computation time for AMPC 3 predictive steps experiment at 1 Hz, 10 Hz and 30 Hz 

are 0.3644 ms, 0.3661 ms and 0.3661 ms, respectively. The average computation time for 

AMPC 5 predictive steps experiment at 1 Hz, 10 Hz and 30 Hz are 0.3789 ms, 0.3791 ms and 

0.3794 ms, respectively. Meanwhile the tracking errors in both 3 predictive steps and 5 

predictive steps are almost the same. It can be seen that the computation cost increases when 

the number of predictive steps increase. 
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Chapter 5: Adaptive Control Based 

on Pseudo Discrete-time Bouc-Wen 

Model 
 

 

 

5.1 Introduction 

Controlling hysteresis systems using Bouc-Wen model has been reported in [77], [78], 

[79], [80], and [81]. In [77], a hysteresis observer based on Bouc-Wen model is proposed to 

describe hysteresis nonlinearity of the PEA. The model parameters are identified by root-

mean-square method. In [11], the Bouc-Wen model is adopted to describe the behavior of 

base-isolation systems, and then an adaptive controller is designed to stabilize the close-loop 

system and to improve the system performance. It should be noted that the effect of the 

hysteresis is treated as a bounded disturbance in [78]. In [79], firstly the dynamic system with 

Bouc-Wen model is established and identified by using particles swarm optimization. Then a 

PID controller is employed to compensate the nonlinearity hysteresis of piezo-driven 

micromanipulator. In [80], a feedforward controller, which is formulated based on the 

identified Bouc-Wen model parameters, is used to compensate hysteresis nonlinearity in 

piezoelectric material. In [81], a new perfect inverse function of the hysteresis (which is 

described by Bouc-Wen model) is constructed and used to cancel the hysteresis effects in 

adaptive backstepping control design. All works mentioned above have to take the 

identification procedure which costs a lot of time and work. 

This chapter proposes an adaptive controller based on Pseudo-Discrete-time Bouc-Wen 

model. It should be mentioned that the model is adapted directly in to controller design where 

real model parameters need not to be identified. The adaptive control law guarantees the 

closed-loop system stability. The proposed method is simple and easy to be implemented. 

Experimental results confirm the effectiveness of proposed method. 
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5.2 Discrete-Time Model Inspired by Bouc-Wen Model 

The expression of Bouc-Wen model [82] is  

       tkztkuty   1  (5.1) 

             n
m

n
mm tztutztztututz   

1
,   00 zz    (5.2) 

Consider the case 1n  and focus on (5.2). 

The hysteresis nonlinearity  tz  is treated as output  ty . The differential equation (5.2) is 

written as follows: 

              00, yytytutytututy mmm     (5.3) 

Now, let us consider the discretization of Equation (5.3). Define 

 
      

 
      

t

tutttu
tu

t

tyttty
ty









 21 1

;
1

 (5.4) 

where t  is sampling period, tkt   is sampling instant,  t1 and  t2 are known 

high order functions of t .It can be observed that    tyty
t


 0

lim and    tutu
t


 0

lim , i.e. 

 ty  and  tu can be regarded as the approximations of  ty and  tu , respectively. 

For a chosen sampling period t , denote     t11 and     t21 .Then, it 

gives 

 
   

 
   

t

tuttu
tu

t

tytty
ty












 ;  (5.5) 

where  and   are known parameters satisfying 1010  ,λ  and their values are 

nearly equal to 1 when t is small.  

From (5.4) and (5.5), Equation (5.3) will become 
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 
       

 

   
   tkytky

t

tkuttku
t

tky

t

tkuttku
t

t

tkuttku
tttky
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mm
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
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


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




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










 (5.6) 

For simplicity, denote tk  as k . Then, it gives 

 
       

 

   
   kyky

t

kuku
t

ky

t

kuku
t

t

kuku
tky

m

mm





























1

11
1

 (5.7) 

Define  
   

t

kuku
kux






1
1 . System (5.7) yields 

             kykykutkykutkutky xmxmxm   1111   (5.8) 

i.e. 

             111  kykykutkykutkutky xmxmxm    (5.9) 

For simplicity, denote mt  , mt  and mt  . Equation (5.9) becomes 

             111  kykykukykukuky xxx    (5.10) 

In the following, it is assumed that 00  , where 0  is a small constant.  

Fig. 5.1 shows the hysteresis curve generated by model (5.10) where the parameters are set 

as ,0009.0  0005.0 , 0001.0 , 9995.0 , 9995.0 , 

  ku 0.001)*k*1k)/(1.0*0.001*5*sin(2*0.75  . 
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Fig. 5.1 Hysteresis curve by model (3.16) 

It can be seen that the hysteresis curve by model (5.10) is similar to hysteresis curve in 

PEA as in Fig. 5.2. 
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Fig. 5.2 Hysteresis curve by PEA 

Since this model will be used for adaptive control later, the model parameters need not to 

be identified. 
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5.3 Model Reference Control Using Pseudo Bouc-Wen Model (MRAC) 

5.3.1 System Description 

 

This section considers the control problem of piezoelectric actuators which can be 

expressed by (5.10), where the parameters ,  and  are unknown. Our control object is to 

find a feedback control input  ku , such that all closed-loop signals are bounded, and the 

output  ky tracks the desired output  kyd of a reference model. 

     1 kyakrky dmd  (5.11) 

where 1ma and  kr  is a bounded reference input. 

5.3.2 Control Design and Stability Analysis 

5.3.2.1 Parameter Estimation 

 

Now rewrite (5.10) as 

                 1111  kyakyakykukykukuky mmxxx    (5.12) 

and define the tracking error 

     kykyke d  (5.13) 

From (5.11) and (5.12), it yields 

           

       11

11





keakrkya

kykukykukuke

mm

xxx




  (5.14) 

If the control input  ku  satisfies 

               krkyakykukykuku mxxx  111    (5.15) 

it can be concluded that the tracking error will go to zero when k  approaches to infinity. 
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Since the parameters  ,  and  are unknown, the control in (5.15) cannot be 

implemented. In the following, the adaptive method will be used to estimate these parameters. 

Let  k̂ ,  k̂ and  k̂ be their adaptive estimates, respectively. 

Now, define the estimated output  kŷ  as 

                   11ˆ1ˆˆˆ  kykykukkykukkukky xxx   (5.16) 

and the estimation error as 

     kykyk  ˆ  (5.17) 

It follows from (5.16) and (5.17) that  

                     kykykykukkykukkukk xxx  11ˆ1ˆˆ    (5.18) 

Define 

      kk ˆ~ ,       kk ˆ~
,       kk ˆ~ . (5.19) 

Then, (5.18) becomes 

                 1~1
~~  kykukkykukkukk xxx   (5.20) 

For simplicity, define 

         22
11  kyku2kukD xx   (5.21) 

The adaptive laws for  k̂ ,  k̂  and  k̂ are formulated as 

   
   

 1

11
1ˆˆ

2 




kD

kuk
kk x

  (5.22a) 

 
   



 


otherwise

kifk
k

0

0
ˆˆ

ˆ



  (5.22b) 

   
     

 1

211
1ˆˆ

2 




kD

kykuk
kk

x
  (5.23) 
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   
     

 1

211
1ˆˆ

2 




kD

kykuk
kk

x
   (5.24a) 

 
     

 











otherwisek

kkifk
k






ˆ

ˆˆˆ
ˆ   (5.24b) 

where the parameter adaptation gain   20  adjusts the adaptation speed. 

Lemma 1: For the adaptation law in (5.22)-(5.24), the following properties are held: 

(P1)  k̂ ,  k̂  and  k̂ are bounded for all 0k . 

(P2)
 

 



















1 2

2

k kD

k
. 

(P3)
 

 
0lim 



kD

k

k


. 

(P4) For any positive integer p  

    


 pk

pkk
2

2
ˆˆ   

    


 pk

pkk
2

2

ˆˆ   

    


 pk

pkk
2

2
ˆˆ   

Proof: Introduce the Lyapunov function 

       kkkkL 222 ~~~     (5.25) 

Taking the difference of  kL  along the trajectories of (5.22)-(5.24) gives 
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kD
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 (5.26) 

Because  kL is a positive function, the properties of Lemma 1 can be proved by referring 

to projection algorithm in [83] (Appendix B). 

5.3.2.2 Control Input Design and Stability Analysis 

 

The adaptive nonlinear controller is determined as  

      tkukuku x  1     (5.27) 

where  kux  should satisfy 

 
     

             1ˆ1ˆˆ

1






kykkykusignkk

kyakr
ku

x

m
x




 (5.28) 

It can be seen that  

             01ˆ1ˆˆ
0   kykkykusignkk x                (5.29) 

By observing (5.28), it can be concluded that  kux  must have the same sign with 

     1 kyakr m .Thus,  kux  can be determined as follows. 
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If       01  kyakr m ,  kux  is calculated by 

 
     

         1ˆ1ˆˆ
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kyakr
ku m

x
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
  (5.30) 

If       01  kyakr m ,  kux  is calculated by 

 
     

         1ˆ1ˆˆ
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

kykkykk

kyakr
ku m

x




       (5.31) 

 

Theorem 1: For the system (5.10) controlled by (5.28), all the signals in the closed-loop 

system are bounded and the output tracking error  ke approaches zero as k  approaches 

infinity. 

Proof: Equation (5.28) can be expressed as 

                     111ˆ1ˆˆ  kyakrkykykukkykukkuk mxxx    (5.32) 

Substituting (5.32) into (5.18) yields 

       kykyakrk m  1  (5.33) 

From the definition of  kD  in (5.21), it gives 

       

     11

11





kyku2ku

kyku2kukD

xx

xx
  (5.34) 

Because the reference input  kr  is bounded, from (5.28), there exist positive constants 1B  

and 2B such that. 

   121  kyBBkux  (5.35) 

where (5.29) is employed. 

From (5.33), (5.34) and (5.35), it gives 
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 (5.36) 

Since
 

 
0lim 



kD

k

k


, and  1ma  there exist an instant K  and positive constants 1C , 2C and 

3C   such that 

      2

321 11  kyCkyCCky  (5.37) 

for all Kk  , where 12 C , and 3C  is a very small positive constant satisfying 
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ikk
k

Ki

k CCKyCCC   (5.38) 

At step ik  , multiplying both sides of (5.37) with iC2  gives  

      2

23

1

2212 1 ikyCCikyCCCikyC iiii  

 (5.39) 

where Kik  . 

Summing both sides of (5.39) from 0i   to 1 Kki  gives 

      2
1

23

1

221 iyCCKyCCCky
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Ki

ikKk
k

Ki

ik 








   (5.40) 

By applying the results in [84] (Page 193, Chapter 4) with  
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it can be concluded that the closed-loop output  ky is bounded and the upper bound is 

estimated as  
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From (5.35), the input variable  kux  is also bounded, which means that the input  ku is 

also bounded by observing (5.27). Then, from (5.34), it can be seen that  kD is bounded. 

Thus, property (P3) in Lemma 1 means   0lim 


k
k

 . Since      1 kyakykr dmd , as 

from (5.33), it means              111  keakekykyakyakyk mmdmd , which 

means   0lim 


ke
k

. It can be concluded that the tracking error will approach to zero 

asymptotically as k  goes to infinity. 

 

5.4 Simulation of MRAC 

In this section, the above methodology is illustrated on a hysteresis system as in (5.10). 

The actual parameters are chosen as 007.0  

001.0 , 0015.0 , 9995.0 , 9995.0 . The objective is to control the system 

output y  to follow a desired trajectory   ky k)*0.001*sin(2*4  . The control design in 

Section 5.3.2.2 is applied with the initial value of parameters are chosen as 

  5.00ˆ  ,   5.00ˆ   and   55.00ˆ  . The initial state is chosen as   2.10 y . 

The simulation results presented in Fig. 5.3 are tracking error and controller input. 
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Fig. 5.3 Tracking error and input for simulation 

 

5.5 Experiment of MRAC 

 

The experiments of MRAC are conducted with the same four reference trajectories  kyd1 , 

 kyd 2 ,  kyd 3 , and  kyd 4  as in other control techniques. The sampling time is chosen as 

0.0005 s.   and  are chosen as 0.9995 and 0.9995, respectively. Table 5.1 shows the 

experimental setting. 

 

Table 5.1 Experimental setting for MRAC 

  kyd1   kyd 2   kyd 3   kyd 4  

)0(̂  0.5 0.5 0.5 0.5 

)0(̂  0.5 0.5 0.5 0.5 

)0(̂  -0.7 -0.7 -0.7 -0.7 
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Sampling 

time (s) 
0.0005 0.0005 0.005 0.005 

Adaptive 

gain 
0.05 0.015 0.01 0.02 

  0.9995 0.9995 0.9995 0.9995 

  0.9995 0.9995 0.9995 0.9995 

In the first experiment with  kyd1 , the initial condition of  k̂ ,  k̂  and  k̂ are set to 

0.5, 0.5, -0.7, respectively. The initial value of output  ky  is assumed as 0. The adaptive 

gain  is chosen as 0.05.  

Fig. 5.4 shows the control input  ku . The estimates of parameters  k̂ ,  k̂  and  k̂ are 

shown in Fig. 5.5. Fig. 5.6 shows the tracking result between reference and actual 

displacement. The tracking error for  kyd1  is shown in Fig. 5.7. The computation time is  

shown in Fig. 5.8. 
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Fig. 5.4 Control input for experiment at 1 Hz in MRAC 
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Fig. 5.5 Estimated parameters at 1 Hz in MRAC 
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Fig. 5.6 Measured output and reference output at 1 Hz in MRAC 

It is observed that the maximum error is within m02.0  when the system is at steady 

state. 
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Fig. 5.7 Tracking error at 1 Hz in MRAC 
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Fig. 5.8 Computation time in MRAC 

In the experiment with  kyd 2 , the initial conditions of  k̂ ,  k̂  and  k̂ are set to 0.5, 

0.5, -0.7, respectively. The initial value of output  ky  is assumed as 0. The adaptive gain 

 is chosen as 0.015. 

Fig. 5.9 shows the control input  ku . The estimates of parameters  k̂ ,  k̂  and  k̂ are 

shown in Fig. 5.10. Fig. 5.11 shows the tracking result between reference and actual 
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displacement. The tracking error for  kyd2  is shown in Fig. 5.12. It is observed that the 

maximum error is within m1.0  when the system is at steady state. 
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Fig. 5.9 Control input for experiment at 10 Hz in MRAC 
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Fig. 5.10 Estimated parameters at 10 Hz in MRAC 
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Fig. 5.11 Measured output and reference output at 10 Hz in MRAC 
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Fig. 5.12 Tracking error at 10 Hz in MRAC 

In the experiment with  kyd 3 , the initial conditions of  k̂ ,  k̂  and  k̂ are set to 0.5, 

0.5, -0.7, respectively. The initial value of output  ky  is assumed as 0. The adaptive gain 

 is chosen as 0.01. 
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Fig. 5.13 shows the control input  ku . The estimates of parameters  k̂ ,  k̂  and  k̂ are 

shown in Fig. 5.14. Fig. 5.15 shows the tracking result between reference and actual 

displacement. The tracking error for  kyd3  is shown in Fig. 5.16. It is observed that the 

maximum error is within m2.0  when the system is at steady state. 
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Fig. 5.13 Control input for experiment at 30 Hz in MRAC 
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Fig. 5.14 Estimated parameters at 30 Hz in MRAC 
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Fig. 5.15 Measured output and reference output at 30 Hz in MRAC 
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Fig. 5.16 Tracking error at 30 Hz in MRAC 

In the experiment with  kyd 4 , the initial conditions of  k̂ ,  k̂  and  k̂ are set to 0.5, 

0.5, -0.7, respectively. The initial value of output  ky  is assumed as 0. The adaptive gain 

 is chosen as 0.02. 
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Fig. 5.17 shows the control input  ku . The estimates of parameters  k̂ ,  k̂  and 

 k̂ are shown in Fig. 5.18. Fig. 5.19 shows the tracking result between reference and 

measured displacement. The tracking error for  kyd4  is shown in Fig. 5.20. It is observed 

that the maximum error is within m05.0  when the system is at steady state. 
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Fig. 5.17 Control input for multiple frequencies signal in MRAC 
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Fig. 5.18 Estimated parameters for multiple frequencies signal in MRAC 
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Fig. 5.19 Measured output and reference output for multiple frequencies signal in MRAC 
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Fig. 5.20 Tracking error for multiple frequencies signal in MRAC 

 

5.6 Discussion 

MRAC shows that it has the best performance in term of tracking error among other 

control techniques. It’s about 0.2% at 1 Hz frequency. Another advantage of MRAC is that, 

model parameters need not to be identified and the control algorithm is simple. 
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However, when frequency increases, in order to have a good tracking, the transient 

respond is slow (around 1 to 2 seconds). Thus, the overall performance is not so high. 
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Chapter 6: Conclusions and Future 

Works 
 

 

6.1 Comparison Analysis 

 

This thesis has discussed the control design and experimental results on PEAs of five 

model based control methods, which are open-loop feedforward compensation based on PI 

model, conventional PI control, model predictive control, adaptive model predictive control 

and model reference adaptive control based on pseudo discrete-time Bouc-Wen model. 

The experiments are conducted with four difference frequency reference signals, which are 

1Hz, 10Hz, 30Hz and the combination of two sinusoid signals with different frequencies. 

Experimental results show that the performance of open-loop control is poor even at low 

frequency. On the other hand, PID control has good results at low frequency, fast transient 

respond, and the controller is simple. However, PID control fails to get a good performance at 

higher frequency. At 30 Hz frequency reference signal, the maximum tracking error is within 

%20 .  

Comparing to PID control, MPC and AMPC has a good control performance for low or 

high frequency, such as small tracking error, smooth tracking, and good transient respond. 

However, MPC is based on linear identified model; it will not work well in case the 

hysteresis nonlinearity is strong. Another disadvantage of MPC is the computation cost. The 

performance can be higher when the numbers of predicted steps are bigger, but the amount of 

calculation is also larger. Designers have to pay attention to this matter because when the 

calculation time increases, the sampling time also has to increase. 

Lastly, the MRAC based on pseudo discrete-time Bouc-Wen model has the best tracking 

error, but the transient respond is slow. Thus, the performance is not so high. The advantage 
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of MRAC is that, the model parameters need not to be identified. Moreover, all of system 

signals can be proved to be bounded, and the system is stable. 

Table 6.1 shows the comparison of control techniques. 

Table 6.1 Comparison between control methods 

 1Hz 10Hz 30Hz 

Multiple 

frequencies 

signal 

Feedforward 

control 
10 15 21 16 

PI control 1 6 20 1 

MPC 3 4 18 4 

AMPC 0.4 4 8 0.8 

MRAC 0.2 1 2 0.5 

 
Maximum error 

(%) 

Maximum error 

(%) 

Maximum error 

(%) 

Maximum error 

(%) 

 

6.2  Conclusions 

 

PEAs have been widely employed in various nano-positioning applications. However, 

hysteresis and other nonlinear effects greatly degrade the performance of PEAs. To exploit 

the full potential of PEAs in nano-positioning applications, this work presents the 

development of the model and its corresponding control schemes. 

Firstly, the PEAs are modeled using linear identified model. Even though this model 

cannot describe the hysteresis nonlinearities in PEAs, it can be used as nominal model for 

control purpose. In order to describe the hysteresis, classical Prandlt-Ishlinskii model using 

play operator is adopted. This model is validated experimentally. Another hysteresis model is 

introduced; it is the Bouc-Wen model. Comparing to PI model, Bouc-Wen model is 
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differential-equation-based hysteresis model, and it has less parameters. This model is 

modified into discrete-time form for control purpose. 

Secondly, several control methods are discussed and compared, which are feedforward 

compensation base on linear identified model, conventional PI control, model predictive 

control, adaptive model predictive control and model reference adaptive control. Each 

method has its own strength and weakness. Feedforward compensation with the explicit 

inversion of PI model shows that it can be used directly in open-loop control as in Chapter 2. 

However, the accuracy is not high. Another weakness of this model is that that classical PI 

model is limited to symmetric hysteresis, thus it is inappropriate to use this model for other 

types of smart actuators, such as magnetostrictive actuators which has an asymmetric 

hysteresis phenomenon. For the PI control as in Chapter 3, it is simple to design the controller 

and easy to be implemented. However, the system tracking performance is bad when the 

experiment is conducted at high frequency reference signals. It can be seen in Chapter 4 that 

the MPC and the AMPC show their effectiveness in control PEAs at various frequencies. But 

it is sensitive to system unknown effect, also the computation cost is needed to consider. 

Lastly, MRAC in Chapter 5 is proved to achieve the best results in tracking error 

performance, simple controller design, system stability is guaranteed, but it need long time to 

achieve steady state. 

 

6.3 Future Work 

 

- The tracking performance with feedforward compensation could be improved by 

combining it with feedback control techniques. Moreover, classical PI model can be modified 

so that it has ability to describe asymmetric hysteresis in other types of smart actuators. 

- As a further extension of this work, it would be interesting to extend feedforward 

compensation method and adaptive control method to other types of hysteresis models such 

as Preisach model, Duhem model, Maxwell model, etc. 

- This work only concerns the displacement control of PEAs without load. The tracking 

control of piezo-actuated system with load would be considered.  
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Appendix A 

 

Levenberg–Marquardt algorithm 

 

The curvefitting toolbox in MathLab uses Levenberh-Marquardt (LM) algorithm to 

identify parameters. 

The problem for which the LM algorithm provides a solution is called Nonlinear Least 

Squares Minimization. This implies that the function to be minimize is of the following 

special form: 

   



m

j

j xrxf
1

2

2

1
 (A1) 

Where  nxxxx ,...,, 21  is a vector, and each jr  is a function from RRn  . The jr  are 

referred to as a residuals and it is assumed that nm  . 

To make matters easier f  is represented as a residual vector r: mn RR  defined by 

        xrxrxrxr m,...,, 21  (A2) 

Now, f  can be rewritten as     2

2

1
xrxf  . The derivatives of f  can be written using 

the Jacobian matrix J  defined as  

i

j

x

r
xJ




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2

1
, mj 1 , ni 1 . 
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Consider the linear case where every jr  function is linear. Here, the Jacobian is constant 

and we can represent r as a hyperplane through space, so that f is given by the quadratic 

    2
0

2

1
rJxxf  . We also get    rJxJxf T   and   JJxf T . Solving for the 

minimum by setting   0 xf , we obtain   rJJJx TT 1

min


 , which is the solution to the 

set of normal equations. 

Returning to the general, nonlinear case, we have 

         xrxJxrxrxf
T

m

j

jj  
1

 (A3) 

         



m

j

jj

T
xrxrxJxJxf

1

22  (A4) 

The distinctive property of least squares problems is that given the Jacobian matrix J , we 

can essentially get the Hessian (  xf2 ) for free if it is possible to approximate the jr  by 

linear function (  xr j

2  are small) or the residuals (  xr j ) themselves are small. The Hessian 

in this case simply becomes  

     xJxJxf
T

  (A5) 

which is the same as for the linear case. 

The common approximation used here is one of near-linearity of the jr  near the solution 

so that  xrj

2  are small. It is also important to note that (A5) is only valid if the residuals 

are small. Large residual problems cannot be solved using quadratic approximation, and 

consequently, the performance of the algorithms presented is poor in such cases. 
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Appendix B 

 

Projection Algorithm 

 

Consider a nonlinear deterministic dynamical systems can be described by a model: 

    01 
T

kky   (B1) 

where  ky  denotes the system output at time t,  1k  denotes a vector that is a nonlinear 

function of output and input           ,...2,1,...,2,11  kykykukuk  and 0  is 

unknown parameters vector. 

The, projection algorithm is followed: 

   
 

   
      1ˆ1

11

1
1ˆˆ 




 kkky

kkc

ka
kk

T

T





  (B2) 

with  0̂  is given and 0c ; 20  a . 

Introduce the following notation: 

    0
ˆ~

  kk  (B3) 

       

   1
~

1

1ˆ1





kk

kkkyk

T

T




 (B4) 

Lemma 2: For the algorithm (B2) and subject to (B1), it follow that 

(i)       1;0ˆ1ˆˆ
000  kkk               (B5) 
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(ii) 
 

   








N

k
TN kkc

k

1

2

11
lim




                             (B6) 

and this implies 

(a) 
 

    
0

11

lim
2

1





kkc

k

Tk



               (B7) 

(b) 
     

    










N

k
T

T

N
kkc

kkk

1
2

2

11

11
lim




               (B8) 

(c)     




N

k
N

kk
1

2

1ˆˆlim                    (B9) 

(d)     




N

pk
N

pkk
2

ˆˆlim                        (B10) 

(e)     0ˆˆlim 


pkk
k

               (B11) 

for any finite p. 

Proof: (i) Subtracting 0  from both sides of (B2) and using (B1) and (B3), the following 

is obtained 

   
 

   
   1

~
1

11

1
1

~~





 kk

kkc

ka
kk

T

T





  (B12) 

Hence, using (B4), 

   
   

   

 

   1111

11
21

~~
2

22
















kkc

k

kkc

kka
akk

TT

T








  (B13) 

Since 20  a and 0c , it gives 

   

   
0

11

11
2 














kkc

kka
a

T

T




 (B14) 

and then (B5) follows from (B13). 
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(ii) Observe that  
2~

k is a bounded nonincreasing function, and by summing (B13), its 

gives 

   
   

   

 

   

 















k

j
TT

T

kkc

k

kkc

kka
ak

1

2
22

1111

11
20

~~








  (B15) 

Since  
2~

k is nonnegative, and since (B14) holds, (B6) can be concluded. 

(a) Equation (B7) follows immediately from (B6). 

(b) Noting that 

 

   

      

    2
22

11

11

11 




 kkc

kkkc

kkc

k

T

T

T








 

Equation (B8) can be established by using (B6). 

(c) Equation (B8) immediately implies (B9) by noting the form of the algorithm (B2). 

(d) It is clear that 

               
22

ˆ1ˆ...2ˆ1ˆ1ˆˆˆˆ pkpkkkkkpkk    

Then, using the Schwarz inequality, 

            






 
222

ˆ1ˆ...1ˆˆˆˆ pkpkkkppkk   

Since p is finite, the results follows immediately from (B9). 

(e) Equation (B11) follows immediately from (B10) 
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