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Abstract

This dissertation describes a research with respect to humanoid free

climbing robot. The design, implementation, and experimentation of

humanoid climbing robot are presented. The goal of my research is

develop a humanoid climbing robot, which can climb up autonomously

a vertical climbing wall while using the climbing technical similar to

those develop by climber. It means that humanoid climbing robot

uses only his hands and feet to make contact with terrain feature to

maintain static equilibrium.

In order to develop humanoid robot in a similar way, four fundamental

challenges must be addressed: robot design, sensing, motion planning

and motion control. Our work focuses on robot design (including sen-

sors) and motion planning. At that point, our robot is an integrated

system consisting of a sensing system and global and local planner

running offline.

The presented robot can be modified to improve the inherent ability

of the humanoid robot to climb complex terrain. It may also lead

to better performance and make other issues easier, such as motion

planning and control. Therefore, our work starts with rudimentary

analysis of mechanical structure and kinematic aspects of humanoid

robot. Then, the climbing robot simulation was design to optimize

performance, in particular to maximize the work-space reachable by

the robot hands.

In the motion control part, the method to calculate valid area to keep

balance is presented considering the equilibrium condition in order

to perform motion control. A four limb model is analyzed to clarify



those useful climbing technical should be apply for humanoid climbing

robot.

In the motion planning part, this dissertation focuses on a path plan-

ning and local planning algorithm for humanoid robot wall climbing

as the initial phase of our development. The first step is to acquire a

depth map to extract accurate information about climbing holds on

the vertical wall. Secondly, we propose a global planning algorithm for

the humanoid robot using data from Kinect. The proposed algorithm

ensures that the climbing robot finds the best route to climb up the

wall. During climbing, the humanoid robot utilizes the local planning

algorithm, based on quasi static equilibrium, to adjust its body pos-

ture in order to remain in equilibrium state. Finally, all algorithms

are evaluated with a simple practical example for a humanoid climb-

ing robot system, and its effectiveness is demonstrated experimentally

in a real environment.
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Chapter 1

Introduction

This chapter starts out by describing the humanoid climbing robot problem.

Then, the specific challenges are discussed and why current researches are not up

to meeting these challenges, which will later be used to motivate my proposal.

The end of this chapter presents the main contributions of this dissertation and

an outline of its organization.

1.1 Background and Challenges

Suppose it is possible that a humanoid robot could independently free-climb ver-

tical rock, much the same as the human climber. A humanoid climbing robot has

to figure out where he is going to put his foot and where he is going to try to

grab onto next holds. The robot can be fall down, swing against rock hard, twist

an ankle, and lose precious time at any misstep. Therefore, the robot must exam

the cliff above he to choose a sequence of hand and footholds. He always look

forward to plan the best route, and then climbs step by step with tremendous

care. We believe that humanoid climbing robot will be applied in the follow-

ing scenario: climbing over the already-rugged terrain to support rescue teams,

searching trapped climbers on the mountain, or even exploring rock faces on the

solar system. It is definitely a challenge and sort of a puzzle. Humanoid climb-

ing robot not only must decide how to adjust its posture to reach the next hold

1



1.1 Background and Challenges

without falling, but also it must plan an entire sequence of steps. These activities

present a new level of challenges for robotics.

Motivated by the challenges mentioned above, the main objectives of my re-

search is develop a humanoid robot equipped with appropriate sensing, planning,

and control and control capabilities to “free-climb” vertical and irregular terrain

to reach goal locations.

1.1.1 Aid Climbing Robots

Nowadays robotics is one of the most dynamic fields in scientific researches. Dur-

ing the last decades, interest in studying climbing robots has been increased.

This increasing interest has been appeared in many areas: mechanics, electronics,

medical engineering, cybernetics, controls, and computers. It seems that climb-

ing robots are useful devices that can be adopted in a variety of applications like

maintenance, building, inspection and safety in the process and construction in-

dustries. These systems are mainly used in places where direct access by a human

operator[84].

Up to now a lot of research has been devoted to wall climbing robots and

various types of experimental models have been already proposed. The major

two issues in design of the wall climbing robots are their locomotion and adhesion

methods. According to the adhesion method, these robots are generally classified

into four groups: magnetic, vacuum or suction cups, gripping to the surface

and propulsion type. Recently, new methods for assuring adhesion, based in

biological findings, have been proposed. The magnetic type principle implies

heavy actuators and is used only for ferromagnetic surfaces[83]. The vacuum

type principle is light and easy to control though it presents the problem of

supplying compressed air. With respect to the locomotion type, three types

are often considered: the crawler type, the wheeled type and the legged type.

Although the crawler type is able to move relatively faster, it is not adequate

to be applied in rough environments. On the other hand, the legged type easily

copes with obstacles found in the environment, whereas generally its speed is

lower and requires complex control systems[66].

2



1.1 Background and Challenges

In the last decades, different applications have been envisioned for these

robots, mainly in the technical inspection, maintenance and failure or break-down

diagnosis in dangerous environments.These tasks are necessary in bridges[13, 75],

nuclear power plants [80], or pipelines [77], for scanning the external surfaces

of gas or oil tanks [56, 77], and offshore platforms [13], for performing non-

destructive tests in industrial structures [30, 48], and also in planes [29, 74, 75],

and ships [59, 75]. Furthermore, they have been applied in civil construction

repair and maintenance [13], in anti-terrorist actions [91], in cleaning operations

in sky-scrapers [27, 31, 42, 67], for cleaning the walls and ceilings of restaurants,

community kitchens and food preparation industrial environments [26], in the

transport of loads inside buildings [60] and for recon-naissance in urban environ-

ments [78]. Their applications were also proposed in the human care [13] and

education [43] areas.

With respect to the locomotion type, the simpler alternatives usually make

use of sliding segments, with suction cups or magnets that grab to surfaces, in

order to move [26, 30, 31, 42, 67, 74, 80] (Figure1.1(a)). Although the crawler

type is able to move relatively faster, it is not adequate to be applied in rough

environments, being its main disadvantage the difficulty in crossing cracks and

obstacles.

Another possibility of locomotion is to use wheels [27, 56, 77] (Fig.1.1(b))

being these robots able to achieve high velocities. The main drawback of some

wheeled robots using the suction force for adhesion to the surface is that they

need to maintain air gaps between the surface where they move over and the

robot base.A final alternative for implementing the locomotion is adoption of

legs. Presently there are many biped robots (Figure1.1(c)) with the ability to

climb in surfaces with different slopes [19, 39, 40, 41, 50, 59, 62, 75, 78, 82] or

quadrupeds [48, 59] (Fig.1.1(d)) and robots with larger number of legs [59, 91].

Consequently, they are limited to environments consisting of glass, metal, or

other smooth surfaces. Recently, bio-inspired robot feet have been developed to

create robots that can climb on building walls, tiles, and other smooth surfaces.

Among them, Stickybot [49] uses a rubber-like material with tiny polymer hairs

made from a micro-scale mold to mimic gecko’s feet, while Spinybot [12] has

3



1.1 Background and Challenges

(a) ROBICEN III climbing robot. [80] (b) Wheeled climbing robot[66]

(c)(RAMR1) biped climbing robot[62] (d) Quadruped climbing robot[48]

Figure 1.1: Samples of climbing robots
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1.1 Background and Challenges

feet equipped with many tiny claws. See Figure1.2. None of these robots could

free-climb vertical terrain with both small and large irregular features.

(a)Stickybot(Stanford)[49] (b)Spinybot(Boston Dynamics)[12]

Figure 1.2: Stickybot climbs at surfaces, while Spinybot climbs surfaces with tiny

texture.

1.1.2 Free Climbing Robots

Compared to aid climbing robots, legged robots are potentially more capable

of traveling over challenging (e.g., steep and irregular) terrain. So, it is not

surprising that much research has been carried out in recent years to design such

robots, for instance humanoid robots[1], quadruped robots [61], and other multi-

limbed robots [89]. Figure1.3 shows a few of these robots.

Unlike aid climbing that takes advantage of special equipment, tools and/or

engineered terrain features, free climbing robot only relies on friction at the con-

tacts between the climber and the rigid terrain. So, a human free climber moves

on a steep rock crag or an artificial climbing wall using nothing else but her body

5
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1.1 Background and Challenges

(a)Ashimo[1] (b)Bigdog[61] (c)Athlete[89]

Figure 1.3: A few examples of legged robots.

(mostly her hands and feet) to make contacts with irregularly distributed terrain

features, such as protrusions, holes, ledges, and cracks.

To our knowledge, there has not been any major research project aimed at

developing an integrated autonomous multi-limbed robot equipped with appro-

priate sensing, planning, and control capabilities to “free-climbing” quasi-vertical

and irregular terrain to reach user-specified goal locations. To the best of my

understanding, Lemur IIb (Figure1.4(a)) represents the first attempt to build

a free-climbing robot in steep terrain found in space exploration. It is a pla-

nar fourlimbed climbing robot created by NASAs Jet Propulsion Laboratory[22],

LemurIIb robot consists of four identical limbs mounted on a circular chassis with

equal spacing between them. Each limb has three revolute joints, the two first

joints like a ”shoulder” and “elbow” (in plane) and one out of plane degrees of

freedom. At the end of each limb is a “finger”, a cylindrical peg wrapped with

high-friction rubber. A planner was developed for Lemur IIb [15, 18]

A continuation of previous research done at Stanford by Tim Bretl [15, 16,

17, 18], Kris Hauser [32, 33, 34] and Teresa Miller [64, 65] Capuchin robot was

designed and developed by Ruixian Zhang [94, 95, 96]. Capuchin robot (Figure

1.4(c)) is a four-limbed free climbing robot. It does not take advantage of special

tools, only relies on friction at the contacts between the its limbs and the rigid

terrain in order to remain its body in equilibrium. While moving, Capuchin

adjusts its body posture (hence, the position of its centre of mass) and exerts
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appropriate forces at the contacts in order to keep balance.

(a) LemurIIb Robot [15]. (b) Tenzing Robot [53]. (c) Capuchin Robot [95].

Figure 1.4: These example of free-climbing robots

Tenzing (Figure 1.4(b)), another free-climbing robot, was built at Dartmouth

College [53]. Like Lemur, it is a four-limb planar robot with two revolute joints

in each limb. A hobbyist servo motor is used on each elbow and shoulder joint.

Tenzing is designed to climb a planar wall with artificial terrain features. A force

sensor is mounted on each limb endpoint to control the magnitude of the contact

force along the vertical direction. The body has a tilt sensor used to keep the

body upright. A camera, not mounted on the robot and located at some distance

away from the wall, is used to determine the position of the robot and locate

terrain features on the wall. It is reported in [53] that the robot can climb in an

interactive mode and in an automatic mode. In the interactive mode, a human

user enters a sequence of holds on a graphic interface. In the automatic mode, a

program automatically plans a path up the wall. The details of the control and

planning algorithms are not available.

1.1.3 Challenges of Humanoid Climbing Robots

The objective of these projects mentioned above is to create a multi-limbed robot

capable of climbing vertical terrain autonomously. Nevertheless, in this disserta-

tion, I want to introduce a new approach in this field by enlarging enhancing the

capabilities of humanoid robot to autonomously climb up configurable climbing

7
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walls using techniques similar to those used by human free climbers. Humanoid

climbing robot (HRC) is subject to the same constrains as a humanoid free-

climber. At each configuration, some of HRC’s hands must be in contact with

holds, on which it can stand and balance without falling (see in Figure 1.5). To

reach a goal location, HRC must move along a continuous path through such con-

figurations, walking up the rock surface on a sequence of holds. Typically, there

is no repeated pattern of limb motions (no gait), nor is there any local indication

of the direction in which to climb. Therefore, multi-step planning is necessary in

order to decide which hold the robot should grab next, and how it should adjust

its posture in order to do so.

Creating a humanoid climbing robot is obviously a challenging project. The

main objective is interesting, however to achieve this goal there are several of

important technical areas of robotic should be developed. For example complex

planning, multi-contact control, equilibrium maintenance, and delicate use of

sensor feedback, not to mention the larger number of degree of freedom of a

humanoid robot.

1.2 Objectives

Motivated by the challenges mentioned above, the main objectives of the disser-

tation was to enable a humanoid robot to climb an indoor, artificial rock surface.

This surface is near-vertical, planar, and is covered with the same small features

of irregular shape that are used in indoor “climbing gyms” for human climbers

such as the climbing wall in Figure 1.5. The features are easily attached or

removed from the surface, so many different environments can be constructed.

Human climbers typically refer to each environment as a route or problem to

be “solved.” HRC are intended method to give humanoid robots the capability

to autonomously climb without equipped tools, such as drills or, section cups in

a real environment in order to accomplish search and rescue tasks on mountain

faces or broken urban terrains.

8
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Figure 1.5: Climber keeps balance on the climbing wall.

As we have already mentioned, a humanoid climbing robot is challenging be-

cause it only relies on friction at the contacts between the robot and selected

holds. For a robot to free climb, four fundamental objectives must be consid-

ered: System design, sensing, planning and control. These main objectives of the

dissertation are as follows:

• System design and modeling robot. Design and construction of a hu-

manoid climbing robot system should be presented. Moreover, rock climb-

ing technique should be master to apply for humanoid robots. A humanoid

climbing robot modeling should be created in Matlab-Simmechanics.

• Sensing. Using vision (Kinect Microshoft) to observe the entire climbing

wall, and detect the holds ’s position.

• Motion Planning. Global motion planning is developed to identify the

best route, and robot can follow this route to climb up the wall with the
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current climbing wall configuration. In addition, a local planner should be

developed to support humanoid robot during climbing process.

• Motion Control. An four limb climbing robot is analyzed to explore how

this model can maintain robot’s body in equilibrium. How this model make

contact with holds to make sure that reaction forces keep the robot in static

equilibrium.

1.3 Contributions of this Dissertation

The overall objective of the schemes proposed in this dissertation is to develop

a humanoid robot capable of climbing vertical terrain autonomously using tech-

niques similar to those used by human free climbers. The contributions of the

dissertation are as follows:

• Firstly, in order to make robot climb walls successfully, the robot model

is designed considering equilibrium of force and moment. Then, amount

of useful climbing technical of climber apply for humanoid robot is present

throughout this dissertation. Moreover, I study the problem of forward

kinematic and inverse kinematics for the Kondo KHR-3HV and propose a

complete analytical solution to both problem, including a software library

implementation. In addition, humanoid climbing robot modeling in Simme-

chanics is finally present. Simulation results show that the modeling could

keep balance on the wall and continue to free climb.

• Secondly, the method to calculate reachable area to keep balance is pre-

sented considering the equilibrium condition in order to perform motion

control. In addition, I propose the theory for position control for humanoid

climbing robot.

• Finally, I propose global path and local motion planning for humanoid

climbing robot. The first step is to acquire a depth map to extract accurate

information about climbing holds on the vertical wall. Then, we propose a

global planning algorithm which ensures that that the climbing robot finds

10
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the best route to climb up the wall. During climbing, the humanoid robot

utilizes the local planning algorithm, base on quasi static equilibrium, to

adjust its body posture in order to remain in equilibrium state. At last,

a simple practical example is experiment, and its and its effectiveness is

demonstrated experimentally in a real environment.

1.4 Structure of this Dissertation

This section discusses an overview of each chapter, which is detailed below

Chapter 2 is “Previous study”: It discuses the history and origin of a humanoid

robot, and a humanoid climbing robot. Where does the word humanoid climbing

robot come from? Evolution of the robot are recorded from the past to the

present. It aims for fundamental stage before into the research.

Chapter 3 introduces a “Methodology”. An overview of humanoid climbing

robot system is described. It discusses physical and components of the model

robot are used to research climbing simulation and experiment. In this research,

a Kondo robot (KHR-3HV) is used as a prototype climbing robot.

Chapter 4 starts with climbing technique analysis. After that, a rudimentary

analysis of mechanical structure and kinematics of HC robot is shown. Secondly,

a 3D humanoid climbing robot is built and simulated in Matlab-Simscape envi-

ronment, and next, this model is used to perform statics and dynamics motions

as some basic climbing motions

Chapter 5 presents in detail the equilibrium control, and a four limb model is

proposed. Also, the strategy to compute valid area to keep balance is described

considering the balance condition to perform movement control.

Chapter 6 focuses on a global path planning and local planning algorithm for

humanoid robot wall climbing as the initial phase of our development. The first

step is to acquire a depth map to extract accurate information about climbing

holds on the vertical wall. Secondly, we propose a global planning algorithm for

the humanoid robot using data from Kinect. The proposed algorithm ensures

11



1.4 Structure of this Dissertation

that the climbing robot finds the best route to climb up the wall. Finally, all

algorithms are evaluated with a simple practical example for a humanoid climb-

ing robot system, and its effectiveness is demonstrated experimentally in a real

environment.

The dissertation ends with conclusions and future works in the chapter 7.
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Chapter 2

Literature review

This chapter deals with the history of some humanoid robots developed by a few

groups around the world, mainly concentrated in Japan.

2.1 Humanoid Robot Researches

A humanoid robot is a robot that has a human-like shape, though normal peo-

ple consider robots as humanoid robots because the robot’s appearances are de-

scribed like humans in many fiction books. Humanoid robots can be devised to

fulfill tasks, such as working with human tools or to be used for experiments to

study human behaviors, such as balancing, walking, running and so on. Overall,

humanoid robots comprise all main parts of a human body including head, torso,

two arms, and two legs or just a portion of body like upper and lower bodies.

Sometimes, the head is equipped with eyes, nose and mouths to simulate facial

features.

Robotics Researchers have put the humanoid in their goals/objectives from

which dream up variety of applications. On the whole, researchers approach

humanoid in purely intellectual or practical ways. In the first way, MIT, NASA,

ERATO and the ATR groups study artificial intelligence and human manners

based on computational scientific methods. On the other hand, people develop

a humanoid from which invent practical applications; one of typical examples is
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2.1 Humanoid Robot Researches

the Humanoid Robotics Project (HRP) of the Ministry of Economy, Trade and

Industry (METI). [86]

2.1.1 The Humanoid robot at Waseda University

WABO - Waseda robot

In the dawn of humanoid robots, research groups on the world mainly located

in Japan. Ichiro Kato and his colleagues started the WABOT Project in 1970

[2]. Since then, just about ten years, with the state of art technologies, they have

developed a diversity of humanoid robots especially the WABOT-1 [36], (see in

Figure 2.1(a)).

(a) WABOT-1(1973) [36]. (b) WABOT-2(1984) [85].

Figure 2.1: Humanoid robots from Waseda University

WABOT-1 could perform a lot of human-like behaviors, for instance, perceiv-

ing and manipulating the objects by vision and two hands, communicating with

people in Japanese, and walking on two legs. The WABOT-1 approximately had
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the mental ability like a one-and-half-year-old child. Ichiro Kato’s group also

developed WABOT-2 in 1984 [85] (see in Figure 2.1(b)). Besides communication

ability, the robot musician Wabot-2 could operate more difficult behaviors such

as reading and playing electronic organ. The WABOT-2 was also able to accom-

pany a person while he listened to the person singing. WABOT-2 played a piano

at Tsukuba Science Expo’s85 in Japan. He was the first milestone in developing

a ”personal robot”.

WABIAN - Waseda biped humanoid

In 1996, in purpose of cooperative dynamic walking and co-operate working

with humans, a biped humanoid robot called WABIAN was developed with fol-

lowing designs. (1) The biped robot should have the average size of an adult

Japanese woman to co-operate with humans in working. (2) The robot could

walk at approximate human speed. (3) The robot should have 3 DOF trunk

and 6 DOF arm. (4) The joints of the robot should use electric servomotors.

(5)A control computer and motor drives except power supply should be installed.

WABIAN had a total of thirty-five mechanical DOFs; twelve DOF legs, fourteen

DOF arms, a two DOF neck, four DOFs in the eyes and a torso with a three DOF

waist. They have carried out a variety kinds of walking such as dynamic forward

and backward walking, marching in place, dancing, carrying a load, emotional

walking, etc [72] (see in Figure 2.2(a)).

The next version, WABIAN-RV [20] (see in Figure 2.2(b)), WABIAN-RV has

a total of forty-three mechanical DOFs and control systems. He could perform

different walking motions based on the online pattern generation method boost-

ing environmental adaptability. Moreover, thanks to combining the methods

of ”generating and teaching macro command by voice command” and a voice

recognition system, WABIAN-RV walking motions was generated in both the

on-motion-mode and the off-motion-mode.

The Wabian 2R project

The humanoid WABIAN-2R [71], as shown in Figure 2.3 developed by Waseda

University, Japan could simulate the walking gait of a human due to a 2-DoF

waist mechanism and a passive joint on the foot for bending toe motion, which
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(a) WABIAN (1996) [2]. (b) WABIAN-RV(2003) [20].

Figure 2.2: The WABIAN and WABIAN RV humanoid robots

allows it to execute stretched knee walking with heel-contact and toe off motions,.

WABIAN-2R has the height of 1.48m and weight of 67.5 kg with batteries. The

mechanical framework of WABIAN-2R is mainly made of Aluminum alloy in order

to achieve antithetical concepts: light weight, high stiffness and wide movable

range.

2.1.2 Honda humanoid robots

In 1986, Honda started a humanoid robots project, then 10 years later they

introduced a Honda humanoid robot P2 [1] (see in Figure 2.4(a)), 180 cm height

and 210 kg weight, which opening the new era of humanoids. It is the first time

in the world, one humanoid robot can walk on biped legs in such a stable way and

carry on body a computer and batteries. After that, Honda continued to release
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Figure 2.3: The WABIAN 2R humanoid robot [71].

P3 (Figure2.4(b)), 160 cm height and 130 kg weight, in 1997, and ASHIMO

(Figure2.4(c)), 120 cm height and 43 kg weight, in 2003.

Most the old humanoid robot used heavy gears with large backlash and me-

chanical links made by bending or cutting that made robot’s structure was not

rigid enough, since those robots were mainly manufactured with limited budget

mostly from graduate students and small companies. Honda humanoid robots,

on other hand, used not only harmonic driver with high torque capacity and

no backlash, but also cast mechanical links with high rigidity and light weight

with support of most advanced mechanical CAD. Since then, the configuration

of Honda humanoid robots became the standard to be compared with for most

advanced humanoid robots.
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(a) P2 (1996). (b) P3 (1997). (c) ASHIMO (2000).

Figure 2.4: These example of free-climbing robots

2.1.3 The HRP project

The Humanoid Robotics Project (HRP) is a project for development of general

domestic helper robots, sponsored by Japan’s Ministry of Economy , Trade and

Industry (METI) and New Energy and Industrial Technology Development Or-

ganization (NEDO), spearheaded by Kawada Industries and supported by the

National Institute of Advanced Industrial Science and Technology (AIST) and

Kawasaki Heavy Industries, Inc. The HRP series also goes by the name Promet.

There are two essential characters of humanoid robots for HRP consisting of

abilities to work in the environments for human as it is and to can use tools

for human as it is. The first feature is exploited by apply humanoid robots in

maintenance jobs of industrial plant such as Humanoid robot HRP-1 [37, 38](see

in Figure 2.5(a)) being able to operate the tasks in a modeling industrial plant

encompassing stair, ramps and pits. The second feature is utilized by fulfilling a

teleoperation system for an industrial vehicle where a human operator controls

a humanoid robot to drive an industrial vehicle. In Figure 2.5 (b) a backhoe is

driven by humanoid robot HRP-1S [92].

HRP-2 [46] (see in Figure 2.6) is the final robotic platform for the Humanoid
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(a) HRP-1 [37]. (b) HRP-1S is driving a backhoe [20].

Figure 2.5: The WABIAN and WABIAN RV humanoid robots

Robotics Project headed by the Manufacturing Science and Technology Center

(MSTC). Kawada Industries, Inc. together with the Humanoid Research Group

of National Institute of Advanced Industrial Science and Technology (AIST) de-

veloped whole robotic system. HRP-2s, 154 cm height and 58 kg weight, has 30

degrees of freedom (DOF) including two DOF for its hip, and its highly compact

electrical system packing enables it to forsake familiar ”backpack” equipped for

other normal robots. In addition, it can walk in a circumscribed space.

The next model of HRP-2 is Humanoid Robotics Platform 3, HRP-3 [45],

whose the mechanical configuration is the almost same as that of HRP-2, while

the number of driven joints is slightly increased (see in Figure 2.6). Thanks

to new design of main mechanical and structural components and, HPR-3 can

inhibit the penetration of dust or spray. Besides, not only new designs of wrist

and hand enhance manipulation, but also the software improves performance

in real environment. Two outstanding features of HRP-3 are walking on a low
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Figure 2.6: The HRP-2, HRP-3 and HRP-4 humanoid robots.

friction surface like a frozen road, manhole covers with rain water and stable

turning during a shower without any troubles.

Slim and lightweight HRP-4 [47] (see in Figure 2.6), 154 cm height and 58

kg weight, has 34 degrees of freedom with 7 degrees of freedom for each arm

to facilitate object handling and has a slim. The HRP-4 software system used

the software platform OpenRTM-aist and a Linux kernel with the RT-Preempt

patch.

2.1.4 Universities and Research Institutes

Waseda University has been one of the main research destinations for humanoid

robots since the late Prof. Ichiro Kato and his associates began the WABOT

Project in 1970. From that point forward, pretty much ten years, they have built

up an assortment of humanoid robots including WABOT-1 which is the first full-

scale human-like robot made in 1973, the musical artist robot WABOT-2 in 1984,
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and the biped walking robot WABIAN in 1997.

In addition, University of Tokyo presented HRP-2 in 2010 which can deal with

objects of obscure weight base on online estimation of the operational force[70].

Also a biped robot with ability to balance - even after being kicked has been

researching by a group which is let by professor Masayuki Inaba [87].

Obviously, humanoid robot exploration is not constrained in Japan. For exam-

ole, we can see HUBO2 by Korea Advantaged Institute of Science and Technology

(KAIST)[21], LOLA by Technische Universitat of Muchen (TUM) [55], CHARLI

by Virginia Polytechnic Institute and State University [51], BHR-2 by Beijing

Institute of Technology [90], iCub by Italian Institute of Technology (IIT), the

university of Genoa [63], and TORO by the German Aerospace Center (DLR)

[73].

2.1.5 Companies

There also exits many humanoid robot developed by companies. Several of promi-

nent companies will be review in this part. Honda Honda’s been working on

ASIMO robot series for the better part of two decades. The latest ASHIMO

comes with an amount of physical improvements, counting new legs that’ll adapt

to uneven landscape, walk rearward and even run at rates of about six miles an

hour. At that point there are the overhauled hands, which now have 13 degrees

of freedom, allowing the robot to hold and control objects without smashing or

dropping them.

Toyota Toyota Motor Corporation presented a trumpet playing humanoid

robot at the EXPO 2005. In addition, at the Shanghai World Expo Toyota’s

famed violin-playing robot excited the swarm of visitor with a performer of Chi-

nese song. Samsung A South Korean company Samsung Electronics, has been

also developing humanoid robots with the Korean Institute of Science and Tech-

nology (KIST). They presented the latest humanoid robot, Robaray, at IROS

2012 in Portugal. This robot can perform natural walking motion compared to

the conventional knee bent walkers [52].
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Boston Dynamics [3] Boston Dynamics is an engineering and robotics de-

sign company that is best known for the development of BigDog, a quadruped

robot designed for the U.S. military. In 2012, they develop a humanoid robot

PETMAN for testing chemical protection clothing [68]. The bipedal robot weighs

about 80kg (180lb) and is nearly six feet tall (1.75m). PETMAN demonstrated

a top walking speed of about 4.4mph (7.08km/h), making it the fastest bipedal

robot in the world (Honda’s Asimo robot has a top walking speed of 7km/h).

There are numerous sorts of little humanoid robots for interest or examination.

These humanoid robots are worked in distinctive stages grew by diverse organi-

zations. Such as, we can choose NAO by Aldebaran Robotics [4], DARwIn-OP

by ROBOTIC [5], PALRO by FujitSoft [6], or or KHTI serie by Koudo Kagaku

Co. Ltd [7].

(a) NAO [4] (b) DARwIn-OP [5] (c) PALRO [6] (d) KONDO[7]

Figure 2.7: Small Humanoid Robots

2.2 Previous Review on Humanoid Climbing Robot

There are a number of humanoid robots that have been recently built through-

out the world. The prototypes Gorilla III [57], HRP-2 [69, 88], SCHAFT [8],

and DRC-HUBO [58] could climb general ladder and stair-like structures. In [57]

Gorilla-type robot (shown in Figure 2.8(a)) was shown to climb a vertical ladder

having in mind transitions toward multi-modal locomotion capabilities. They

22

Chapter2/Chapter2Figs/EPS/Nao.eps
Chapter2/Chapter2Figs/EPS/darwin.eps
Chapter2/Chapter2Figs/EPS/Palro.eps
Chapter2/Chapter2Figs/EPS/kondo.eps


2.2 Previous Review on Humanoid Climbing Robot

(a) Gorilla Robot [57]. (b) HRP-2 Robot [88].

(c) Schaft Robot [8]. (d) DRC-HUBO Robot [58].

Figure 2.8: These example of humanoid ladder climbing robots

achieved three different climbing gaits: transverse, pace with constant velocity

and trot with acceleration. Motivated by the DARPA Robotics Challenge (DRC)

[9], the HRP-2 humanoid robot (Figure 2.8(b)) was integrated multi-contact plan-

ner and multi-objective QP control as basic components to can climb vertical in-

dustrial norm ladders. In fact, the winning SCHAFT (Figure 2.8(c)) team could
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climb the DRC ladder without even using its arms. The The DRC-HUBO hu-

manoid robot (Figure 2.8(d)), based on multi-contact planning [97], could climb

almost all of it [58].
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Chapter 3

Humanoid climbing Robot

System Design

This chapter we introduce an overview of my humanoid climbing robot system.

This system include a humanoid climbing robot and a climbing wall. The system

design requires making trade offs among many factors, such as functional capabil-

ity and complexity, weight and strength of mechanical parts, weight and power

of actuators, cost and performance of sensors, and so on. It is a complicated

process that has not a single optimal solution. There is no standard method

to comparatively evaluate the end result. The high-level guideline that we used

throughout our work is to achieve the functions needed for free-climbing with the

simplest possible design.

3.1 Hardware platform

3.1.1 KONDO KHR-3HV

We select KHR-3HV manufactured by Kondo[7] as a prototype to develop

humanoid climbing robot. Then, I have implemented my motion planning and

motion control on this robot. Since there is no model to be emulated, every part

of this project has to be developed. The humanoid robot KHR-3HV is the third
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generation of humanoid robots developed by KONDO KAGAKU Co.Ltd. This

robot has 22 degrees of freedom (DOF), and two of degrees of freedom of the 22

degrees of freedom have been added in order to enable climbing in the open leg.

Figure 3.1: Kondo robot and an application of the robot.

3.1.2 Geometric dimensions

The humanoid robot in Figure 3.1 consists of a lot of rigid segments intercon-

nected with joints. The humanoid robot mechanism has 22-DOF. The dimention

of the Kondo KHR-3HV robot is presented in Figure 3.2 and Table 3.1

3.1.3 Hardware modification

Although human climbers sometime use their fingers to grip climbing hods, in

this research I focus on the basic moves based on simple contacts. I found that at

the point when numerous fingers are utilized together, the generalized force will
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Figure 3.2: Dimention of Kondo KHR-3HV robot

be generated. This force is same with a force which is generated by open hand

grip (lock like rigid angle bracket).

The humanoid robot does not have any mechanism to grasp holds, but it

comes with an angles bracket as hand. Hence, the only chance to grab holds

is obtained by pressing its arms together. To be able to climb, the hands of

humanoid robot needs to be modified so the modified hands can hold into grips,

hold their positions and pull themselves as shown in Figure 3.3.

3.1.4 Shoulder joints

Each HRC’s shoulder joint has an angular range of 0 to 210 degrees.
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Table 3.1: Kondo KHR-3HV robot-Body measures

Part name Length[m] Mass[kg]

Head 0.035 0.052

Torso 0.148 0.678

Single leg 0.233 0.264

Single arm 0.188 0.126

Whole body 0.401 0.151

Figure 3.3: The original and modified hand

3.1.5 Elbow joints

Almost free climbing robots have elbow angle from -90 to 90 degrees. There are

two limitations in this decision. To start with, the elbow of this sort of robot can’t

curve past 90 degrees (in any case) and as an outcome the work-space reachable

by a hand is restricted to a moderately limited district. This constraint keep

robots from accomplishing some essential climbing postures regularly utilized by

human climbers, which require folding a climbs almost completely. Furthermore,

since the joint has the capacity twist to both sides in respect to its straight

design, every appendage has two reverse kinematics arrangements, making control

possibly more confounded. Rather, my humanoid robot’s elbow point can change

between 45 to 245 degrees. This peculiarity expand the work-space area reachable

by hands ( Will be mentioned in detail in Chapter 5)

28

Chapter3/Chapter3Figs/EPS/hand.eps


3.1 Hardware platform

Table 3.2: Physical parameters of the KRS-2552HV ICS Servo robot

Physical parameters value unit

Maximum Operating Angle 270 ◦

Maximum torque 14 kg/cm

Maximum speed 0.14 S/60◦

Dimension 41 X 21 X 30.5 mm

Weight 41.5 g

3.1.6 Actuators

Kondo KRS-2552HV ICS Red Version Servo Figure 3.4, Tab.3.2

The Kondo KRS-2552HV ICS Servo Motor Red Version was first introduced

in KHR 3HV and is compatible with RCB-4HV as well as with the ICS USB

Programmer HS (High Speed). The use of a serial protocol allows the connection

of several servos in a Daisy chain. By connecting in a Daisy chain the number of

cables is reduced and therefore prevents troubles regarding disconnection while

improving cable routing.

Figure 3.4: KRS-2552HV ICS servo motor red version

29

Chapter3/Chapter3Figs/EPS/motor.eps


3.2 Control System and Sensors

3.2 Control System and Sensors

This section introduces the electronic components which are mounted in body

of the humanoid climbing robot. They are separated to 3 parts as the processor

part, the sensor part, and the actuator part. The new micro controller board

RCB-4 enables the control of up to 35 serial servos. It is compatible with ICS3.0

(serial) servo protocol and a wide range of options parts. The board also includes

several extension ports (10x A/D and 10x PIO) which enable use of a wide range

of sensors and extension options. KHR 3HV uses KRS-2555HV servos, the first

Kondo servo to use ICS 3.0. Use of a serial protocol allows connection of several

servos in a Daisy chain. By connecting in a Daisy chain the number of cables are

reduced and therefore it prevents troubles regarding disconnection and improves

cable routing, and their specifications are written as the followings:

3.2.1 Microprocessor board

Kondo - RCB-4HV Robot Controller is shown in Figure 3.5

Features:

M16C/26A microcomputer by Renesas Technology has been adopted. It con-

tains eight SIO ports for two systems of ICS3.0 compliant device, and it can

connects up to sixtyfour ICS3.0 devices. With ten AD ports, multiple analog

sensors can now be used. Further, AD input for power management is available

separately. Ten PIO ports have been newly mounted.In addition, the micropro-

cessor board also use ON/OFF switch and light up of LED. The COM ports

enable a maximum speed of 1.25 Mbps. EEPROM, known for its high-speed and

high capacity, has been adopted:

Specifications:

Dimensions: 45 x 35 x 13 (W x H x D) mm. Weight: 12g Interface: SIO port,

COM port, AD port, PIO port Power Supply Voltage: Our specific HV power

source is recommended. Minimum 6 V, Maximum 15 V. (Does not necessarily

guarantee motion of device.) Internal Voltage: Set at 5 V by a regulator (for 1 A).

Power Supply Terminal: Use battery or stabilized power supply corresponding to
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3.2 Control System and Sensors

Figure 3.5: RCB-4HV robot controllers

the above operating voltage. Com port: It a used for data communication by

connecting to PC using serial USB adapter HS. Conventional serial USB adapter

can also be used. (When using conventional product, communication speed may

be limited.) AD port: For connecting analog device. Operating voltage is 0 to

5 V. Check maximum current for device needing power supply. PIO port: For

connecting digital binary input/output device. Can be used as an output and

operating voltage is 0 V (LOW), 5 V (HIGH). Resistance is connected in series, so

LED can be connected directly. However, please check operating voltage for the

LED. SIO port: For connecting device corresponding to ICS. Operating voltage

is the same as power supply voltage. DO NOT CONNECT device corresponding

to 0 to 5 V (such as analog sensors). Operation may be limited according to the

corresponding version of the connected device.

3.2.2 Gyro Sensor

Kondo KRG-4 Gyro Sensor Figure 3.6 The KRG-4 gyro sensor detects angular

velocity quickly and correctly, helping a stable autonomous function. It is com-

patible with RCB-3 (KHR-1HV, 2HV and Manoi) and is also compatible with

RCB-4 (KHR-3HV). We getting two of these for your robot to assist in Forward

as well as Side Stabilization simultaneously.
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3.3 Climbing Wall

Figure 3.6: KRG-4 gyro sensor

3.3 Climbing Wall

Figure 3.7: Humanoid climbing robot on the wall: the first type of hold is a small

ring (left), and the second type is a climbing hold(right)
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3.3 Climbing Wall

Two climbing walls used in our experiments is a vertical planar board with

artificial terrain holds mounted on it (Figure 3.7). We consider two type of holds.

The first type is a small ring (see in Figure 3.7(left)) and the second type is same

with holds which often are used in climbing gym clubs (see in Figure3.7(right)).

Each hold can easily be mounted any where on the board with any orientation.

By selecting and distributing such holds differently on the climbing wall, terrains

with various levels of difficulty can be created to perform climbing experiments

(Chapter 5 and Chapter 6).
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Chapter 4

Humanoid Climbing Robot

Modeling

This research is undertaken to improve technologies that enable the design and

implementation of a humanoid robot able to climb vertical natural terrain. Hu-

manoid climbing robot (HC Robot) is designed to climb up a climbing wall totally

autonomously, and it is expected to be useful to rescue in disaster area. It seems

more difficult to analyze the dynamic character of humanoid climbing robot be-

cause of the complexity of mathematical description. Therefore, this chapter

starts with climbing technique analysis. After that, a rudimentary analysis of

mechanical structure and kinematics of HC robot is shown. Secondly, a 3D hu-

manoid climbing robot is built and simulated in Matlab-Simscape environment,

and next, this model is used to perform statics and dynamics motions as some

basic climbing motions.

4.1 Introduction

Nowadays, engineers are, more and more, supported from software in the design-

ing, manufacturing process. The benefits of using the software are to reduce time,

early find errors, and decrease cost [83]. SolidWorks, Inventor, Pro/Engineer, etc.,

are the strong Computer Aided software in terms of designing, simulating and
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4.2 Climbing Technique

preparing for manufacturing process, whereas to physically model and simulate

the operation of the system, we also have many choices such as: Matlab/Simulink,

MapleSim, Vizard, Robotic studio and so forth. In this study, we take advantage

of the strong points of 3D modSoftware as well as physical modeling software to

simulate the humanoid climbing robot.

D.Le, H.Kang and Y.Ro [24], C.Yun, C.Rong and S.Jian [93] and J.Liu,

G.Chen, Y.Gong and H.Chen [54] showed two ways to establish the SimMe-

chanics diagram: the first one is through converting the model from 3D software

to XML file and the other way is by building the model directly in the Simscape

environment. The first method (SimMechanics first generation) is faster, more

convenient than the second one; however, the disadvantage of these models are

that they were built in Simulink platform with dimensionless Simulink signals

and it is difficult to pan, zoom or rotate the models during simulation. In the

second method, it takes quite lot of time and labor to build the 3D model, how-

ever after that we will have physical signal model and have better performance

of simulation.

The new version of Matlab R2012b supports for code generation and import

of CAD models through second generation in SimMechanics. As a result, it

overcomes the drawbacks of the first method and takes advantage of the second

one that is mentioned above. In this paper the process of using SimMechanics

second generation of Simscape platform to convert the humanoid climbing robot

from 3D Solidworks environment was shown. After that simple PID controller

for the system was applied to control the 3D model perform some basic climbing

motions.

4.2 Climbing Technique

Free climbing and bouldering have been recognized as fascinating sports[14, 81].

Then many climbing gyms are opened. It is not only fun but tells us some

important clues to understand human body nature. On the other hand, climb

technique is useful to move to desired place in uneven dangerous terrain. If
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4.2 Climbing Technique

practical climbing robots are developed, it seems to be very convenient and safe

for us. The reason that we use type of humanoid is that the conventional climbing

technique and knowledge can be made use of to robots without the change of

structure.

To perform the above object, climbing technique and structure of humanoid

robots should be analyzed theoretically. However, it is not easy to develop high-

quality climbing robots in short period. Therefore, this paper starts the explana-

tion of the analysis using the simplest model.

4.2.1 Climbing Technique with The Simplest Model of

Climbing

(a) Face climbing. (b) Abseil

Figure 4.1: Climbing motion at a natural wall

Climbing walls are categorized into natural walls and artificial walls, but the
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4.2 Climbing Technique

principle of climbing technique is equal to each other. As shown in Figure 4.1,

the climber uses his four limbs. The soles of his shoes can be watched because

his toes support his body weight on tiny foot-holds. Generally, Hand-holds and

foot-holds are often tiny, so climber needs to master special technique to keep his

balance and to move up his body.

Figure 4.2: Simplest Humanoid Climbing Robot

Basic climbing motion is called ladder climbing because it is similar to real

ladder climbing. Figure 4.2 illustrates the image of ladder climbing. It is natural

that climber cannot move up when he cannot reach the next hold.

The first priority for climbing is to keep the body still by proper distribution

of power. The principle of the distribution is given by Σfi = 0,Σni = Σpi × fi.

Where Σfi is a supporting force vector acting at end-effector i. And pi is a

position vector denoting the position of end-effector i.

Figure 4.3 illustrates an example using the simplest model of climbing. The

climber is expressed by a mass and two sticks. The upper stick simplifies the

arms and the lower stick simplifies the legs in two dimensional representation

space. The arrows represent forces to the climber. The corresponding forces and
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4.2 Climbing Technique

(a) Frictionless wall. (b) Ragged or frictional wall.

Figure 4.3: Equilibrium forces between climber and wall

moment equilibriums are expressed as

fhcosθh + ffcosθf = 0 (4.1)

fhsinθh + ff sinθf −mg = 0 (4.2)

(xhfhsinθh − yhfhcosθh)−mgL1sinφ = 0 (4.3)

Where fh denote the force vector to hand. fh denotes the absolute value of

the force fh. ff denotes the force vector to the foot. ff denotes the absolute

value of the force fh . Furthermore, xh = L3cosϕ, yh = L3sinϕ. Such the forces

are generated by climber as the reaction forces.

Figure 4.3 (a) shows a climber and pure normal forces. In this case, the shape

of hand hold should be bracket shown in Figure 4.4 (b). Other types of shape

shown in Figure4.4 (a),(c),and (d) are not available. On the other hand, for the

foot hold, variety of shapes shown in Figure 4.4 is available.

As the next Figure 4.3 (b), the possibility of the equilibrium should be ex-

38

Chapter4/Chapter4Figs/EPS/Simple_model_1b.eps
Chapter4/Chapter4Figs/EPS/Simple_model_1c.eps


4.2 Climbing Technique

(a) Frictionless (b)Backet (c)Crimp (d)Sloper

Figure 4.4: Typical holds for climbing

plored. When the direction of fh or ff is not orthogonal to the climbing wall

respectively. fh and ff can be divided into normal and tangential components,

fhn and fht, ffn and fft respectively. In this case, the possibility of keeping the

(a) Hand-1 (b)Hand-2 2 (c)Foot-1 (d)Foot-2

Figure 4.5: Appropriate force with the different shape of holds

weight of body depends upon the shape of holds and climbers technique. The

technique means performance of appropriate force and moment generation vec-

tors to keep the balance. Moreover, the ability to keep balance is also swayed

the shape of holds that shown in the Figure 4.5. The white arrows denote forces

generated by climber. The hatching arrows denote reaction forces against the

above forces, which act on the climbers body to keep balance. It is obvious that
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4.3 Humanoid Climbing Robot: Kinematics

the pattern Figure 4.5 (a),(c) are impossible to keep balance, (b),(d) are possible.

4.2.2 Climbing Technical for my Humanoid Climbing Robot

With only bracket hands to make contact with the terrain, the humanoid climb-

ing robot needs at least three simultaneous contacts in order to maintain static

equilibrium. Hence, at least four limbs are required, to allow one limb to move

to a new hold, while the other three maintain balance.

The robot as more DOFs would have had to be coordinated to avoid self-

collision among limbs (hands and feet).

In general, a human climber tries to keep her body as close as possible to the

terrain, in order to reduce the magnitude of the forces that must be exerted at

the contacts to maintain balance. The same is also true for a climbing robot.

Therefore, our motion planning and motion control aim at keeping the center of

mass of the robot as close to the climbing terrain as possible

4.3 Humanoid Climbing Robot: Kinematics

The theory to analyze the relationship between the position and attitude of a

link and the joint angles of a mechanism is called Kinematics. It is the basic on

which robotics is formed, but the exact same theory is used for computer graphics

as well. Both require mathematics and algorithm which can clearly represent a

moving object in 3D space.

A humanoid robot is a multi-jointed mechanism that mechanically emulates

a humans functions, movements and activities. It can be considered as a biped

robot with anupper main body, linking two arms, a neck and a head, or as a com-

bination of multiple manipulators, which are themselves linked together through

waist and neck joint to emulate a human’s functions. Because of its human-like,

bipedal movement, the kinematic structure of a humanoid robot has no fixed
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4.3 Humanoid Climbing Robot: Kinematics

route node and has a large number of degree-of-freedom (DOF). Since the robot

servo system requires the reference inputs to be in joint coordinates and a task

is generally stated in the Cartesian coordinate system, controlling the position

and orientation of the end point of a limb (an arm or a leg) of a humanoid robot

requires the understanding of the kinematics and inverse kinematic joint solution

of a humanoid robot. Kinematics is the formulation of a model as a set of differen-

tial equations for robot motion, with joint forces/torques as inputs. Such models

are useful in simulations and dynamic evaluations of robots. Inverse-kinematics

is concerned to express joints motion in terms of end-effector motion,which is in

general more complex. The inverse problem in robot dynamics is directly appli-

cable to computed-torque control (also known as feed forward control), and also

somewhat indirectly to the nonlinear feedback control method employed.

4.3.1 Definition of coordinate frames

Generally, kinematics for humanoid robots is often used to describe relationship

between the joint angles of the arms and legs and the resulting robot position

and orientation. Especially, the kinematics is used to calculate configuration of

end-effectors (i.e. hands or foots of robots) from coordinate frames of focus which

may be on base or adjacent links of the target robot.

Table 4.1: Deegree of freedom of a Kondo KHR-3V robot

Head Waist Hand Leg Total

1/Neck 1/Waist 2/Shoulder 3/Hip

1/Elbow 1/Knee

2/Wrist 2/Ankle

1 DOF 1 DOF 8 DOF 12 DOF 22

DOF

In our study, a Kondo robot (see Figure 4.6 (a) and Table.4.1) is used as a

prototype climbing robot . We first define the base coordinate frame ΣO at the
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4.3 Humanoid Climbing Robot: Kinematics

Figure 4.6: Base coordinate frame ”O”

center of body of the robot. The ΣO is also used as a reference coordinate frame

of hands and legs. Since the general kinematic structure of the left hand/leg is

identical to those of the right hand/leg, we assign identical coordinate frames

to the left and right limbs. In fact, there is no difference when two-dimensional

analysis is performed.

Figure 4.7 shows the left lateral view of the prototype robot and the assigned

coordinate frames corresponding arm and leg. The pose of the robot simulates

climbing motion. As mentioned above, forward and inverse kinematics of the

robot should be analyzed in order to perform disired climbing pose in Figure 4.7.

Based on the defined coordinate frames, classically, the forward kinematics map

can be derived by composing the rigid motions due to the individual joints.

Then, products of exponential formulas are utilized to calculate position and

orientation of the end-effectors equivalent to the limb [79]. Combining the indi-

vidual joint motions, the forward kinematic map is defined as got:Q→ SE(3)[79].
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4.3 Humanoid Climbing Robot: Kinematics

Figure 4.7: Link coordinate frames of the Left Hand/Leg

Where the suffix ’o’ denotes the coordinate frame ΣO, and the suffix ’t’ denotes

any terminal coordinate frame Σt.

Now, let us define the configuration, twists, parameters and variables that

should be used for solving the robot kinematics. The right hand and leg kine-

matics are solved; the left ones should be solved in the same way.

Let’s consider the coordinate of the hand of robot shown in Figure 4.7, it

consists of four revolute joints.The forward kinematics map of the right hand of

the robot is given as

gHst(0): Initial manipulator configuration (right hand)

gHst (θ): Goal manipulator configuration (right hand)

gLst(0): Initial manipulator configuration (right leg)

gLst (θ): Goal manipulator configuration (right leg)

θH1 to θH1. Where gHst (θ), gLst (θ) ∈ SE(3)

gHst (θ)= eξ̂1θH1.eξ̂2θH2eξ̂3θH3eξ̂4θH4.gHst(0) (4.4)

Where ξ := (v, w) ∈ R
6 represent twist coordinate for the twist ξ̂ ∈ se(3).
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4.3 Humanoid Climbing Robot: Kinematics

And eξ̂θ is the matrix exponential of the 4x4 matrix ξ̂θ. Thus, eξ̂θ ∈ SE(3).

As the same manner, the kinematics of the leg can be considered shown in

the same figure. It consists of six revolute joints. The forward kinematics map

of the right leg of the robot is expressed as

gLst (θ) = eξ̂1θL1.eξ̂2θL2eξ̂3θL3eξ̂4θL4 .eξ̂5θL5eξ̂6θL6gLst(0) (4.5)

They are basically the same as normal robotic kinematics, so these equations can

be also used to calculate the corresponding inverse kinematics calculation.

4.3.2 Inverse kinematics of Humanoid climbing robots

When we execute some climbing process, inverse kinematics equations should

be derived. Furthermore, the degrees of freedom should be managed in an in-

telligent way to overcome the problem of kinematic redundancy and to obtain

a unique solution. Because some of humanoid robots have redundant degrees

of freedom. Negatively, some humanoid robots may not have enough degrees of

freedom for climbing walls.

To achieve any desired climbing motion, one-step motion should be done by

making use of the corresponding inverse kinematics, which needs to be transferred

into a motion sequence, so called motion macro. The motion macro is a kind of

simple sequence consisting of hook into hold”, ”place foot onto hold” effecting one

kinematic chain or more complex motions to keep balance or to move upwards

affecting every single joint of the robot.

The hold configuration on real climbing wall is a desired configuration gd ∈

SE(3) , we need to solve the following equation

goh (θ)=gd (4.6)

4.3.2.1 Inverse kinematic for the hands

Figure 4.8 illustrates a kind of four degrees of freedom manipulator and we

can use a method originally by Paden[76] and built on the unpublished work of
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Figure 4.8: Left hand is initial position

Kahan[44] in order to solve

goh (θ)= eξ̂1θH1.eξ̂2θH2eξ̂3θH3eξ̂4θH4.goh (0)=gHd (4.7)

where gHd is given by the forward kinematic and goh(0) represents the initial

configuration of the left hand robot(see in Figure 4.8). Post multiplying this

equation by g−1
oh (0)

eξ̂1θH1 .eξ̂2θH2eξ̂3θH3eξ̂4θH4=gHd.g
−1
oh (0)=g1 (4.8)

We determine the requisite joint angles in two steps[79]

Step1 (Solve for θ1 and θ2). Apply both sides of equation (4.8) to a point p ∈ R3

which is the common point of intersection for ξ4 and ξ5 . Since exp
(
ξ̂θ
)
p = p if

p is on the axis of ξ, this yields

eξ̂1θH1 .eξ̂2θH2.p = g1.p (4.9)
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Applying Subproblem 2 gives the values of θH1and θH2

Step2 (Solve for θ3 and θ4) The equation (4.8) can be written as

eξ̂3θH3.eξ̂4θH4 = e−ξ̂2θH2.e−ξ̂1θH1g1 (4.10)

Applying Subproblem 2 gives the values of θH3 and θH4

4.3.2.2 Inverse kinematic for the legs

Figure 4.9: Left leg is initial position

Figure 4.9 shows the left leg and the leg consists of four degrees of freedoms

joints and the inverse kinematics solution is similar to the inverse kinematics on
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4.3 Humanoid Climbing Robot: Kinematics

the left hand. The corresponding equation is expressed as

gol (θ) = eξ̂L1θL1 .eξ̂L2θL2eξ̂L3θL3eξ̂L4θL4eξ̂L5θL5eξ̂L6θL6.gol (0)=gLd (4.11)

where gLd is given by the forward kinematics and gol(0) represents the initial

configuration of the left leg of the robot. Post multiplying this equation by

g−1
ol (0),

eξ̂L1θL1 .eξ̂L2θL2eξ̂L3θL3eξ̂L4θL4eξ̂L5θL5eξ̂L6θL6 = gLd.g
−1
ol (0)=g2 (4.12)

We determine the requisite joint angles in three steps.

Step1 (solve for θL4) Apply both sides of equation (4.12) to a point p ∈

R3which is the common point of intersection of axis ξL4 and ξL5 , this yields

eξ̂L1θL1.eξ̂L2θL2eξ̂L3θL3eξ̂L4θL4.q=g2.q (4.13)

Subtract from both sides of equation (4.13) to a point s ∈ R3 which is the common

point of intersection of axis ξL1,axis ξL2 and axis ξL3, this yields

eξ̂L1θL1.eξ̂L2θL2eξ̂L3θL3(eξ̂L4θL4.q − s)=g2.q − s (4.14)

Take the magnitude of equation (4.14)

∥∥e ˆǫL4θL4 .q − s
∥∥ = ‖g2.q − s‖ (4.15)

This equation is in the form required for Subproblem 3[79]. Applying Subproblem

3, we solve θL4

Step2 (Solve for θL1,θL2 and θL3) The equation (4.8) can be written as We

apply both sides of equation (4.13) to a point r ∈ R3 which is the common point

of axis ξL3 and does not belong axis axis ξL1or axis ξL2 , this gives

eξ̂L1θL1.eξ̂L2θL2 .r = e−ξ̂L4θL4.q−1.g2.q.r (4.16)

Since θL4 is know, we apply Subproblem 2 gives the values of θL1and θL2. After

that we substitute θL1and θL2 in the equation (4.13) to find θL3

Step3 (Solve for θL5and θL6) Since are know, we substitute them in the

equation (4.12) and Applying Subproblem 2 to find θL5and θL6
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4.3.3 The stability analysis of humanoid climbing robot

When the humanoid climbing robot climbs a steep slope or a climbing wall, the

robot locomotion like quadruped walking. In this case, the Zero-Moment Point

(ZMP) to confirm the stability must be considered. However, ZMP is not related

to the stability of vertical ladder climbing because the COG is always out from

the supporting polygon of soles. Therefore we remark the principles of Newtonian

mechanics in order to understand how the vertical and the horizontal forces were

distributed on the holds.

Figure 4.10: The three components of the force applied to each hold are recorded

with respect to the reference system (LF, i, j, k)

In a climbing frame as presented in Figure4.10 the climbing holds was num-
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4.3 Humanoid Climbing Robot: Kinematics

bered from 1 to 4 (1=RF hold, 2=RH hold, 3=LH hold and 4=LF hold). The

location of LF corresponded to the central area of the left foot hold. These num-

bers were used when writing general equations governing the movement of the

climber. The motion of the humanoid climbing robot was defined by two general

equations governing the translation and the rotation in the reference system.

{∑
F = ma∑
M = Iα

(4.17)

The sum of all the supporting forces (
∑

F ) acting on the center of mass equals

the product of the mass (m) of the climber by its linear acceleration (a). The

sum of the moment reactions (
∑

M) about the left foot hold equals the product

of the moment of inertia (I) of the climber by its angular acceleration (α).

It was assumed that the hands and the feet did not exert a torque on the

holds. The projection of equation4.17 along each axis gives:





∑4
1 Fix = max∑4
1 Fiy = may∑4
1 Fiz −Wk = maz

(4.18)





M(
∑4

1 Fiz/LF +
∑4

1 Fiy/LF )

+M(Wz/LF ) = Mx

M(
∑4

1 Fiz/LF +
∑4

1 Fix/LF )

+M(Wz/LF ) = My

M(
∑4

1 Fix/LF +
∑4

1 Fiy/LF ) = Mz

(4.19)

∑4
1represented the sum of forces applied to four holds. Wz is the bodys

weight. During the humanoid climbing robot stable state, the sum of the moment

reactions about the left foot hold was equal zero. It means that Mx = My = Mz

= 0. Therefore the expansion of equation (4.17) along pitch, and roll axes leads

to the scalar equations to solve initial coordinates of the center of gravity:

{
yCG =

M(
∑

4

1
Fiz/LF+

∑
4

1
Fix/LF )

W

xCG =
M(

∑
4

1
Fix/LF )

W

(4.20)
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4.4 Modeling of Humanoid Climbing Robot by

Using Simmechanics

4.4.1 Introduction of Simmechanics

Simmechanics is a toolbox for physical modeling developed by Mathworks from

version R2007a of MATLAB suite. Simmechanics extends Simulink with tools for

modeling systems spanning mechanical, electrical, hydraulic, and other physical

domains as physical networks. Simmechanics has a number of blocks of phys-

ical components, such as body, joint, constraint, coordinate System, actuator,

and sensor and so on. Simmechanics provides a variety of simulation and anal-

ysis modes for mechanical: Forward dynamic analysis, reverse dynamic analysis,

kinematic analysis, linear analysis, and equilibrium point analysis determine the

steady state equilibrium point for system analysis linear [Zhao]. The most advan-

tage of physical model in Simmechanics is that using physical network approach

allows us to describe the physical structure rather than underlying mathematics

as in Simulink environment.

4.4.2 Export CAD to Simmechanics diagram

When exporting an assembly file from CAD file we will receive 2 kinds of file

which are XML import file and STL file The SimMechanics XML import file

mirrors the hierarchical structure of a CAD assembly. The organization of Root

Assembly or Assemblies contains InstanceTree and Constraint which organize

the information into reference frame and sets of constraint between Assemblies or

parts, respectively. The structure of Part is specified by name, physical unit and

especially solid parameters such as mass, center of mass and inertia moments.

The STL file specifies 3D geometry of the solid surface for each part.

The mechanical design was developed on Solidworks, and was inspired on var-

ious commercial designs. The robot has 22 degrees of freedom, 6 per leg and 4 per

arm. The Solidworks design provides pretty much all the necessary information

(dimensions, mass and inertia) for a dynamic simulation (see in Figure 4.11)
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4.4 Modeling of Humanoid Climbing Robot by Using Simmechanics

Figure 4.11: Mass properties from Solidwork.

4.4.3 Modeling of humanoid climbing robot

4.4.3.1 Moderling the bodies, legs, hands and joints for the climbing

robot

We used the plugin for Solidworks called Simmechanics Link, which allows the

conversion from a Solidworks assembly to Simulink model. However, the bodies

and joints were laid out manually for greater flexibility and control. The rest

of the work consisted in assigning each body its inertial parameters and its 3D

model (.stl) and then gluing everything together with the servomotors. The final

result is shown below in Figure 4.12 The model of the robot includes main body,

head, two arms, two legs, two foot, bushings, machine environment, ground, sine

wave generator and constant generator.

Simmechanics provides body and joint 17 blocks to construct various mechan-

ical assemblies. A body holds the inertial information necessary for a dynamic

simulation. And two bodies can be connected via a joint, this joint can add
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4.4 Modeling of Humanoid Climbing Robot by Using Simmechanics

Figure 4.12: Mechanical model of HCR in Simmechanics

zero or more degrees of freedom between the bodies. The bodies and joints are

referenced to each other via Coordinates Systems (CS), which can be absolute

or relative. Also, sensors and actuators can be attached to the bodies or to the

joints for control applications.

4.4.3.2 Modeling the servomotor and actuated joint

For the servomotor model, specifications like the maximum angular speed and

the maximum torque were used to produce an accurate DC motor model. For

the servomotor controller model, a position + speed controller with gravity com-

pensation and angular speed feed forward was used. Full block diagram is shown

in Figure 4.13. Each servomotor was attached to each joint via a joint actuator

and joint sensors, as shown in the Figure 4.13
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4.5 Simulation results

Figure 4.13: Modeling a Servo motor system

4.5 Simulation results

4.5.1 Humanoid climbing robot model in Matlab

In the previous section, by using the tools of SimMechanics we build the model

of body, head, feet, arms and legs. By analyzing the robot’s mechanical struc-

ture correctly, choosing the module rightly, setting parameters reasonably, and

colligating the above sections, we eventually get a complete biped robot model

in MATLAB. Shown as Figure 4.14

4.5.2 Perform simple task of the climbing activities

When humanoid robot climbs, there are always three limbs touching onto the

climbing wall at least. The static gait that will first be considered is the one in

which a limb begins return motion after the former limb has touched the wall

and completed its climbing.

Climbing consists of repetition of stop and move. The stop means keeping

climbing robot’s body balance without move against gravity. The move means
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4.5 Simulation results

Figure 4.14: 3D model of HCRobot in Matlab

movement of a hand or foot position from current position to next position. Fur-

thermore, the move consists of three kinds of move: Preparing-move, catching-

move, and transitional-move [25]. At the first, analysis of stop is the most impor-

tant because climbing robot should keep its balance and the pose without fall.

During the stop, the climbing robot has to find next optimal hand or foot hold

to move up its body, and avoid consumption of physical strength concurrently.

So we focus on the stop first, and statics should be considered to analyze the

stop motion, this action is simulated in 3D model shown in Figure4.15. By using

this model we can get the data of the changed center of gravity’s position (see in

Figure 4.15 ).

While balancing, robot has to determine the next hold to climb. This hold

must be in robot’s work-space. After determine the position of next hold, robot

has to determine the orientation of action force in order to ensure the balance of

robot in new position. This action is simulated in 3D model shown in Figure 4.16
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4.6 Discussion

Figure 4.15: Snapshot of stop motion and COG’s position

4.6 Discussion

Based on the research of humanoid climbing robot, and using Simmechanics of

Matlab, a computer 3D model of humanoid climbing robot was build. With this

3D model we can simulate some basic climbing actions. The center of gravity’s

positions of robot while balancing during moving time are calculated and recorded
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4.6 Discussion

Figure 4.16: Snapshot of dynamic motion

for further research.

In the next step, we use this model to evaluate some motion planning for

climbing robot.
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Chapter 5

Equilibrium Control on

Four-Limbed Climbing Robot

This chapter represents a method to improve the technology that enables the de-

sign and simulation of a four-limbed climbing robot. It is equipped with planning

capabilities to free climb vertical terrain. It means to extend the robot’s ability to

a vertical direction under the gravity force. However, we need to analyze climbing

and create the theory in parallel with hardware development. In this chapter, the

equilibrium allowance area of the four-limbed climbing robot is introduced and

the corresponding torque is calculated. Hence, this chapter starts with a rudimen-

tary analysis of mechanical structure and kinematics of four-limb robot. Finally,

the corresponding motion planning and control method is performed considering

statics and dynamics.

5.1 Four limb model

As an example of a robot to be finally used in this study, it is assumed a humanoid

robot having 22 joints as seen in Figure 5.1. However, at the initial stage of

humanoid climbing robot research, a four limb model is analyzed. Figure 5.2

is an illustration of thirteen cases when choosing the four limb climbing model.

Thereafter, Figure 5.3 show an analysis of four limb climbing model when this
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5.1 Four limb model

model keep balance on the wall with four limbs.

Figure 5.1: Humanoid Climbing Robot

Figure 5.2: The center model keep balance by using 4 limbs. The others maintain

equilibrium by just 3 limbs, one free limb is used to reach a new hold.
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5.1 Four limb model

(a) Basic structure. (b) Real example.

Figure 5.3: Basic structure and real climbing example

In Figure 5.3(a), the red arrow pointing downwards from the body express

the force of gravity. The force f1, f2, f3 and f4 represent the force exerted at

P1, P2, P3, and P4 respectively. Point P1 is at the left hand, point P2 is at the

left foot, point P3 is at the right hand, and point P4 is at the right foot. If the

climber grip holes, to resist the attractive force, the climber receives a reaction

force of the attractive force from the climbing holds. In Figure 5.3(b), the yellow

arrows represent the climbing force of the climber. In addition, the attitude angle

of f1, f2, f3, and f4 at P1, P2, P3, and P4 are represented by φ1, φ2, φ3, and φ4

respectively. The body position is defined by P (x, y). The length of each limb is

represented by li (i from 1-4).

On the other hand, Figure 5.3 (b) shows the the actual motion corresponding

to the model shown in Figure 5.3 (a). The climber use his limbs to make friction

forces with holds, which could help he balance on a climbing wall. In Figure 5.3

(B), the yellow arrows denote the climbing fore.
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5.2 Climbing Condition

5.2 Climbing Condition

5.2.1 Static equilibrium constrain

The main propose of this part is to describe how to derive a body’s position that

can maintain the body balance in the case of the hold position is known. The

climbing force F = [f1, f2, f3, f4]
T , and the Jacobian matrix J are applied in the

equation τ = JTF ′ to find the robot torque.

Conditions for the body to keep the static stable is the sum of the forces

exerted on the body equal 0, and the sum of all moment exerted on the body

equal 0 (explain in detail at section 4.3.3). These conditions lead to the following

equations (5.1, 5.1, 5.3 ). Here, we are using the same notation introduce in

Section 4.3. We use subscript x and y to distinguish the horizontal and vertical

direction.

f1x + f2x + f3x + f4x = 0 (5.1)

(f1cosφ1 + f2cosφ2 + f3cosφ3 + f4cosφ4 = 0)

f1y + f2y + f3y + f4y −mg = 0 (5.2)

(f1sinφ1 + f2sinφ2 + f3sinφ3 + f4sinφ4 −mg = 0)

f1x(y − y1)− f1y(x− x1) + f2x(y − y2)− f2y(x− x2)

+f3x(y − y3)− f3y(x− x3) + f4x(y − y4)− f4y(x− x4) = 0 (5.3)

Combine(5.1),(5.2) we get the equation(5.4).

[
cosφ1 cosφ2 cosφ3 cosφ4

sinφ1 sinφ2 sinφ3 sinφ4

]



f1
f2
f3
f4


 =

[
0
mg

]
(5.4)

We set: A =

[
cosφ1 cosφ2 cosφ3 cosφ4

sinφ1 sinφ2 sinφ3 sinφ4

]
, F =




f1
f2
f3
f4


, and B =

[
0
mg

]
.

From the equation 5.4, we get the equation 5.5.

F = A+B + (I −A+A).w (5.5)
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5.2 Climbing Condition

In the equation 5.5, I is the 4 by 4 identity matrix and w is a one by four

arbitrary vector. The equation 5.5 to define the value of forces f1, f2, f3, f4.

5.2.2 Equilibrium condition of movement

From the equation 5.3

f1cosφ1(y − y1)− f1sinφ1(x− x1) + f2cosφ2(y − y2)− f2sinφ2(x− x2)

+f3cosφ3(y − y3)− f3sinφ3(x− x3) + f4cosφ4(y− y4)− f4sinφ4(x− x4)

= 0 (5.6)

Here x1, x2, x3, x4, y1y2, y3, y4 and φ1, φ2, φ3, φ4, we already known, we assumed

f1, f2, f3, f4 are calculated from the previous section. The equation (5.6) is written

by the equation (5.7).

(f1cosφ1 + f2cosφ2 + f3cosφ3 + f4cosφ4)y

−(f1 sinφ1 + f2sinφ2 + f3 sinφ3 + f4 sinφ4)x

= (f1cosφ1y1 + f2cosφ2y2 + f3cosφ3y3 + f4 cosφ4y4)

−(f1sinφ1x1 + f2 sinφ2x2 + f3 sinφ3x3 + f4 sinφ4x4) = const (5.7)

Set C = (f1cosφ1+ f2cosφ2+f3cosφ3+ f4cosφ4), D = (f1 sinφ1+f2sinφ2+ f3 sinφ3+

f4sinφ4), and E = (f1cosφ1y1 + f2 cosφ2y2 + f3cosφ3y3 + f4cosφ4y4 )

− (f1 sinφ1x1 + f2 sinφ2x2 + f3 sinφ3x3 + f4sinφ4x4 )

Form the equation (5.1), (5.2), we have C = 0, D = mg, and E is a constant.

Therefore, x = −E/mg = const and y is not only solution. It means that with

four specific holds the robot could has several solution for the body’s position to

keep balance on the climbing wall.

5.2.3 Relationship between Torque and Length of Limb

li is the length of each limb, it dose not appear in the above expression. This part

we consider about this problem. The length li is not the length of actual link,

it is just a distance form the hold to the body’s position. You can image that,
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5.2 Climbing Condition

each limb consider two parts (such as upper arm and forearm), and L is length of

each part of limb. While the distance from the position of holds Pi to the center

of mass at the point Px,y are li. To maintain a balanced body position, joint

torque τi is calculated by using the equation: τi = Ji
Tfi. We get the equation

(5.8). In addition, joint angle of each limb can be determined by using the inverse

kinematic operators (for two link manipulator).

[
τi1
τi2

]
=

[
−Lsθi1 − Lsθi1+i2 Lcθi1 − Lcθi1+i2

−Lsθi1+i2 −Lcθi1+i2

]

·

[
cφi

sφi

]
fi, (i = 1, 2, 3, 4) (5.8)

5.2.4 Examples
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Figure 5.4: Reachable Area and Equilibrium Line Segment
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5.2 Climbing Condition

We assumed that the position of 4 holds are known

P1 = [x1, y1]
T = [−1, 1.5]Tm,P2 = [x2, y2]

T = [−0.25,−0.1]Tm,P3 = [x3, y3]
T =

[0.75, 1.0]Tm,P4 = [x4, y4]
T = [0.2,−0.5]Tm,, the maximum length of each limb

is li = 1.3m, mg = 100N , φ1 = 2/3π, φ2 = 3/4π, φ3 = pi/4, φ4 = pi/6.

In this case [f1, f2, f3, f4]
T = [37.68, 41.17, 35.40, 26.46]TN be obtained (after

selecting w = [1,10,10,10]). In the Figure 5.4 the red, blue, pink, and green

line represent the connecting line form body to P1, P3, P4 and P2 respectively.

Intersection of four circles with a center of P1, P3, P4 and radius of li is called

reachable area. The four arcs with maximum value of each limb, in other words

they represent reachable area of each limb. Inside the reachable area, the four

color lines intersect at a line segment with x = −0.0671m (see in Figure 5.4).

No. of equilibrium point
1 2 3 4 5

A
ng

le
[d

eg
]

-100

0

100

200

300
theta11
theta12

No. of equilibrium point
1 2 3 4 5

A
ng

le
[d

eg
]

-100

0

100

200

300
theta21
theta22

No. of equilibrium point
1 2 3 4 5

A
ng

le
[d

eg
]

-100

0

100

200

300
theta31
theta32

No. of equilibrium point
1 2 3 4 5

A
ng

le
[d

eg
]

-100

0

100

200

300
theta41
theta42

No. of equilibrium point
1 2 3 4 5

T
or

qu
e[

N
m

]

-100

-50

0

50

100
tau11
tau12

No. of equilibrium point
1 2 3 4 5

T
or

qu
e[

N
m

]

-100

-50

0

50

100
tau21
tau22

No. of equilibrium point
1 2 3 4 5

T
or

qu
e[

N
m

]

-100

-50

0

50

100
tau31
tau32

No. of equilibrium point
1 2 3 4 5

T
or

qu
e[

N
m

]

-100

-50

0

50

100
tau41
tau42

Figure 5.5: Jount angles and Torques at equilibrium points

Figure 5.5 shows the result of joint torque and joint angle for each model limb

(for above example). In the variable name,the first digit number of the subscript

represents the name of limb, and the second element denotes the joint number

(on each limb, counted form body side).
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5.2 Climbing Condition

(a) No valid right hand hold. (b) Exists valid right hand hold.

Figure 5.6: Equilibrium line segment position changing

Additional examples are proposed in Figure 5.6. The same initial condition

with previous example are applied. In addition, green hold (at the position

P5 = [x5, y5]
T = [0.4, 2.5]Tm) and red hold (at the position P5 = [x6, y6]

T =

[0.4, 1.95]Tm) are considered to robot using as a next valid right hand hold or

not. The red and green arc (with the center at red and green hold, respectively)

represent the reachable area of each holds.
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5.3 Discussion

When the value of w = [0,1000,1000,1000] is selecting, the equilibrium line

segment position at x = -0.1629[m]. In this case the red and the green hold

are not next valid right hand hold, since the red and green arc do not intersect

with the equilibrium line segment (see Figure 5.6 (a)). When the value of w =

[0,10,10,10] is selecting, the equilibrium line segment position at x = -0.0671[m].

In this case the green hold is next valid right hand hold while the red hold is not,

since the intersection of the equilibrium line segment and the green arc exists (see

5.6 (b)).

5.3 Discussion

The goal of motion control is to make the robot follow the motion path computed

by the planner at the progressive stances. Assuming that the position of the hand

at the holds are computed in the planner. Then, humanoid climbing robot use

the position control to reach his hands and foot to selected holds. Therefore a

position control is propose in detail in this part.

5.3.1 Platform for Humanoid Robot

We select KHR-3HV as a prototype to develop humanoid climbing robot. In this

part, I have implemented my position control on this robot. Figure 5.7 shows the

concept of this humanoid platform. Motion-based humanoid robots are generally

controlled by reading motion files which set the key poses in a sequence created

by using Motion Editor. Human Interface

The motion files to be read by the humanoid robot are invoked by user through

the directions using a remote controller. Radio control method is generally used

for the motion-based humanoid robot.

Motion Editor and Motion Files

Motion Editor is used to generate motion files by user through operating GUI

on a PC.
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5.3 Discussion

Figure 5.7: Humanoid robots platform

Internal Sensor

Sensor is used to monitor the situation of the humanoid robot using acceler-

ation sensor, gyro sensor, etc., and to feedback the information to the controller.

Internal Sensor

Sensors like kinect sensor will be detect by PC.

Servo Motor

Servo motor is a small actuator module performing positioning. By receiving

a position command from controller, servo motor holds at the assigned position

by the internal module. In addition, it can measure and send some data to

controller, such as current position, internal temperature and current value.

Controller

It controls servo motors by reading motion file from Human Interface to as-

signed position at assigned speed. Further, it can do feedback control using sensor

value from internal sensors and servo motors.

5.3.2 Proposition of Position Control

The controller should try to follow the motion path computed by the planner as

closely as possible. We propose the position control for humanoid kondo robot
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5.3 Discussion

Figure 5.8: Position control diagram

as in Figure 5.8. In this motion control, twenty two joints of humanoid robot

are computed at each control cycle, the joint angles to be achieved at the next

trajectory point are computed using simple inverse kinematics from the posi-

tion/orientation of the robot’s body and the positions of the new holds that

define for new limb’s position.
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Chapter 6

Global Path and Local Motion

Planning for Humanoid Climbing

Robot

This chapter focuses on a path planning and local planning algorithm for hu-

manoid robot wall climbing as the initial phase of our development. The first

step is to acquire a depth map to extract accurate information about climbing

holds on the vertical wall. Secondly, we propose a global planning algorithm

for the humanoid robot using data from Kinect. The proposed algorithm en-

sures that the climbing robot finds the best route to climb up the wall. During

climbing, the humanoid robot utilizes the local planning algorithm, base on quasi

static equilibrium, to adjusts its body posture in order to remain in equilibrium

state. Finally, all algorithms are evaluated with a simple practical example for

a humanoid climbing robot system, and its effectiveness is demonstrated experi-

mentally in a real environment.

6.1 Introduction

To climb a climbing wall, a humanoid robot typically starts by looking at the

entire wall to detect a map of the major terrain features, such as climbing hold
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6.1 Introduction

Figure 6.1: General Overview

positions, as well as climbing hold shapes (discussed in section6.3). Based on

this map, the best route is planned (discussed in section 6.4). This route only

gives height level direction, since the local motion planning for each fundamental

movement is still lacking. To start the algorithm of trajectory planning for free

climbing, the humanoid robot also acquires a detail local planning around its

current position. With the local motion planning, the robot identifies candidate

holds that can be reached in order move up. Therefore, a general scenario of

climbing consists of the following steps (see Figure 6.1):

Step 1: Global sensing.

Step 2: Global Path Planning.

Step 3: Local motion planning (detailed planning for series of moves 4-3-4

contact-holds)

Step 4: Execution of the moves. Base on the general scenario, our project

is divided into three technical parts: observation, planning, and motion control.
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6.1 Introduction

Figure 6.2: Climbing Wall and System Location

Here we focus on the first two parts. In the observation part, we use a Kinect for

global sensing (step 1) to get information about the climbing wall, such as all of

the climbing holds positions and the climbing wall’s dimensions. After acquiring

the current environment, the path planning (step 2) begins the special motion

planning algorithm named “Right Hand Search Algorithm”(RHSA) is utilized

to identify the best route to climb up the wall. This algorithm can be used to

construct a trajectory that connects the start position to the goal position. While

following the route, the robot uses the local motion planning (step 3) to identify

target holds, and adjusts its center of mass to perform short-term goals.

This chapter is organized as follows. In section 6.3, we use the Kinect [10] to

obtain the environment’s information in 3D. Kinect is a motion sensing device

produced by Microsoft for the Xbox game system, based on underlying technology

from PrimeSense, and provides real time point clouds as well as 2D images.

Kinect, which is not only a normal camera sensor but also a special device, can

provide a depth map. The depth map is acquired from the OpenNI [11] library,and

is then processed to extract accurate information about the environment, such as

the climbing hold’s position and the climbing wall dimensions. This information

will be used in the planning part to find the best route for the humanoid climbing
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6.2 Precondition and Preliminary Work

robot.

In the path planning (section 6.4), the robot system observes the entire climb-

ing wall to find out the climbing route before the robot actually begins climbing.

This algorithm is named the “Right Hand Search Algorithm” and it consists of

two phases: a scanning phase and a query phase. In the scanning phase, the al-

gorithm generates a “reachable area” on the climbing wall through the “reference

scan point” S. It is a kind of a graph algorithm, and queries to see if it is a useful

hold, while also taking into account the specific abilities of the robot. A road

map is constructed and stored as a graph whose nodes correspond to “right hand

reachable hold” (RHRH) and whose edges correspond to feasible paths between

these “RHRHs”. This algorithm defines “adjacent hold” and evaluates the cost

between RHRHs. In the query phase, the Dijkstra algorithm is applied to find

the best route from the road map in the previous phase. Any given start and

goal RHRHs of the road-map are connected and evaluated for total cost, with the

best route being the one with the lowest total cost. Section 6.5 describes in detail

the local motion planning, which is based on a climbing behavior. Finally, the

experiment described in section 6.6 will demonstrate that the humanoid climbing

robot climbs up freely along the designed route.

6.2 Precondition and Preliminary Work

6.2.1 Hardware Structure

We selected the KHR-3HV manufactured by Kondo [7] as a prototype to develop

humanoid climbing robot. The humanoid robot has 22 degrees of freedom (DOF),

with of the 22 degrees being in the open leg in order to enable climbing in the

open leg.

The humanoid robot does not have any special mechanism to grasp holds,

but angled brackets are used as hands. Hence, the only chances to grab holds are

obtained by performing press on pull motions.
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6.3 Observation part

6.2.2 Assumptions on the research

This paper addresses the problem of global motion planning and local planning

of a humanoid climbing robot in order to “free climbing” on vertical surfaces. To

our knowledge, vertical surfaces are categorized into natural walls and artificial

walls. However, it is not easy to develop humanoid climbing robot in natural

environments. Therefore, this paper focus on an artificial climbing wall.

Climbing wall and climbing wall configuration. The robot’s workspace

is a square vertical wall. The wall is made from wood with multi-holes (shown

in Fig.6.2). The holds are made by metallic rings which the climbing hands

can hook into and the feet can be placed on, shown in Fig.6.3. All information

about the climbing hold positions is defined as a climbing wall configuration. In

addition, climbing hold positions are arbitrary arranged and can be relocated,

hence climbing wall configuration is versatile.

Equilibrium. To remain balanced, the robot must apply contact forces with

hands and legs at holds that compensate for gravity. In addition, the robot is

assumed that it always maintains contact with either three or four holds. For

instance, two hands and left leg are at holds while the right hand is moving. In

this case the robot performs 3-contact-holds posture to remain balance. If the

robot keeps balance by 4 holds, the posture is called 4-contact-holds.

Motion and transition. In this research, we assumed the robot’s motion

to be quasi-static [28]. A motion of humanoid climbing robot consists of a se-

quence of 3-contact-holds and 4-contact-holds posture. If 3-contact-holds and

4-contact-holds posture share three hold, then they are adjacent and transition

exits between them.
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6.3 Observation part

Figure 6.3: Climbing holds

6.2.3 Climbing Wall Structure

6.3 Observation part

The overview of our proposed systems is shown in Fig.6.4 Kinect receives all of

information of the climbing wall, then it finds the locations of all of the climbing

holds. From the size of the robot, the controller creates the working area. Using

this working area, and applying the right hand search algorithm, the best route

can be found accordingly.

6.3.1 Pre-processing of Kinect Depth Data

Microsoft’s Kinect is a sensor creating full 3D images comprised of 640x480 RGB

plus depth. Similar to other RGB-D sensors, the basic unit for the Kinect is

pixel, which stores the depth values. Basically, each pixel in the color image be

assigned with a depth value. However, when the sensor cannot generate a proper

depth value due to strong light or other noises, a value of 0 is assigned.

The depth value represents the vertical distance between the target point and

the XOY plane of the Kinect coordinates, which is defined as a right handed coor-

dinate with the Kinect’s facing direction as the positive Z direction and Kinect’s

right side direction as the positive X direction (Fig.6.4).

In OpenNI, the Kinect depth map is saved as a one dimension array. Like the
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6.3 Observation part

Figure 6.4: Overview proposed Systems

color image, the pixel at the top left corner of the depth value starts the array.

When the resolution is 640x480, the positions of the pixel in the array can be

illustrated as Table 6.1, where each square stands for a pixel. The first row in the

square is the position index of the pixel in the depth-map array, and the second

row is the two-dimension position index of the pixel in the depth map.

OpenNI saves the depth image in a left-to-right and up-to-down manner as

shown in Table.6.1. The depth value for the pixel, located in the column “i” and

row “j” in the depth image can be found in the element “k” of the array, where

k can be obtained as follows, k = (j − 1)x640 + i.

6.3.2 Searching Climbing Holds Position (pixel data)

To find out the climbing hold positions, the controller uses the difference values of

the holds and climbing wall. Because the climbing holds’s depth value is smaller

than the depth value of the wall. Assuming the climbing holds are the same

size and the square shape of climbing wall, we divided the wall into 11 rows and

11 columns for total of 121 areas ( Fig.6.5a)for example. The controller checks
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6.3 Observation part

Table 6.1: The storing rule of Kinect depth values

1

(1,1)

2

(1,2)
...

639

(1,639)

640

(1,640)

641

(2,1)

642

(2,2)
...

1279

(2,639)

640

(2,640)

... ... ... ... ...

306561

(480,1)

306562

(480,2)
...

307199

(480,639)

307200

(480,640)

(a)Finding climbing holds (b)Mirror data

Figure 6.5: Pixel Data

all areas to identify which areas have holds and which do not, using the simple

algorithm shown below.

Each area is defined as an area with a hold if this area contains pixels whose

depth value is smaller than the climbing wall’s standard depth value. Any pixels

with smallest depth value are defined as the pixels linked to a climbing hold (x,

y depth value).

Since the depth values of the Kinect are opposite from the real dimensions.

The pixel data is converted to the new pixel.
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6.3 Observation part

Each climbing hold position (X, Y - pixel) is converted as equation (6.1).

{
Y new = Y
Xnew = 640−X

(6.1)

The result of every climbing hold position is shown in Fig. 6.5(b)

6.3.3 Climbing holds position (real data-mm)

(a) Geometric relationship (b) Organization Climbing Holds

Figure 6.6: Convert and Label Climbing Holds

The controller should rebuild up the climbing wall information with the climb-

ing hold positions (real dimension). From the Kinect data, the controller rec-

ognizes the four corners position (A, B, C, and D) of the climbing wall (see

Fig.6.6(a)) and also the real dimension of the climbing wall (a-mm). Then, the

controller defines point A as a new origin; H denotes the climbing hold (with

XH , YH pixel), point H’s position can be converted to real dimensions using the

following equations (6.2).

{
x = (xH − xA) ∗ a/(xB − xA)
y = (yH − yA) ∗ a/(yC − yA)

(6.2)
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6.4 Global Path Planning

In the same manner, the controller converts all of the climbing hold positions

from pixel data to real data. To use the set of the climbing holds in the Right

Hand Search Algorithm, we define the set of all climbing holds as H . The order

of climbing holds in the set H regulatory compliance: A hold that has a smaller

distance (compared with the left top point) has a smaller index in the set H (see

in Fig.6.6(b)).

6.4 Global Path Planning

Figure 6.7: Definition of “reachable area” and “reference point for scan”-S

The presented planning algorithm is developed to decide the best route to

climb up the wall. The algorithm is similar to graph algorithms on clustering.

It analyzes whether hold candidates are useful or not. Moreover, the algorithm

takes into account the specific abilities of the robot. The algorithm is labeled

“Right Hands Search Algorithm”.
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6.4 Global Path Planning

6.4.1 Defining robot “reachable area”

The basic idea of RHSA is to consider only the holds that can be reached by the

robot’s right hand while the robot keeps balance. Figure 6.7 describes reachable

area, reference point for scan. The reachable area for the hands and feet that is

obtained depends on the size of the robot. The reachable area can be moved along

with the robot’s motion on the wall. Here it is assumed that the robot can not

intersect one leg with another. As the same manner, the robot can not intersect

one arm with another. Then the robot finds “right hand reachable holds” under

the robot’s configurations. When the robot’s right hand hooks into RHRH, the

robot can find at least one hold located within the left hand reachable area, and

can also find a hold for each leg within the reachable area.

6.4.2 Scanning Phase

We now describe our planning method in general terms for the prototype hu-

manoid robot without focusing on any specific type of robot. As the first step

of the presented right hand search algorithm, RHSA, the robot needs to find a

“right hand reachable hold” by scanning the wall through a reference scanning

point, S, shown in Fig.6.7(a). First, depending on the size of robot illustrated in

Fig6.7(b), the robot controller automatically finds the “reachable area” from S.

The controller uses the set of grid points O to sample the scan point S. The

set O is generated as follows: The controller generates vertical and horizontal

parallel lines through AB and AC (see in Fig.6.6) with an equal offset distance.

Then, we have O as the set of intersection points for those horizontal and vertical

lines.

6.4.2.1 Scanning Valid Right Hand Holds

One “right hand reachable holds (RHRH)” can be found for the reference scanning

position S. Then the robot can find, at least one hold located in the left hand

reachable area, as well as find one hold for each legs reachable area. The point

S is sampled from the set O (defined in section6.4.2); (similar with sampling
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6.4 Global Path Planning

Figure 6.8: Scan example using “Right hand reachable holds”

algorithm in [35]). When the corresponding S is found, the controller can find

the robot’s reachable area on the climbing wall. The RHRH is the hold existing

in the reachable space of the right hand, and simultaneously at least one group

consisting of three holds in the reachable spaces of the left hand, right foot, and

left foot. We call this group is the “family hold group”. Note that one RHRH

have multiple “family hold groups”.

An example is introduced as the following: Select a scan point “S” shown in

Fig.6.8. The controller finds out one RHRH V1 as a its family hold group, H14;
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6.4 Global Path Planning

H31; H34, which are left hand hold, left foot and right foot holds respectively.

Figure 6.9: The updating information of RHRHs when point S at(910,290)

A set,V , is defined as a set of all the right hand reachable holds, and RHRHs

are stored as the array of V sets with order of priority: left to right, bottom

to top. For instance, RHRH V 1 is stored in V [1] which contains one element

[H14, V 1, H31, H34]. If one V [i] set has n elements, there are n “family hold

group” with respect to the RHRH. Now, by scanning successively the point S

from (910,0), (910,10), (910,910),...,(0,0), (0-910) (sampling from the set O), the

controller finds every RHRHs. For the point S from (910,0)to (910,910), the

controller finds out 4 RHRHs (Table.6.2). The controller adds these 4 RHRHs to

the set of all candidates of start holds which is denoted by St

St = V 1, V 2, V 3, V 4 (see in Fig.6.8)
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6.4 Global Path Planning

Algorithm 1 Scanning “Right Hand Reachable Hold”

1: Generate initial V:

2: V ←− ∅

3: O:= the set of all area addresses of the wall;

4: while (O is not emty) do

5: S ← a chosen vertex from the set O;

6: O ← O ∩{S}

7: if (RHRH in right hand reachable area) and (at least one hold located in

the left hand,left leg and right leg reachable areas) then Adds new RHRH to

set V ;

8: end if

9: Update RHRH’s“family hold groups”;

10: end while

Table 6.2: 3 First right hand reachable holds for S (910,270-mm)

V1=H17 V2=H19 V3=H24 V4=H26

H14, V1 H14, V2 H14, V3 H14, V4

H31, H34 H31, H34 H31, H34 H31, H34
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6.4 Global Path Planning

Temporarily: V = V 1, V 2, V 3, V 4

The controller continues to choose the point S from the set O. We remember

that the “family hold groups” of old RHRHs maybe be updated related to a new

point S, and a new RHRH could be found. For example, when the point S is

at the address (910,290), the controller update the information on the RHRHs

(Fig.6.9). Finally, we have set V .

V = V 1, V 2, V 3, ..., V 23 (see in Fig.6.8)

Similar to “start hold” we define the “final hold”. The “final hold” belongs to

the RHRH that is located in the highest row, as shown in Fig.6.8. The controller

adds these “final hold” to the set of all final holds (denoted by Fi). Completing

the scanning process, we have the result:

St = V 1, V 2, V 3, V 4

Fi = V 21, V 22, V 23

V = V 1, V 2, V 3, ..., V 23

6.4.2.2 Cost Evaluations and Building the Graph of “Right Hand

Reachable Holds”

In this subsection, we define “adjacent hold” and evaluate the cost between

RHRHs; in addition, the controller builds the graph of RHRHs based on these

costs. A RHRH[i] is called “adjacent hold” of RHRH[j] if RHRH[i] and RHRH[j]

have at least one common family hold group. The cost between two RHRHs is

the number of similar “family hold groups”. When moving(climbing) between

two adjacent holds having the largest cost, robot has many options to utilize the

most advantageous “family hold group” for minimizing energy or avoiding obsta-

cles and also singularity or optimizing the moving distance of desired limb and so

on. Therefore, it is obviously beneficial when robot can climb between adjacent

holds with the largest costs. Now, we set up the algorithm to find out the cost

between two RHRHs (see in Algorithm.2).

First, we define each VRHP as a structure containing elements such as
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6.4 Global Path Planning

Figure 6.10: Adjacent hold V1 and V2 as an example

V [3]=

[[H9, V 3;H31, H34], [H14, V 3;H31, H34], [H19, V 3;H31, H34],

[H14, V 3;H31, H28], [H7, V 3;H31, H34], [H7, V 3;H31, H28]]

V [3] is the third element in the V [] set (in above section), while V 3 is the

valid right hand hold (the hold H24).

Second, we define the “similar operator” between two elements. Elements

A and B are similar to each other if A[1, 1], A[2, 1] and A[2, 2] are equal to
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6.4 Global Path Planning

Algorithm 2 Cost Evaluations and Building the Graph of “RHRHs”

Input: RHRHs in array

Output: Cost between “adjacent holds”

1: Define RHRH;

2: Define the similar operator between two family hold groups: family hold

groups are similar if the position of both legs and the left hand are similar;

3: Define cost: number of family hold groups between two RHRHs;

4: cost:=0;

5: for (i from 0 to the number of family hold group of kth RHRH -1 ) do

6: for (j from 0 to the number of family hold group of hth RHRH -1) do

7: if (ith and jth family hold group of kthRHRH and hthRHRH are similar)

then Set new RHRH to set V ;

8: end if

9: end for

10: end for

B[1, 1], B[2, 1] and B[2, 2] respectively. Using the “for” loop to compare elements

between two structures, we increase cost by one if a similar operator occurs. By

this way, after comparing all RHRHs with each other, the controller has a matrix

containing the cost between every RHRHs.

From this cost result the controller can create the graph (is called Ma-graph)

between the “right hand reachable holds”. Obviously climbing robot can move

easily between two RHRHs have the large cost (more common “family holds

group”), so the goal is to find a path of maximum total cost from “start hold” to

“final hold”.

6.4.3 The Query Phase

By using the way where the total cost is maximal, the robot can climb easily.

First, the controller builds a new graph in which the complement costs with

the maximum value (in the Ma-graph) substitute the old values being the costs
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6.4 Global Path Planning

Algorithm 3 Apply Dijkstra Algorithm

Input: The graph from the scanning phase

Output: A path between start and target nodes

1: Build the new graph;

2: for (each vertex V in Graph) do

3: dist [V]:= infinity;

4: Previous [V]:= undefined;

5: end for

6: dist[source]:=0;

7: Q:= the set of all nodes in Graph;

8: while (Q is not empty) do

9: u := vertex in Q with smallest distance in dist[];

10: remove u form Q;

11: if (dist[u]=infinity:) then

12: Break;

13: end if

14: for (each neighbor v of u) do

15: alt:=dist[u]+distbetween(u,v);

16: if (alt¡dist[v]) then

17: dist[v]:=alt;

18: previous[v]:=u;

19: decrease - key v in Q;

20: end if

21: end for

22: end while

23: return dist;
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6.5 Local Motion Planning

between RHRHs, but the infinity values are kept to identify that robot cannot

move between RHRHs which have a zero cost, and we have new graph in Fig.6.11.

With new graph, the easiest route to climb is the path of maximum total cost

from “start hold” to “final hold”. The Dijkstra algorithm [23] is used to solve

this problem (See Algorithm.3).

Figure 6.11: The new graph RHRHs

6.5 Local Motion Planning

During the moving, the humanoid robot identifies candidate holds that can be

used for contacts in order to move up. Robots usually plan a few moves to reach

an intermediate point along the route and then executes. At the beginning and

end of each move either a new contact with the terrain is achieved or an existing

contact is broken. Therefore, each move is performed at fixed set of contacts,

usually three or four contacts. The postures between four and three contacts are

adjusted to change the position of the robot’s CoM.
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6.5 Local Motion Planning

Figure 6.12: Detail local motion planning

In local motion planning, we assume that the short-term goal is to move the

robot right hand, currently at a red hold, to a new blue hold (see in Fig6.12(a)).

To break the contact, the robot must first adjust its posture to redistribute the

contact forces over the other three limbs, so that the contact force applied on

the red hold by the right hand becomes 0. See Fig6.12(a). At the time t0 where

each of robot limbs are positioned at the 4 climbing holds. We call this set a 4-

contact-holds. The robot breaks the contact at the red hold at time t1, and move

at a 3-contact-holds (set of 3 contacted holds). The robot’s right hand reaches

the blue hold (local target hold) at the time t2 (see in Fig6.12(b)).

To continue climbing, the robot will then have to break contact at one of

the other three limbs, and then reach a new hold with the corresponding limb,
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6.6 Experiment with an Example

Figure 6.13: Joint trajectories example

etc...(see in Fig6.12(c). So overall, the entire climbing motion consists of succes-

sive moves. By applying this local planning, the humanoid robot can calculate

the individual joint angles for each of the robot’s joints. In Fig6.13 is an example

of applying local motion planning to determine all joint angles. At the posture

0 (at the time t0), the robot keeps balance on the wall by 4-contact-holds. From

the posture 0 to posture 1, robot adjusts the its body (at the time t1). Therefore

at the posture 3, the robot raises its right hand to reach a new climbing hold (at

the time t2). In the same manner, from the posture 4 to posture 7, robot raises

its left hand to reach a new climbing hod.

6.6 Experiment with an Example

We implemented our global path and local motion planning on KHR-3HV robot.

Using the planner, the robot can climbs up freely along the designed route. Of

course, free-climbing also requires various sensor feedback (vision, force sensor...)

to make the climbing more precise and robust. However, for our example, an
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6.6 Experiment with an Example

Figure 6.14: Robot start to climb at V1

open-loop position controller is implemented without sensor feedback on the robot

to execute the trajectory at very slow velocity to reduce positioning errors and

slipping risks.

As input, the motion planning through the Kinect sensor receives all infor-

mation of the climbing wall configuration (a list of all hold’s positions) and the

robot’s initial position. The motion planning is executed. As output, the planner

either generates a route (list of all joint-angle waypoints- see in Fig.6.13) to be

passed to the control system, or indicates that could not found a route.

In this example, the climbing wall configuration is shown in Fig. 6.2. The

path of right hand[V1]-[V7]-[V16]-[V19]-[V22] was found on the current climbing

wall configuration.

The humanoid robot starts climbing the wall with “the start hold” V[1]. The

“family holds group” of V[1] which the robot uses to keep balance in this step is
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6.6 Experiment with an Example

(a) Robot’s position at

[
H14 V 7

H31 H34

]
(b) Robot’s position at

[
H7 V 7

H31 H34

]

(c)Robot’s position at

[
H7 V 7

H31 H28

]
(d)Robot’s position at

[
H7 V 7

H22 H28

]

Figure 6.15: Sequence of family hold group from V[2] to V[7]

[
H14 V 1
H31 H34

]
(show in Figure 6.19(24[s])and Figure 6.14).

When the robot move the right hand form the V[2] to V[7] (see in Fig.6.19(24[s])-

36[s] and Figure 6.15). The sequence of “family holds group” is:
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6.6 Experiment with an Example

(a) Robot’s position at

[
H3 V 16

H22 H27

]
(b) Robot’s position at

[
H3 V 16

H22 H19

]

(c)Robot’s position at

[
H3 V 16

H14 H19

]
(d)Robot’s position at

[
H3 V 16

H14 H17

]

Figure 6.16: Sequence of family hold group from V[7] to V[16]

[
H14 V 7
H31 H34

]
-

[
H7 V 7
H31 H34

]
-

[
H7 V 7
H31 H28

]
-

[
H7 V 7
H22 H28

]

When the robot move the right hand form the V[7] to V[16] (see in Fig.6.19(36[s]-

64[s])and Figure 6.16). The sequence of “family holds group” is:
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6.6 Experiment with an Example

(a) Robot’s position at

[
H3 V 19

H14 H17

]
(b) Robot’s position at

[
H3 V 19

H14 H23

]

(c)Robot’s position at

[
H4 V 19

H14 H23

]
(d)Robot’s position at

[
H4 V 19

H17 H23

]

Figure 6.17: Sequence of family hold group from V[16] to V[19]

[
H3 V 16
H22 H27

]
-

[
H3 V 16
H22 H19

]
-

[
H3 V 16
H14 H19

]
-

[
H3 V 16
H14 H17

]

When the robot move the right hand form the V[16] to V[19] (see in Fig.6.19(64[s]-

94[s]) and Figure 6.17). The sequence of “family holds group” is:
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6.6 Experiment with an Example

(a) Robot’s position at

[
H5 V 19

H17 H23

]
(b) Robot’s position at

[
H5 V 22

H17 H23

]

(c)Robot’s position at

[
H5 V 22

H17 H16

]
(d)Robot’s position at

[
H5 V 22

H11 H18

]

Figure 6.18: Sequence of family hold group from V[19] to V[22]

[
H3 V 19
H14 H17

]
-

[
H3 V 19
H14 H23

]
-

[
H4 V 19
H14 H23

]
-

[
H4 V 19
H17 H23

]

When the robot move the right hand form the V[19] to V[22] (see in Fig.6.19(104[s]-

154[s])and Figure 6.18). The sequence of “family holds group” is:
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6.6 Experiment with an Example

Figure 6.19: Snapshots of humanoid climbing robot along the best route.

[
H5 V 19
H17 H23

]
-

[
H5 V 22
H17 H23

]
-

[
H5 V 22
H17 H16

]
-

[
H5 V 22
H11 H18

]

Lessons from experiments.

KHR-3HV is well designed and robust, capable of precise joint angle control.

However, in this experiment several limitations remain. For example, the robot is

controlled by joint-angle control, achieving desired posture but not always desired

force. In addition, the robot is unable to measure its position by lacking sensing.

There is main reason leading to the falling of the robot during the experiment.

Given these limitations, it is remarkable that the humanoid robot can climb at

all. With any climbing wall configuration as input, the planner computed to give

the easiest route for the right hand. Combining with a “family hold group” of

each right-hand holds on this route, the planner generates a joint-angle trajectory

for the robot.
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6.7 Conclusion and Future work

6.7 Conclusion and Future work

In this paper, the trajectory for an autonomously operating humanoid robot

to climb up a wall has been described. The Kinect sensor is used to detect

the climbing hold positions, and we addressed the problem of motion planning

for humanoid climbing robots. Then the “Right Hand Search Algorithm” is

developed to determine the route to climb up the wall. This algorithm compared

these paths to find out the best route based on the ease of the climbing (which

is described in subsection 4.2.2). Then, local motion planning is proposed to

support the robot in each rudimentary movement while the humanoid robot is

following the global path. Finally, experiments demonstrate that our humanoid

robot can reliably climb the rudimentary climbing wall.

6.7.1 Future work

In this paper, we only consider the global sensing to discern a global path, and the

local motion planning for a humanoid climbing robot. In the next step, a local

camera is used to allow the robot to acquire information about the details of

local terrain while climbing. The robot controller is applied the vision feedback;

consequently a robot’s limbs can accurately reach climbing holds at a computed

location. Thank for this, the robot’s trajectory can be modified in real-time when

other small errors occur. In addition, each limb will be equipped with a force

sensor, which is used by the robot controller to not only keep robot balanced on

the wall, but also to adjust the robot’s center of mass. We propose that additional

new sensors will increase the ability of humanoid climbing robot.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This dissertation describes a research with respect to humanoid free climbing

robot. The main object is develop humanoid robot, which which can climb up

autonomously a vertical climbing wall while using the climbing technical similar

to those develop by climber. At the beginning, robot typically starts by looking

at the entire wall to propose an effective strategy. During the moving, humanoid

climbing robot without any special tool, just only use climbing technical that

developed by human. This robot is expected to be useful to support rescue teams

in disaster area searching trapped climbers on the mountain, or even exploring

rock faces on the solar system.

In this dissertation, my first contribution was the development of hard ware

for humanoid climbing robot. Then, a rudimentary analysis of mechanical struc-

ture, and kinematic aspects of humanoid climbing robot are analyzed in detail.

Moreover, there are many useful climbing technical that developed by human

is presented and applied to humanoid climbing robot. At last, a 3D humanoid

climbing robot is simulated in Matlab-Simmechanics environment. With this 3D

model we can simulate some basic climbing actions. The center of gravity’s posi-

tions of robot while maintaining balance are calculated and recorded for further

research.
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7.2 Future works

My second dissertation was motion control for four limb climbing robot, and

a set of algorithm to support humanoid climbing robot: I propose a global plan-

ning algorithm for the humanoid robot using data from Kinect. The proposed

algorithm ensures that the climbing robot finds the best route to climb up the

wall. During climbing, the humanoid robot utilizes the local planning algorithm,

base on quasi static equilibrium, to adjusts its body posture in order to remain

in equilibrium state.

My third contribution was integrated implementation for a real humanoid

robot (Kondo KHR-3HV robot). Using the planning algorithm presented in this

dissertation, my controller could find the best route for robot, and free climbed

the ring climbing wall (Chapter 5).

7.2 Future works

This section briefly outlines the directions of future work.

Hardware development

Humanoid robot’s foot will be modified to increase the working area. More-

over, the robot’s hands should be wrapped with rubber. Conceptually, this modi-

fication is quite similar to which climbers use shoes to increase the friction contact

between their limbs and climbing holds.

Incremental sensing

The robot should be quipped with local camera (attracted robot’s head), and

force sensor that will be used by motion controller.

Developing motion planning Many useful climbing technique should be

apply to humanoid robot to develop motion planning. Such that, “best pose” for

the robot when robot keeps balance, or “changing pose” before release climbing

holds
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