
 

 

DOCTORAL DISSERTATION 

SHIBAURA INSTITUTE OF TECHNOLOGY 

 

 

 

 

DEVELOPMENT OF WOODCERAMICS ORIGINATED 

FROM BIOMASS, AND THEIR APPLICATIONS  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MARCH 2015 

 

DON KAEWDOOK 

 



SHIBAURA INSTITUTE OF TECHNOLOGY 

 

 

DEVELOPMENT OF WOODCERAMICS 

ORIGINATED FROM BIOMASS, AND THEIR 

APPLICATIONS  

 

 

 

 

 

 

 

 

 

By 

 

DON KAEWDOOK 

 

 

 

 

 

A THESIS SUBMITTED TO  

SHIBAURA INSTITUTE OF TECHNOLOGY  

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF ENGINEERING 

 

GRADUATE SCHOOL OF ENGINEERING AND SCIENCE  

 

 

MARCH 2015 



 
 

i 

 

Declaration of Authorship 

 

 I, DON KAEWDOOK, declare that this thesis titled, DEVELOPMENT OF 

WOODCERAMICS ORIGINATED FROM BIOMASS, AND THEIR 

APPLICATIONS and the work presented in it are my own. I confirm that: 

 

 This work was done wholly or mainly while in candidate for a research degree 

at Shibaura Institute of Technology. 

 Where any part of this thesis has previously been submitted for a degree or any 

other qualification at Shibaura Institute of Technology or any other institution, 

this has been clearly stated. 

 Where I have consulted the published work of others, this is always clearly 

attributed. 

 Where I have quoted from the work of others, the source is always given. With 

the exception of such quotations, this thesis is entirely my own work. 

 I have acknowledged all main sources of help. 

 Where the thesis is based on work done by myself jointly with another, I have 

made clear exactly what was done by others and what I have contributed myself. 

 

 

Signed: ___________________________________ 

(Don KAEWDOOK) 

 

 

Certified by: ________________________________ 

(Prof.Dr.Akito TAKASAKI) 

 

Date: ______________________________________ 



ii 

 

SHIBAURA INSTITUTE OF TECHNOLOGY 

 

ABSTRACT 

Advanced Research Program on Eco-materials Engineering 

Graduate School of Engineering and Science 

 

Doctor of Engineering 

by 

Don KAEWDOOK 

The increasing world population causes an increasing consumption of resources and the 

increased generation of waste, which leads to the need for development of new 

materials made from renewable resources harmless to the natural environment. 

Thailand has plenty of such renewable resources since its economy is largely based on 

agriculture, and biomass residues from crops progressively increase as the Thai 

government promotes the production of crops and high volume exports. Currently, 

natural rubber is a plant of economic importance to Thailand.  The region is the largest 

producer and exporter of natural rubber in Asia and Thailand has a top of global market 

share. The natural rubber wood constitutes a large part of its biomass as rubber trees 

have a productive life of 20-25 years. Once this period of time has been completed, the 

farmers need to cut down the old trees for replanting.  The large volume of waste and 

biomass from old rubber trees is a problem that needs to be addressed. To use the 

biomass waste effectively I focus on woodceramics which were developed in Japan. 

Woodceramics (WCMs) is a new technical innovation with superb functionalities and 

high additional value. WCMs are carbon-based hybrid materials consisting of 

amorphous and glassy carbon (organic carbon resulting from carbonized wood waste) 

with porous structure.  

In this research, I employed diverse techniques developed in Japan to fabricate WCMs. 

One objective of this research is to explore the potential to use biomass from natural 

rubber trees and wastes from coconut shells in Thailand to fabricate WCMs.  

These techniques will be environmentally safe and save operation costs to dispose of 

agricultural wastes. 
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This study examined the use of biomass charcoal made from carbonized residues of 

rubber wood and or coconut shell, mixed with phenolic resin and carbonized in a 

vacuum. The microstructure and physical characterization has been performed by 

several techniques, namely, X-ray diffraction (XRD), scanning electron microscope 

with energy dispersive X-ray analysis (SEM/EDX) and mechanical test. The results 

showed that the high weight ratio of phenolic resin increased compressive and bending 

strength of WCMs and high carbonization temperature affected the microstructure, 

surface porosity, density and increasing the purity of the graphite of WCMs. 

I have studied three main applications of WCMs fabricated from biomass charcoal 

originated from rubber tree in Thailand, (1) production of amorphous carbon (a-C) films 

using woodceramics as a target material, (2) electrochemical deposition of nickel and/or 

copper on woodceramics and  (3) fabrication of eco-composites using biomass charcoal 

with waste melamine formaldehyde. For production of amorphous carbon (a-C) films, 

the synthesis of the films onto a silicon wafer as substrate was successfully fabricated 

by a RF magnetron sputtering method using wood ceramics as a target. The a-C films 

possess carbon turbostratic structure or amorphous with electron configurations of type 

sp2 and sp3. For electrochemical deposition, in order to improve the compressive 

strength of WCMs, a metallic film was electrochemically deposited using copper 

sulfate (CuSO4) and/or nickel sulfate (NiSO4) solutions. As a result, the compressive 

strength was increased to 35 MPa and 43 MPa after being deposited in CuSO4 and 

NiSO4 solutions, respectively. Without this deposition process, the compressive 

strength was 28 MPa. For eco-composite, they were fabricated using charcoal powder 

obtained from rubber tree wood, waste melamine formaldehyde resin (WMF) powder 

and phenolic resin as binder material. A mixing ratio of WMF lower than 50 wt.% was 

used in the fabrication of eco-composites.  The highest compressive strength of 35.7 

MPa was obtained when the mixing ratio: WMF/Biomass charcoal/Phenolic resin was: 

50/30/20.  
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Chapter 1 

 

Introduction 

 

1.1   Current status of biomass residue in Thailand 

Thailand is an agricultural country located in the center of Southeast Asia bordered by 

Myanmar, Lao PDR, Cambodia and Malaysia as shown in Figure 1.1. The total area is 

approximately 514,000 square kilometers [1], and  the population in 2014 was 

estimated to have increased to 67.2 million. The main Gross Domestic Product (GDP) 

of Thailand extended to 0.60 percent in the third quarter of 2014 over the same quarter 

of 2013. Average GDP Annual Growth Rate in Thailand was 3.68 Percent from 1994 

until 2014, reach to 19.10 percent in the fourth quarter of 2012 [2]. Thailand is divided 

into 77 provinces, covering the agricultural sector with 24.86 million people working 

on farms (39 percent of the total population) [3].   

 

Figure 1.1 Thailand geographical locations [4] 
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The traditional of Thailand is an agricultural country, with regards to 10 percent of GDP 

is coming from the agricultural sector [5]. Agricultural products in Thailand have not 

only growth them for their own consumption, however,their are major source of 

economic income from exporting. The value of agricultural exports are slightly increase 

every year and acting as a main product of export earnings. The Thai government is 

attempting to enhance agricultural productivity, which is essential to raisraising 

incomes and improving the population’s standard of living.  After harvesting there will 

be a large amount of agricultural waste left which could be used as biomass energy. 

The recent dramatic economic growth brought new environmental challenges. The 

country presently faces the prospect of air and water pollution, declining wildlife 

populations, deforestation, soil erosion, water scarcity, and hazardous waste issues 

growing into a serious problem in Thailand in 2013. The survey from the pollution 

control department, Ministry of Natural Resourcesand Environment of Thailand 

indicated that  total waste generated in 2013 was found to be 26.77 million tons; an 

increase from 2012 which was about 2 million tons [6, 7]. 

This is a national problem where all agencies need to cooperate in order to brainstorm 

solutions. It warned scientists to assess its impacts on present ecosystem function and 

to provide valuable knowledge to establish green innovation which involves adaptation 

to mitigate climate change.  

1.1.1 Biomass resources in Thailand 

The biomass waste reprocessing project has objectives to reduce pressure on Thailand’s 

natural forests and to reduce climate change and greenhouse gas emissions. Biomass is 

organic matter including forest and mill residues which are categorized broadly as 

waste coming from wood, non wood, and from animal droppings. The biomass from 

wood comprises forests, agroindustry plantation, bush trees, urban trees and fast 

growing trees. The woody biomass is generally a value commodious and has several 

advantage application such as timber, raw material for pulp and paper, the pencil and 

matchstick industries, and heat source cooking. Nonwoody biomass comprise of crop 

residues like straw, leaves, and plant stems, processing residues like saw dust, bagasse, 
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nutshells and husks, and domestic wastes (food, rubbish and sewage). Animal waste 

constitutes the wastes from animal husbandry [8, 9]. The assessment of biomass 

application potential including biomass residue and forestry biomass in Thailand was 

carried out taking into account the amount of biomass residue which was already 

demonstrate and the possibility of biomass energy estate farm in accordant with the 

National Plan of the Thai Government as,  

 Agricultural crops such as sugarcane, cassava, corn, etc. 

 Agricultural residues such as rice husk/straw from rice fields, cassava 

rhizome, corncobs, etc. 

 Woody biomass residues from forest plantation, fast grawing trees, 

natural rubber trees, wood waste from wood mill, pulp and paper mill, 

palm oil extraction plants, etc. 

 Waste of wood from furniture manufactory (barks, sawdust, etc.) 

 The bio energy source for ethanol production (cassava, sugar cane, etc.) 

 Raw materials for biodiesel production (palm oil, jatropha oil, etc.) 

 Residues process from from agroindustry 

 Livestock manure 

 Solid waste from municipal and sewage.  

 

 

Figure 1.2 Rice farm growth in Thailand [10] 
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Figure 1.3 Natural rubber product farm in Thailand [11-14]. 

 

The local areas in Thailand are main sources of biomass from paddy field as shown in 

Figure 1.2. Recently, most of woody biomass coming from natural rubber trees since 

the expanding production area to all regions of Thailand as economics trees as shown 

in Figure 1.3. 

1.1.2 Biomass utilization in Thailand  

Generally, the biomass shown in Table 1.1 is matter that is derived from the plant which 

is suitable for use as source materials for renewable energy, which makes them useful 

for large scale energy plantations. Biomass specially means agricultural wastes such as 

rice straw/husk, forestry waste, fast growing trees, economic trees as natural rubber 

trees. The utilization of biomass ranges from local usage to well established technology. 

Major technologies using biomass in Thailand are gasification, combustion, pyrolysis 

and biogas. However, the characteristics of biomass, availability of planting area, crop 

patterns, and storage and transportation, are main factors of efficient biomass utilization 

in Thailand. The utilization of biomass are mainly consumed from 2 sectors. The first 

is the residential sector, which use about 56%. The second is the mafacturing sector 
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which use about 44% in 2002 [15]. The biomass consumption indicates that the trend 

of biomass demand has increased . 

Table 1.1 Agricultural product and Biomass ratio [16]. 

Agricultural 

Product 

Biomass Biomass Ratio 

(%) 

Paddy 
Rice husk 21.00 

Rice straw 49.00 

Sugar cane 

Bagasse 28.00 

Leaf, Top of 

Sugar cane 
17.00 

Cassava 

Cassava waste 37.00 

Cassava peel 0.06 

Cassava 

rhizome 
20.00 

Corn 
Corncob 24.00 

Corn stem 82.00 

Coconut Shell 81.56 

Rubber wood Waste wood 87 

 

 

1.1.3 Thai rubber statistic 

Thailand is the leading producer and exporter of natural rubber in South East Asia. The 

region is the largest producer and exporter of natural rubber in Asian country and the 

world with a market share of 80%. Among the region, Thailand is the top of global 

market share (33.1%), followed by Indonesia, Malaysia and Vietnam. The total amount 

of natural rubber produced and exported generates over 678,000 ton per year, involving 

no less than 6 million people as shown in Table 1.2 and Figure 1.4  [17, 18]. 
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Table 1.2 Productivity of natural rubber in Thailand since 1993-2013. 

Year Quantity of 

Production 

Quantity of 

Export 

Domestic 

Consumption 

1993 1,553,384 1,396,783 130,236 

1994 1,717,861 1,604,964 132,195 

1995 1,804,788 1,635,533 153,159 

1996 1,970,265 1,762,989 173,671 

1997 2,032,714 1,837,148 182,020 

1998 2,075,950 1,839,396 186,379 

1999 2,154,560 1,886,339 226,917 

2000 2,346,487 2,166,153 242,549 

2001 2,319,549 2,042,079 253,105 

2002 2,615,104 2,354,416 278,355 

2003 2,876,005 2,573,450 298,699 

2004 2,984,293 2,637,096 318,649 

2005 2,937,158 2,632,398 334,649 

2006 3,136,993 2,771,673 320,885 

2007 3,056,005 2,703,762 373,659 

2008 3,089,751 2,675,283 397,595 

2009 3,164,379 2,726,193 399,415 

2010 3,252,135 2,866,447 458,637 

2011 3,569,033 2,952,381 486,745 

2012 3,778,010 3,121,332 505,052 

2013 4,170,428 3,664,941 520,628 

Figure 1.4  Production capacity of para rubber in Thailand during 1993–2013 
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1.1.4 Recent Status of Biomass Management 

The Pollution Control Department (PCD) of Thailand’s responsible assessment survey 

suggests that waste management has needs across a wide range of areas. The 

government of Thailand has made it a priority to treat the problem and aims to promote 

and support effective and appropriate technology. Biomass provides simple heat energy 

for cooking and processing in traditional industries of Thailand. Nowadays, in Thailand, 

biomass is an important source material as renewable materials used to generated 

electricity in power plants, and liquid fuels such as ethanol that can reduce amount of 

fuels derived from fossil fuel. 

This study covers agricultural organic waste treatment and utilization techniques. 

Agricultural organic waste can be properly treated, thus reducing its impacts on 

environment and climate.  

 

1.2 Wooceramics and their applications 

1.2.1 What are Woodceramics 

Woodceramics (WCMs) are new carbon materials obtained by carbonizing wood or 

woody materials impreginated with phenolic resin and carbonization in vacuum furnace 

[19] . The microstructure of WCMs are carbon-carbon composite originated from 

carbonized woody mixing with phenolic resin. The cell structure of WCMs was  carbon 

reinforced by glassy carbon from phenolic resin which was changed after high 

temperature carbonization to increase its mechanical properties. The design of WCMs 

is to support society by carrying advantages and conveniences to human daily life. They 

also impose a wide various of problems on the environment through each and every 

step of production, processing, circulation, consumption, use, recycling and disposal 

[20]. A schematic diagram of the fabrication process is shown in Figure 1.5. Waste of 

wood such as sawdust from residues woody, and small trees architecture waste can also 

be used as raw materials. The second step is impregnation or mixing with  
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Figure 1.5 Schematic process to fabricate woodceramics [21] 

 

phenolic resin. The third step is the most important process, which is carbonization to 

change structure of phenolic resin to glassy carbon structure. The final result is WCMs 

which needs an additional process before making a final product [21, 22]. 

In general, land-growing plants in the form of trees, shrubs, and agricultural crops are 

formed by catalytic conversion of carbon dioxide to an organic mass mainly consisting 

of the elements C-O(-N)-H. Wood typically contains 10 to 20 wt.% of hemicellulose,10 

to 30 wt.% of lignin, and 30 to 55 wt.% of cellulose (and less than 2 wt.% of ash 

including minerals)  as shown in Figure 1.6 [23]. 

 

Figure 1.6 Thermal decomposition products of the major molecular constituents of 

wood [24]. 
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Heating wood under vacuum atmosphere at temperature above 600 °C results in 

decomposition of the polyaromatic constitutents to form a carbon residue which 

reproduces the original cellular structure. 

1.2.2 Proposed application of woodceramics 

The WCMs are a new porous carbon material developed with the aim of adding superb 

functionality and value to carbon materials using biomass such as organic waste. These 

are one of the eco-materials, because they can be made from any kind of biomass with 

special physical properties such as high porosity, lightweight, low friction and 

increased wear resistance. The WCMs also have quite good properties of heat resistance, 

thermal shock toughness, small thermal expansion, chemical stability, electrical 

resistance, electromagnetic shielding and infrared radiation, and are being expected to 

be used widely in industrial fields. Therefore, it has great potential use in various 

applications such as heaters, gas filters, absorbents, humidity and temperature sensors, 

catalyst carrier materials, self-lubrication materials, heat insulating materials, damping 

materials, electromagnetic shielding, light structure ceramics, etc [25-28]. 

1.2.3 Recent researches in woodceramics 

Woodceramics are carbon materials synthesized from natural wood or biomass, and are 

carbon composite or ceramic structure. The biomass provided by organic carbon from 

varieties of wood combined with phenolic resin create a composite with different 

mechanical properties and thermal stability [20, 29-31].  

The development of bean-curd refuse origin ceramic materials for infrared radiators 

was successful. Therefore, an efficient recycling method for bean curd has been 

produced in view of lessening the environmental effect and reducing the costs in 

disposal. The methodology starts from carbonizing bean-curd to charcoal and mixing it 

with phenolic resin, forming and carbonizing under vacuum atmosphere. The ceramic 

materials exhibited a high inrfrared emissivity compared to commercial product [21].  
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The recycling of wastepapers following the ways of WCMs were successfully applied. 

The results indicated that high performance in electric and magnetic shielding were 

equivalent to general WCMS made from medium density fiberboard, whose were 

electric shielding effectiveness is 30 dB for 100 MHz, 43 dB for 300 MHz and 30dB 

for 100 MHz, 37dB for 400 MHz respectively [27]. 

The carbonizing temperature had the effect of changing the properties of WCMs. The 

different heating rate changes dimension shrinkage and weight loss, density, 

compressive, tensile strength and specific surface area. The dimension shrinkage and 

weight loss increased with increase of heating rate, while the mechanical strength 

decreased. Therefore, when increased carbonization temperature the ration of carbon to 

oxygen in WCMs were increased. The carbonization temperature higher than 650 °C, 

then space of crystalline (R-value) increased, the (002) interplaanar have turbostatic 

structure with cracks and internal stress [32, 33]. 

Hydrogen absorption and adsorption properties of WCMs made from radiate pine wood 

fiberboards were investigated. The high temperature enhances graphitization of WCMs, 

then decreased capacities of hydrogen adsorption and absorption in WCMs [26]. 

Damping properties of WCMs can increase by being infiltrated with magnesium alloy. 

After infiltration, WCMs have interpenetrating network structure. So that the 

mechanical strength and damping characteristics were increased [34]. 

The Aluminum-silicon alloy liquid infiltration to WCMs at high pressure vacuum 

conditions can improve tribological properties of WCMs, which improves dry sliding 

friction and wear behavior as well as mechanical properties [28].  

The WCMs can be derived from tobacco stems with different contents of phenolic resin 

and different cabonizing temperature. Raman spectroscopy indicated that R-value 

decreased with an increased carboning temperature and increased content of phenol 

resin. The carbonizing temperature of 973 K is the turning point for preparing WCMs. 

The crystalline size (La) was low, which was microcrystalline between 1.85 and 5.40 

nm [35]. 
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The natural wood, after carbonizing at 800-1800 °C is infiltrated with liquid silicon and 

re-cabonizing at 1600 °C then converted to an original structure of silicon carbide (SiC). 

The anisotropy of their mechanical and physical properties generally increased with 

porosity and great differences in strength, strain to failure and toughness [24].  

1.3 Study motivation 

WCMs are environmentally conscious (eco-materials) composite materials dedesigned 

to reduce impact to the environment and create ideal recycling as shown in Figure 1.7. 

The WCMs are materials that friendly to the environmental and improvement 

throughout the whole life cycle although maintaining accountable performance. 

Regarding on the basic properties of WCMs background, the fundamental concept of 

eco-materials are showing as below.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 Conceptual model of Eco-materials within concept of materials science 

[36, 37]. 
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This study is to explore potentials for value addition to biomass produced in Thailand.  

The objective of this research work focuses on the possibility to produce WCMs using 

Thai biomass waste such as rubber trees and coconut shell, and on new applications of  

WCMs;   

I. Fabrication of Woodceramics from biomass in Thailand : The biomass from 

residues of natural rubber trees and coconut shell have been chosen for WCMs 

fabrication in this research. The basic properties of biomass are low density and 

low mechanical strength which is not suitable for use as structural material. 

However , it includes a high percentage of carbon with some chemical element 

that supports an increase in the mechanical properties of WCMs.  Also, the 

biomass from the waste of coconut shell that is very high in porosity 

microstructure, has excellent advantages to use as raw materials to fabricate 

high porosity WCMs for gas adsorption or absorption materials. The 

fundamental properties of coconut shell after carbonizing have excellent natural 

structure, high density and low ash content.   

II. Production of Amorphous Carbon Films using Woodceramics: To design the 

low cost fabrication of amorphous carbon (a-C) thin films were deposited on 

silicon wafers by RF magnetron sputtering technique using woodceramics as a 

target. The amorphous carbon (a-C) thin films that are used as optically 

transparent films with low friction, wear resistance, hardness, high thermal 

conductivity and electrical resistance are technologically important. Radio 

frequency magnetron sputtering is a process that is used to make thin film with 

solid carbon target. In this process, WCMs are used instead of graphite materials 

to make thin film on a substrate that is placed in a vacuum chamber.  

III. Electrochemical Deposition of Ni and Cu on Woodceramics: Electroplating is 

primarily used to change the surface properties of an object. To imrove surface 

resistance, physical and mechanical strength of WCMs, the electrochemical 

deposition were applied for coating metal objects with a thin layer of copper or 

nickel on WCMs surface.  
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IV. Fabrication of Eco-composite using charcoal from biomass and used melamine 

formaldehyde: The mission of fabricating eco-composite is to design new 

solutions for the disposal of biomass residues from natural rubber trees and used 

melamine formaldehyde to save disposal cost and minimizing the 

environmental impacts.  

1.4 Thesis Outline and Contribution 

Chapter 1: Introduction 

The chapter introduces the current biomass situation in Thailand, and in detail explains 

the resources and current utilization of biomass including natural rubber economic 

production area in Thailand. The properties of WCMs, fabrication techniques and 

current research and applications are also explained. Finally given about research 

objectives and outline of this research study were explained. 

Chapter 2: Characterization of woodceramics 

In this chapter, the theory for evalution and analysis methods for WCMs are described. 

The crystalline strucuture, microstructure, chemical content and mechanical properties 

were determined by X-ray diffraction (XRD) , scanning electron microscope (SEM), 

energy dispersive X-Ray spectroscope, thermogravimetric analysis (TGA), raman 

spectroscopy and mechanical testing. 

Chapter 3: Fabrication of Woodceramics from biomass in Thailand 

This chapter discusses on the preparation of raw materials for fabrication of new WCMs 

from biomass residues ( rubber trees and coconut shell) in Thailand. The designed 

forming parameters and carbonization parameters were also discussed. The basic 

properties of WCMS such as chemical copositions, microstructure, physical properties, 

and mechanical properties are investigated.  
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Chapter 4: Production of Amorphous Carbon Films using Woodceramics 

This chapter introduces a new application of WCMs in the field of fabrication of 

amorphous carbon (a-C) thin films by an RF magnetron sputtering. The theory of 

amorphous carbon films and its application were introduced. The conditions to 

fabrication of a-C films and characterizing methods were explained. The main 

characterizing method were X-ray diffraction, raman spectroscopy and X-ray 

photoelectron spectroscopy. Fundamental mechanical properties such as hardness and 

friction coefficient were also measured.  

Chapter 5: Electrochemical Deposition of Ni and Cu Woodceramics 

This chapter introduces new techniques to improve the mechanical properties of 

woodceramics. In this study we attempted to deposit metallic (Cu or Ni) layers 

electrochemically on the woodceramics, in copper sulfate (CuSO4) or nickel sulfate 

(NiSO4) solutions. The concentration of the solutions and deposition times were varied. 

The microstructures and the character of depopsited films as well as compressive 

strength were investigated by means of X-ray diffraction, scanning electron microscopy, 

and compression test respectively.  The compression test of samples before and after 

metallic deposition was also performed.   

Chapter 6: Concluding Remarks and Future Works 

The final chapter concludes all the studies that have been conducted. In addition to 

additional studies on optimization of design, the possibility of new biomass materials 

to fabricate WCMs, properties analyses and those application, new possible commercial 

expansions are suggested  in this chapter. 

Appendix : Fabrication of Eco-Composite using charcoal from biomass  

This chapter investigates new eco-composite materials which consists of biomass 

charcoal from natural rubber trees and used waste melamine formaldehyde, and/or 

virgin melamine formaldehyde with phenol resin as a combinder material. The design 

parameters of each element and fabrication conditions were introduced. The 
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characterization of eo-composite, microstructure, crystalline and mechanical properties 

were also investigated. The future applications of eco-composite were also discussed 

in this chapter.  
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Chapter 2 

Characterization of woodceramics 
 
 

2.1  X-ray diffraction (XRD) measurements [1-5] 

Woodceramics are solid carbon materials with hybrid structure between glassy carbon 

and graphite structure in a solid. The structures of crystalline solid material are 

classified by the constancy of atoms and ions arrangement. Most of this technical 

method identifies crystalline materials using x-ray diffraction techniques.  

The XRD analysis measurement is a versatile, non-destructive technique used for the 

identification of unknown crystalline materials such as minerals, metal, organic, and 

inorganic compounds. To identifications of unknown element are critical to studies in 

geology, environmental science, material science, engineering, and biology field.  

X-ray diffraction is based on constructive interference of monochromatic X-rays and a 

crystalline sample. The X-ray beam generated by a cathode ray tube, filtered to produce 

monochromatic radiation, collimated to concentrate directly toward the specimen as 

shown in Figure 2.1 and 2.2. The collaboration of the incident rays with the specimen 

generated constructive interference when conditions satisfy Bragg's Law as shown in 

Equation 2.1. This regulation relate to wavelength of electromagnetic radiation to the 

X-ray diffraction angle and the lattice space in a crystalline of specimen. These 

diffracted X-rays are then detected, processed and counted by scanning sample through 

a range of 2θ, all possible diffraction directions of the lattice should be attained due to 

the random orientation of the powdered material. Convergent of the diffraction peaks 

to d-spacing identification the mineral because each mineral has a set of unique d-

spacing. Essentially, this measurement achieved by comparison of d-spacing with 

standard reference patterns. The diffraction methods are based on the generation of X-

rays in tube. 
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Figure 2.1 Schematic diagram of an XRD, T = x-ray source, S=specimen, C=detector 

and O=axis between detector and specimen [3].  

 

 

Figure 2.2 Reflection of X-rays from two lattice planes [4]. 

The divergent beam X-ray are directed at the specimen and the diffracted rays are 

collected. A main component of all diffraction is the position of angle between the 

incident and diffracted rays.  

The XRD is primarily used for; 

i. Identifying crystalline material. 

ii. Identifying unit cell dimensions 

iii. Identifying different polymorphic forms. 

iv. Distinguishing between amorphous and crystalline material. 

v. Quantifying the percent crystallinity of a sample. 
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X-rays interaction with the electron in atom. While the x-ray photons collide with 

electrons, some photons from the incident beam will be diffracted away from the 

direction where they initially. The process is called elastic scattering (Thompson 

Scattering) in that only momentum has been transferred in the scattering process. These 

are the X-rays that one measure in diffraction experiments, as the scattered X-rays carry 

information about the electron distribution in materials. On the other hand, in the 

inelastic scattering process (Compton Scattering), X-rays transfer some of their energy 

to the electrons and the scattered x-rays will have different wavelength than the incident 

X-rays. 

The diffraction waves from different atoms can intervene with each other and the 

derivable intensity distribution is strongly modulated by the collaboration. The atoms 

are arranged in a periodic fashion, as in crystals, the diffracted waves will consist of 

sharp interference maxima (peaks) with the same symmetry as in the distribution of 

atoms. The analysis of the diffraction pattern therefore allows us to deduce the 

distribution of atoms in a material. 

The peaks in an x-ray diffraction pattern are directly related to atomic distances. For a 

given set of lattice planes with an inter-plane distance of d, the condition for a 

diffraction (peak) to occur can be simply written as which is known as the Bragg's law, 

after W.L. Bragg, who first proposed it. In the Equation 2.1 is the wavelength of the x-

ray, q the scattering angle, and ‘n’ an integer representing the order of the diffraction 

peak. The Bragg's Law is one of most important laws used for interpreting X-ray 

diffraction data. 

                                  2𝑑 sin ∅ = 𝑛                      (2.1) 

Where; d = spacing of planes of atoms 

θ = diffraction angle 

λ = x-ray wave length 

n = integer numbers 
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According to the arrangement of atoms, the unit cell is specific to a crystal lattice, this 

forms the determination basis of the material crystal structure. Each atom independently 

has an atomic scattering factor, fi, on the basis of scattering efficiency of all electrons 

in the atom. Here we can define a scattering factor of unit cell, F, as Equation 2.2.  The 

sum of the fi from all the i atoms in the unit cell is obtained 

 

                       𝐹 =  ∑ 𝑓𝑖
∞
𝑖 𝑒2𝜋𝑖(ℎ𝑥𝑖+𝑘𝑦+𝑙𝑧𝑖)

                            (2.2) 

      

 

Where; x, y, z  = positions of the atom in the unit cell (x,y,z) 

h, k, l  = specific atomic planes (h,k,l) that make up the crystal structure.  

In order to determine structure of powder, a bulk sample and a-C films (XRD method) 

are used in this work. The XRD equipment is Rigaku Ultima IV using Cu-Kα radiation 

(wave length of 1.541 Å) with a graphite monochromator at room temperature. 

However, it has been mentioned that structure of woodceramics and a-C films are 

noncrystalline called amorphous. Amorphous materials are characterized by an atomic 

or molecular structure. Ceramic materials include crystalline and noncrystalline 

structures, whereas others, the inorganic glasses, some structure of composite polymer 

are amorphous. 

2.2  Scanning electron microscope (SEM) [6-8] 

The scanning electron microscope (SEM) is a tool for the investigation of specimens 

with a resolution down to micrometer scale and nanoscale. The principle of SEM using 

a focused high energy electron beam from cathode and electromagnetic lenses is to 

generate a signal at the surface of a specimen to create an image as shown in Figure 2.3.  

The SEM is routinely used equipment to generate high-resolution images of the shapes 

of objects. The signals that derive from electron-sample interactions reveal information 

about the sample including external morphology (texture). In most applications, data is 

collected over a selected area of the surface of the sample, and a 2-dimensional image 

is generated that displays spatial variations in these properties.  
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In the conventional scanning electron microscope, which operates in high vacuum 

atmosphere, the specimen has to be electrically conductive or has to be coated with a 

conductive layer (e.g. Carbon, Gold etc.). In the environmental scanning electron 

microscope (ESEM) two further vacuum states lead to new possibilities. The low 

vacuum mode allows the imaging of nonconductive specimens such as polymers and 

biological samples.  Microscopy is now recognized as a separate technological field 

and has become a valuable research tool which is applicable to all modern technologies. 

 

 

Figure 2.3 Schematic diagram of a Scanning Electron Microscope (SEM). 

     

A beam of high-energy electrons is produced in the electron gun at the top of the column 

and applies high voltage to a tungsten filament and nearby anode as shown in Figure 

2.4. This beam is accelerated down past the anode into the column where it is condensed 

and aligned by a series of electromagnetic lenses and coils within the column. This 

focused beam continuously back and forth across the sample. Interactions between the 

electron beam and the sample result in different types of emissions that are measured 

by a series of detectors located within the sample chamber. The types of emissions that 

are measured are: secondary electrons, backscattered electrons, X-rays, and cathode 

luminescence. X-ray data is sent to the x-ray system where it is translated into elemental 
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plots. The other three detectors are connected to a 'TV' monitor where the signal 

generates a clear, green monochrome image of the sample. Secondary electron imaging 

provides good 3-dimensional topographical views of the sample. Backscattered 

electron images show less defined topography but clearly display differences in 

elemental compositions because higher atomic number elements appear brighter. 

Cathode luminescence imaging highlights chemical variations within individual grains 

due to trace element variations and zoning. 

2.3  Energy Dispersive X-ray spectroscopy (EDS) [9] 

The energy dispersive x-ray spectroscopy (EDS or EDX) is a technique that utilizes X-

ray emitted from the sample during the bombardment by the electron beam to 

characterize the elemental composition of material imaged in a SEM. The specimen is 

bombarded by the electron beam of SEM process, electrons are ejected from the atoms 

comprising the surface of the specimen. The result of electron vacancy is filled by an 

electron from a higher shell, and an x-ray is emitted to balance the energy difference 

between the two electrons. The X-ray detector measures the number of emitted X-ray 

versus their energy. The energy of the x-ray is characteristic of the element from which 

the x-ray was emitted. A spectrum of the energy versus relative counts of the detected 

X-ray is obtained and evaluated for qualitative and quantitative determination of the 

elements present in the sampled volume. Backscattered electron images in the SEM 

display compositional contrasts that result from different atomic number elements and 

their distribution. Energy Dispersive Spectroscopy (EDS) allows one to identify what 

those particular elements are and their relative proportions in atomic weight percent.  

The X-ray generation of EDS, have two basic types of produced inelastic interaction of 

electron beams with the atoms of a specimen’s surface. The hole in an inner shell (here : 

K shell) of a specimen atom is generated by an incident high energy electron (E0) that 

loss the corresponding energy (E)  transferred to the ejected electron as shown in Figure 

2.4. 
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Figure 2.4 Schematic description of x-ray result when the beam electron eject inner 

shell electron of specimen atoms. 

 

The hole of a shell is subsequently filled by an electron from L1 to L3 shell. The 

superfluous energy is emitted as a characteristic X-ray quantum. The energy of the X-

ray is characteristic of the specimen atomic number from which it is derived. Auger 

electrons have an energy range of 50 – 2500 eV and mean free paths within the 

specimen of 0.1 – 2 nm. This means that only Auger electrons escaping from a depth 

of 0.1 – 2 nm (5-10 atomic layers) will not have undergone additional inelastic 

interactions with specimen atoms after their generation. Auger spectroscopy is a true 

surface analysis methodology. 

The EDS system is comprised of three main components, an X-ray detector which 

detects and converts x-ray into electron signals, a pulse processor which measures the 

electron signals to determine the energy of each x-ray detected, and multiple channel 

analyzer which displays and interprets the x-ray data of EDS measurement. 
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2.4  X-ray photoelectron spectroscopy (XPS)  [10-13] 

X-ray photoelectron spectroscopy (XPS) or Electron Spectroscopy for Chemical 

Analysis (ESCA) is a technique used to conduct elemental analysis of surfaces or 

surface chemical analysis technique cause of its relative simplicity in use and data 

interpretation. The sample is irradiated with mono-energetic X-rays causing 

photoelectrons to be emitted from the sample surface. An electron energy analyzer 

determines the binding energy of the photoelectrons. From the binding energy and 

intensity of a photoelectron peak, the elemental identity, chemical state, and quantity 

of an element are determined. The information XPS provides about surface layers or 

thin film structures is of value in many industrial applications including: polymer 

surface modification, catalysis, corrosion, adhesion, semiconductor and dielectric 

materials, electronics packaging, magnetic media, and thin film coatings used in a 

number of industries. The X-ray photon of energy ejection of an electron from a core 

level, the energy emitted photoelectrons is then analyzed by the electron spectrometer 

and data presented as a graph of intensity versus electron energy included photoelectron 

spectrum as shown in Figure 2.5.  

 elemental composition of the surface 

 empirical formula of pure materials 

 elements that contaminate a surface 

 chemical or electronic state of each element in the surface 

 uniformity of elemental composition across the top surface (or line profiling 

or mapping) 

 uniformity of elemental composition as a function of ion beam etching (or 

depth profiling) 
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Figure 2.5 Schematic principle process of x-ray photoelectron spectroscopy. 

 

 

 

Figure 2.6 Schematic description of Photoelectric effect of XPS instrumentation [13]. 
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XPS detects only those electrons that have actually escaped from the sample into the 

vacuum of the instrument, and reach the detector as shown in Figure 2.6. In order to 

escape from the sample into vacuum, a photoelectron must travel through the sample. 

Photo-emitted electrons can undergo inelastic collisions, recombination, excitation of 

the sample, recapture or trapping in various excited states within the material, all of 

which can reduce the number of escaping photoelectrons. These effects appear as an 

exponential attenuation function as the depth increases, making the signals detected 

from analysis at the surface much stronger than the signals detected from analysis 

deeper below the sample surface. Thus, the signal measured by XPS is an exponentially 

surface-weighted signal, and this fact can be used to estimate analyst depths in layered 

materials. 

2.5  Raman spectroscopy [14-19] 

The basics of Raman scattering can be explained using classical physics and quantum 

mechanical treatise. The phenomenon of inelastic scattering of light, then the 

phenomenon has been referred to as Raman spectroscopy. Raman spectroscopy are 

widely used to provide materials information on chemical structure and physical forms, 

to identify substances from the characteristic spectral patterns and quantitatively or 

semi-quantitatively the amount of a substance in specimen surface. It has played an 

important role in the structural characterization of graphitic materials, in particular 

providing valuable information about defects, stacking of the graphene layers and the 

finite sizes of the crystallites parallel and perpendicular to the hexagonal axis.  

In the original experiment sunlight was focused by a telescope onto a sample which 

was either a purified liquid or a dust free vapor. A second lens was placed by the sample 

to collect the scattered radiation. A system of optical filters was used to show the 

existence of scattered radiation with an altered frequency from the incident light the 

basic characteristic of Raman spectroscopy. 

The main concept of Raman spectroscopies being employed to detect vibrations in 

molecules is based on the processes of infrared absorption and Raman scattering that 

provides rich information about the identity of molecular species.  
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Figure 2.7 Principle scattering of Raman spectroscopy. 

 

 

 

 

 

Figure 2.8 Schematic description for process involved in collecting Raman spectra 

[19].  

The majority of scattered light is elastically scattered, meaning it is the same 

wavelength as the excitation source. A notch filter is used to block elastically scattered 

light which would otherwise overwhelm the weak signal from the Raman or 

inelastically scattered photons as shown on Figure 2.7 and 2.8.   
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Figure 2.9 Simplified energy level diagram. The shift in wavelength between the 

excitation light (λe) and the scattered light (λs) is related to Raman shift (ΔV in cm-1) 

according to: ΔV = (1/ λe) + (1/ λs). 

 

When light interacts with matter, the photons which make up the light may be absorbed 

or scattered, or may not interact with the material and may pass straight through it. The 

photon energy of this scattered light is equal to that of the incoming light. If the energy 

of an incident photon corresponds to the energy gap between the ground state of a 

molecule and an excited state, the photon may be absorbed and the molecule promoted 

to the higher energy excited state as show in Figure 2.10. It is this change which is 

measured in absorption spectroscopy by the detection of the loss of that energy of 

radiation from the light. However, it is also possible for the photon to interact with the 

molecule and scatter from it. In this case there is no need for the photon to have an 

energy which matches the difference between two energy levels of the molecule. The 

scattered photons can be observed by collecting light at an angle to the incident light 

beam, provided there is no absorption from any electronic transitions which have 

similar energies to that of the incident light, the efficiency increases as the fourth power 

of the frequency of the incident light.  
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This process is called Rayleigh scattering. Scattering is a commonly used technique. 

For example, it is widely used for measuring particle size and size distribution down to 

sizes less than 1 mm. A molecule may also fall back from an excited electronic state to 

an energy state that is higher (Stokes type scattering) or lower (anti-Stokes type 

scattering) than the original state. The difference in energy between the incoming and 

scattered photon (Raman shift) corresponds to the energy difference between the 

vibrational energy levels of the molecule. The different vibrational modes of a molecule 

can therefore be identified by recognizing Raman shifts (or ‘bands’) in the inelastically 

scattered light spectrum. 
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Chapter 3 

 

Fabrication of woodceramics from biomass 

in Thailand 

 

3.1  Introduction 

In general biomass description, they are the matter coming or derived direct or indirect 

from all plant which is utilized as the energy or material substantial amount. The 

biomass includes variety of agricultural, forestry and process agroindustrial residues 

and processed waste, and is quite varied and different in it’s the physical and chemical 

property, content of moisture, and mechanical properties. As Thailand is an agricultural 

country, there will be a large amount of agricultural waste left which provides potential 

for biomass. The main agricultural products are rice husk, rice straw, bagasse fiber, 

corn, cassava, wood residues, coconut shell and palm shell. As reported in Chapter 1, 

Thailand is a leading producer of natural rubber, the old rubber trees are cut down to 

grow new plantations. Rubber wood is regarded as a by-product from the production of 

natural rubber plantation, the original rubber wood is not suitable in wide application 

due to low natural durability and softwood. The waste generated from old rubber trees 

usually disposed by being burned or dumped into landfills. The disposal of this waste 

becomes a major problem. The volume of biomass from rubber trees stemming from 

roots, stumps and leaves, and rubber tree branches are very high in potential biomass 

in Thailand. In addition, the coconut production process also generates biomass in 

Thailand. The coconut grows throughout the year, with harvesting generally 4 times in 

a year. The biomass from coconut is coconut shell and coconut husk. Base on the 

environmental concern , the disposal of this materials as solid wastes is a great problem 

which may lead to environmental effect and toxicological issues. Faced with the 

protection of the global environment such as the recycling of organic waste from 
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biomass, the carbon materials are attracting much attention. Therefore, the development 

of new carbon materials with superb functionality has been expected [1]. 

New functional carbon materials as woodceramics have been develop by material 

research group in Japan. The woodceramics are new porosity structure carbon materials, 

which are made by impregnating woody materials with phenolic resin that are then 

carbonized in a vacuum furnace at high temperature to form ceramics structure [2]. At 

the carbonizing process, the phenolic resin changed structure into glassy carbon, which 

increases fundamental property of woodceramics (corrosion resistance, mechanical 

strength) reinforces the material and suppresses the fissures and warp (caused by the 

porous structure characteristic of wood) occurred during thermoforming [3]. The 

carbonizing condition of woodceramics such as heating rate, carbonizing time, 

maximum temperature influences the property of woodceramics. Based on the 

microstructure, the woodceramics have various advantageous properties, such as high 

electromagnetic shielding effectiveness [4]. The specific heat capacity of 

woodceramics is related to porosity structure that becomes thermally stable when 

carbonizing temperature at 2800°C [5].  The bending strength increased with increasing 

carbonization temperature above 500°C, while the electrical resistivity drastically 

decreased from insulator to conductor range with increasing carbonization temperature 

above 800°C. Humidity and gas absorption and infrared radiation properties are also 

performance advantages that are expected to be used widely in industrial applications 

as reported in Chapter 1 [4, 6-11].  

Woodceramics attracted a lot of attention in the eco-materials field, because they are 

made from various woody scrap materials or biomass that are not generally suitable for 

recycling process. Obviously, this development technique will be beneficial for 

reducing resource usage and environmental protection.  

In this chapter shows the development of functional carbon materials as woodceramics 

from agricultural biomass in Thailand are attempted to develop by woodceramics 

technology. In this research biomass from Thai rubber tree scrap (leaves, branches, stem, 

roots) and coconut shell are used. The fabrication parameters (weight fraction of 

phenolic resin powder to charcoal powder, and various carbonizing temperature in the 
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vacuum furnace) of woodceramics are varied by design. The microstructure of 

woodceramics, chemical analysis, physical properties and mechanical properties of 

woodceramics were investigated in detail.  

3.2  Fabrication of Woodceramics from Thai rubber trees and  

experimental procedure 

The biomass from Thai rubber trees was collected from three main parts, (leaves, 

branches, roots, and residues stem) by wood processing. The flow diagram of 

woodceramics fabrication was shown in Figure 3.1. The first step is preparing small 

pieces by cutting with a basic cutting tool. The pieces are kept outside under sun light 

to remove moisture from the materials. The fabricated charcoal from Thai rubber trees 

were put inside the oxygen control furnace and carbonized at 600° C for carbonizing 

time of 4 hours [12]. To fabricate charcoal powder, the product from the first 

carbonizing process were crushed into small pieces by a mechanical crushing machine 

as shown in Figure 3.2. The ceramics ball mills jar equipment was used to form very 

fine charcoal powder, which were made to sieved at 250 µm. 

To remove moisture, charcoal powder was kept in dryer machine at heating temperature 

of 60 °C at a hold for 180 minutes. The design of weight fraction of biomass charcoal 

powder to phenolic resin were, 60:40, 70:30 and 80:20 respectively. 

The biomass charcoal and phenolic mixtures were mixed to homogeneously using the 

ceramics ball mills. The amount of mixtures (biomass charcoal and phenolic resin) 

poured in a ceramics jar set to 100 g. Rotation mixing speed of the mills was 600 rpm 

and mixing time was 10 minutes. 

To form the bulk shape pre-woodceramics two kinds of molds were used. One is a 

graphite mold to form circular shape whose diameter was 10 mm. of diameter. The 

other was a steel mold to form rectangular shape whose width, length and thickness 

were 25 mm, 94 mm and 10 mm. respectively. 
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Figure 3.1 Flow chart of fabrication process of woodceramics from rubber trees 

biomass. 

 

 

 

 

Figure 3.2 Photographs of ball milling process to form charcoal powder from Thai 

rubber trees biomass. 
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To fabricate the bulk shape woodceramics the mixed powder filled in a mold set. The 

amount of mixed powder was controlled by weight scale. The mold is installed in a 

press machine as shown in Figure 3.3. The temperature of the press machine was 

increased and kept at 180 °C.  The forming pressure was slowly increased to 10 MPa 

in the maximum, then hold for 10 minutes to melt the phenol resin completely. After 

processing the bulk shape products were cooled down to room temperature under 

ambient atmosphere surrounding and then taken out from the mold [3, 13].  

The bulk solid shape products woodceramics were carbonized at various temperatures 

to form woodceramics structure. In this study, the carbonization temperatures were 

designed to change from 1000 °C to 2800 °C under vacuum [14-16]. The carbonization 

condition were operated with heating rate at 5°C /minutes [17]. The final products are 

porous carbonaceous materials called “woodceramics”. 

A scanning electron microscope (SEM) was used to observe the surface morphology of 

the woodceramics. The chemical analyses were carried out by energy dispersive X-ray 

spectroscopy (EDX). For water absorption measurement, samples kept dired at 60 °C 

for 120 minutes, were immersed in de-ionized water for 24 hours and the amount of 

water absorption was determined by measuring the weight gained after immersion. The 

microstrucutre of all fabricated samples were investigated by X-ray diffraction 

measurement, which characterizes crystal structure and interplanar spacing of graphite 

basal plane. The effect of carbonizing temperature on behaviors of woodceramics was 

measured using thermogravimetric (TGA) equipment under a nitrogen flow at a heating 

rate of 10°C/minutes from room temperature to 1000 °C. Raman spectra of 

woodceramics was taken to characterize the carbon species, in which integrated 

intensity ratio, R=ID/IG, was calculated in terms of the peak internsity of 1360 cm-1 (D-

band) and 1590 cm-1 (G-band) [20]. The electric resistivity of WCMs derived from Thai 

rubber trees were measured by Mitsubishi Chemical; Laresta-GP MCP-T600. The 

mechanical properties of woodceramics were measured by compressive test. 
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Figure 3.3 Schematic of hot press mold for fabricate woodceramics from biomass 

charcoal originated from Thai rubber trees. 

 

3.3  Results and discussion 

3.3.1 Scanning electron microscopy    

The scanning electron microscope shows micrographs of the cross sectional surface of 

WCMs from biomass originated from Thai rubber trees with various carbonizing 

temperature are shown in Figure 3.4. As already show in SEM photo, the increasing 

carbonizing temperatures from (a), carbonized at 600 °C woodceramics have closed 

surfaces after phenolic resin complete melting and curig, (b) is carbonized at 800 °C 

woodceramics start to open pores on the surface, and (c) is carbonized at 1000 °C, the 

woodceramics have more a porous structure, which was confirmed by SEM photo. At 

the high carbonization temperature, the large amount of volatiles of phenol resin in 

sample disappears, then increasing mesopores (2-50 nm) and macropores (≥ 50nm) in 

the WCMs increased [18-21].  
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Figure 3.4 SEM images of woodceramics fabrication from biomass originated from 

Thai rubber trees at different carbonization temperatures, (a) at 600 °C, (b) at 800 °C 

and (c) 1000 °C 

 

3.3.2 Energy Dispersive using X-Ray 

Table 3.1 shows the relationship of carbon and oxygen in weight percentage for the 

WCMs at different carbonizing temperatures. The EDX results show that carbon 

concentration increased with increasing carbonization temperature. On the other hand, 

the percentage of oxygen in woodceramics was decreased by increasing the 

carbonization temperature. Figure 3.5 shows the relationship between ratio of carbon 

and oxygen concentration as a function of carbonization temperature. This function can 

be used to design woodceramics to support special applications, which require the high 

carbon content inside the woodceramics such as synthesis carbon thin films by use 

woodceramics as source material for generated carbon element in the process. 

Table.3.1 Shows the chemical composition in WMCs with various carbonization 

temperatures. 

Carbonizing 

temp.(°C) 

Elemental Composition of WCMs 

(wt%) 

C O Si Ca Other 

1000 74.88 14.66 0.3 8.39 1.77 

2000 86.34 6.96 3.36 0.37 2.97 

2800 96.24 3.33 0.12 0.31 0 

 

(a) (c) (b) 
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Figure 3.5 Relationship of carbon to oxygen composition in woodceramics fabricated 

biomass charcoal originated from Thai rubber trees with carbonization temperature.  

 

3.3.3 X-ray diffraction measurement 

The WCMs fabricated biomass charcoal originated from Thai rubber trees with various 

weight ratio of phenolic resin and carbonization temperature. For the WCMs with 

carbonization lower than 1000 °C, all of X-ray patterns were show that  non-crystalline 

structure  or amorphous solid form as shown in Figure 3.6. The WCMs were fabricated 

with various carbonization temperature are shown in Figure 3.7. The graphitic peak 

(002) showing that the higher carbonization temperature, high intensity peak at 2θ = 

26.4°, which indicated the interplanar spacing of the crystalline smaller than low 

temperature. The woodceramics fabricated from Thai rubber tree wood consist of three 

micro structure components that correspond to amorphous, turbostatic, and graphite. 

When increasing the carbonization temperature, the graphite and turbostratic carbon 

component increase and the amorphous decreased. This result suggests that 

carbonization temperature effectively completes graphitized structure [15, 23, 24]. 
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Figure 3.6 XRD patterns of woodceramics fabricated from biomass originated 

from Thai rubber trees. 

Figure 3.7 XRD patterns of woodceramics carbonized at different temperatures. 
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3.3.4 Raman spectroscopy  

Raman spectra of woodceramics with weigh fraction of 40 percentage of phenolic resin 

carbonized at different temperature 1000 °C, 2000 °C, and 2800 °C for 4 hours are 

shown in Figures 3.8. The broad D and G-bands of graphitic carbon materials are the 

main features to be studied. The several research paper reported that D-band occurred 

degree of intensity around 1360 cm-1 and 1590 cm-1 for G-band. The G-band 

corresponding to large graphite crystals, D-band related to disordered carbon belong to 

aromatic ring in perfect graphite [20, 25, 26]. 

The Raman spectra peak of woodceramics originated from biomass Thai rubber trees 

and coconut shell charcoal indicated that Raman shift peak located at the same shift and 

ID/IG value not different as shown in Figure 3.8 (a). While increasing carbonization 

temperature for woodceramics originated from rubber tree the peaks corresponding to 

D and G band were sharpen with a substantial decrease in ID/IG value from 1.10 (1000 

C) to 0.69 (2800 C) as shown in Figure 3.8 (b). The Raman shift peak indicates that 

the graphitization degree and graphite crystallite size (La) significantly increased with 

increasing carbonization temperature. It has been known that the graphite carbon is 

normally formed at a higher temperature of about 2500 C. Figure 3.8 (c) show the 

Raman spectra of WCMS derived from various raw materials, Thai rubber tree, Apple 

tree, saw dust, and architecture waste in Aomori were mixed with weight fraction 40% 

of phenolic resin and carbonized at 1000 °C. The spectra result show that WCMS were 

composed of two evident peaks at about 1600 and 1348 cm1, which are assigned to the 

G band and D band, respectively. The ID/IG ratio was found to be about 1.06, 1.00, 1.00, 

and 1.00 for the WCMS derived from Thai rubber tree, architecture waste, sawdust, and 

apple, respectively with carbonized at 1000 °C. Among them, WCMs derived from 

architecture waste char had the highest ID/IG ratio, indicating more disorder structure 

when compared to WCMs derived from other raw materials.  
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Figure 3.8 Raman spectra comparison of WCMs (a) originated from rubber tree and 

coconut shell, (b) originated from rubber tree with different carbonization 

temperatures, and (c) originated from various materials.  

(a) 

(b) 

(c) 
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3.3.5 Physical property analysis 

The woodceramics fabricated from biomass originated from Thai rubber trees at 40 

percentage of phenolic resin in weight fraction and carbonized at 1000 °C. As 

woodceramics is porous material, the volume density and amount of water absorbed 

indicated some physical properties of woodceramics and result are shown in Figure 3.9. 

The amount of water absorption was determined by measuring the weight gained after 

immersed in de-ionized water for 24 hours. The amount of water absorbed varied from 

12 to 18 wt% with increasing the weight fraction ratio of charcoal to phenolic resin, 

also increased the volume density of woodceramics. The water absorption increased 

with decreasing volume density. The carbonizing temperature also affected to water 

absorption. It change volume densities and porosity of WCMs at high temperature [22].  

 

 

Figure 3.9 Relationship of volume density and water absorption of 

woodceramics with varied phenolic resin carbonized at 1000 °C. 

 

The electric resistivity of WCMs derived from Thai rubber tree carbonized at 1000 °C 

with specimen size with width = 2.5 cm. thickness = 0.5 cm. and length = 8.5 cm were 
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measured. The electrical resistivity was 8.637 x 10-2 Ω.cm. The electrical resistivity 

were decrease with increasing carbonization temperature. In the same way to increased 

weight fraction ratio of phenolic resin decreases the electrical resistivity in 

woodceramics because phenolic resin changed to glassy carbon, that have lower 

resistivity than wood carbon [8]. Therefore, higher carbonization temperature improved 

electric conductivity of WCMs [27]. 

Woodceramics composite materials whose physical properties are like brittle material, 

so atomic or molecular bonds cannot be re-formed when external load is applied. 

Therefore, under compression test, the crystalline plane begins to slip, catastrophic 

failure occurs and the material fractures [28].  

The bending test results of WCMs derived from Thai rubber trees carbonized at various 

temperatures shown in Figure 3.10 suggested that higher carbonizing temperature 

increased the compressive strength and bending strength. High weight fraction of 

phenolic resin also increased. Then it is well known that carbonization process changed 

the microstructure of phenolic resin to glassy carbon. The glassy carbon is higher 

strength than that of amorphous carbon, supporting woodceramics to resist the external 

load. 

 

Figure 3.10 Effect of carbonization temperature on bending and compressive 

strength of WCMs derived from Thai rubber tree. 
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The dimensional change and weight loss of woodceramics are an effect of carbonization 

temperature. The details in the previous section, that moisture and decomposition of 

gas and impurity element are lost during carbonizing process. Figure 3.11, shown that 

high carbonization temperature, high dimension shrinkage.    

 

Figure 3.11 Volume density change of WCMs with different carbonization 

temperature. 

 

3.4   Conclusion 

 The woodceramics are successfully prepared using raw biomass material from Thai 

rubber trees. The woodceramics have a topologically uniformly interconnected porous 

microstructure that is typical of carbon structure. With increasing carbonization 

temperature, the peak intensity of the XRD pattern becomes stronger and shifts to 

higher angles, and the (0 0 2) interplanar spacing of graphite in woodceramics and the 

dimensions of carbonized wood powders decreased. The effective weight ratio of 

phenolic resin to charcoal powder on the XRD pattern of woodceramics is slight, but 

improves the forming ability of woodceramics significantly, and results in a more 

uniformly porous microstructure. With increasing carbonization temperature, the open 

porosity of woodceramics increase was confirmed by SEM. The carbonization 

temperature had great effects on the WCMs properties. With increasing carbonization 
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temperature, higher dimensional shrinkage occurred. The volume density is decreased 

but specific surface area increased. The graphite peak (002) interplanar spacing of the 

basal plane decreased with increasing carbonization temperature. High carbonization 

temperature increased ratio of oxygen to carbon element in WCMs. Therefore, it could 

be conclude that the woodceramics fabricated from rubber trees has potential to be used 

as functional carbon materials for future application. 
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Chapter 4 

 
Production of Amorphous Carbon Films 

using Woodceramics 
 
 

 
4.1  Introduction 

Amorphous carbon is one of classification for carbon structure that have non-crystalline 

structure, unsystematic, glassy structure, that is substantially graphite except for not 

form in a crystalline structure [1], whose main constituent of substances are charcoal, 

lampblack (soot) and activated carbon. At the atmosphere, carbon material takes the 

form of graphite, that each atom are bonded in trigonal form to three others in a plane 

composed of fused hexagonal rings, similarly to those in aromatic hydrocarbons [2]. 

The development of carbon thin film depositions and growth techniques are well known 

as amorphous carbon (a-C) thin films. The a-C thin film is a disordered phase of carbon, 

containing carbon atoms mostly in graphite-like sp2 and diamond-like sp3 hybridization 

sites [3]. The relative concentration of sp2 or sp3 hybridized bonds and the atomic 

connectivity within the films influences to the physical and mechanical properties of a-

C films [4]. Figure 4.1 present details of phase diagram for sp2 and sp3 bonding 

categorized to tetrahedral amorphous carbon (ta-C), hydrogenated amorphous carbon 

(a-C:H) and amorphous carbon (a-C) [5]. The attractive properties of a-C thin films, 

high surface hardness, chemical inertness, corrosion resistance, low friction coefficient, 

high thermal conductivity and optical transparency [6, 7]. The a-C thin films have 

widespread applications as protective coating for some products such as magnetic 

storage disks, cutting tools, biomedical and micro-electromechanical (MEMs) parts, 

and automobile components as presented in Figure 4.2. The amorphous carbon films 

have been coated by several method as chemical vapor deposition (CVD) and the 

physical vapor deposition (PVD).  
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Figure 4.1 Phase diagram of ternary bond in amorphous carbon and hydrogen 

hybridized thin films [5].  

 

Figure 4.2 Photograph of application carbon thin films coated over automotive 

components [8].  

 

Many of the previous research and papers investigated production of a-C films by radio 

frequency (RF) magnetron sputtering technique. The RF magnetron sputtering is one 

technique to produce amorphous carbon films with high deposition rates at low 

deposition temperature with high forming quality [9]. The process of RF magnetron 

sputtering involves low-cost fabrication with easy control parameters for film growth, 

and is suitable for large-scale films deposition. The RF magnetron sputtering process is 

a extremely technique which allows for the sputtering of a large category of materials 

with a high deposition rate of film thickness uniformity [10]. The sputtering process is 
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particle to particle collisions determinate involve an elastic transfer of momentum, 

which can be utilized to apply a carbon layer to the substrate [11]. The ions are derived 

from either an ion gas or from exciting a neutral gas into plasma. The ions are 

accelerated derived from argon gas to bombarding target material, they dislodge target 

atoms and other ions. The atoms was ejected and moving attach themselves to the 

surface substrate, and the layer thin film from target material were produced as shown 

in Figure 4.3. 

 

 

Figure 4.3 Schematic diagram of sputtering at the molecular level. 

 

Woodceramics, a new kind of porous carbon material, consist of high percentages of 

carbon contents after carbonizing at high temperatures in the vacuum furnace as 

mentioned in Chapter 3. The woodceramics have a topologically uniform 

interconnected porous network microstructure, and typical non-graphitizable carbon 

containing C=C bonds, C-O-C bonds and C-H structure [12, 13]. 

This study is to explore further areas of application for woodceramics fabricated from 

biomass originated from Thai rubber trees. The objective of this investigation is to 

introduce a different target material to fabricate the a-C films. Author attempted to 

perform low cost deposition of amorphous carbon films onto silicon wafer (Si) substrate 

by a RF magnetron sputtering technique using woodceramics products from the 
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research in the previous chapter as a target, which could replace costly high purity 

graphite. The aim of this study is to investigate the microstructures and the 

characteristics of produced films by analysis of X-ray diffraction. The Raman 

spectroscopy is used to determine the concentration of a-C films, together with an X-

ray photoelectron spectroscopy was used to identify the sp2/sp3
 ratio. Some fundamental 

mechanical properties such as hardness and friction coefficient were also measured. 

This approach has the potential to add to the value of woodceramics fabricated from 

Thai rubber trees. 

4.2  Experimental Procedures 

PREPARING THE TARGET MATERIAL FROM WCMS 

The WCMs fabricated from biomass charcoal originated from Thai rubber tree wood, 

the fabrication details are in the previous Chapter, that was used to prepare the target 

materials to produce amorphous carbon (a-C) films. The fabrication condition of 

WCMs have 40% weight fraction of phenolic resin to biomass charcoal from rubber 

trees and carbonized at 1000 °C. Figure 4.4 show the WCMs was prepared to 10 mm. 

in diameters and 5 mm. in thickness to fit in size of the supporter base on the RF 

sputtering machine, which was used in this study. 

 

 

Figure 4.4 Preparing target material from woodceramics for using in process of RF 

magnetron sputtering. 

 



C h a p t e r  4 .  P r o d u c t i o n  o f  A m o r p h o u s  C a r b o n  F i l m s  u s i n g  

W o o d c e r a m i c s                                                        53 

 

FABRICATION OF AMORPHOUS CARBON FILMS 

The amorphous carbon films in this study were deposited using a RF magnetron 

sputtering method made by SS Alloys company model PLASMAN ; CSP-III-SPTS-2. 

The machine specification was a RF power of 100 W, and frequency of 13.56 MHZ. 

The main parameters for prepare a-C films are coordinate in Figure 4.5. The substrates 

were silicon wafers, which were cleaned by ultrasonic cleaner for  15 minutes to remove 

oil and dust from the substrate surface. The distance between the target and substrate 

setting was 32 mm. The installed schematics and illustrations of sputtering were 

presented in Figure 4.6 and 4.7. For the deposition of a-C films, first the system was 

evacuated hamber to 4.5×10−3 Pa (4.5×10−5 mbar) by the ULVAC vacuum pump. The 

pure argon gas started flowing at 20 mL/minutes into the chamber in order to clean the 

substrate. The flow rate of argon gas decreased to 15 mL/minute. The films were 

deposited at room temperature by slowly increasing RF power to 70 W, and the surfaces 

were pre-sputtered for 5 minutes before the actual coating. After the pre-coating process 

the RF power was slowly raised to 120 W, the power was kept constant and kept 

deposition time following each coating condition. The deposition times used in this 

study were designed for three condition, 60, 90, and 120 minutes respectively.  

 

 

Figure 4.5 Parameters of the RF magnetron deposition operation used to produce a-C 

films. 
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Figure 4.6 Schematic representation of RF magnetron sputtering process. 

 

 

Figure 4.7 Photograph of RF magnetron sputtering (a) sputtering machine, (b) 

distance of target to substrate, and (c) actual plasma deposition of a-C films.  

 

ANALYSIS 

The microstructural analysis and chemical composition of a-C films were measurement 

by the scanning electron microscope (SEM), X-ray diffraction (XRD) to determine the 

crystal structures of the films using Cu-Kα radiation at 40kV and 45mA at room 
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temperature(wave length of 1.541 Å). The Raman spectra were obtained using a 

JASCO NRS-2100 laser Raman spectrophotometer, which was operated at a laser 

wavelength of 488 nm.  The laser power was 30 mW and the spot size was 2 mm.  The 

spectra were taken from 1100 to 2000 cm-1 with a resolution of 2 cm-1.  X-ray 

photoelectron spectroscopy (XPS) studies were also carried out using a Shimadzu 

Kratos Axis-Ultra DLD.  The XPS peak positions that reflect the electron binding 

energies for specific atomic levels can be used to identify the chemical states of the 

structure. 

In order to characterization the physical and mechanical properties, the fundamental of 

the films were measured using a ball-on-disk friction tester (CSEM; Tribotester). In the 

friction test use dry sliding carried made of type 440C stainless steel (diameter of 6.0 

mm) under a normal applied load of 3 N, and the disk rotation speed 6000 rpm.  The 

tests were performed under room condition with 30–45% humidity. The hardness were 

measured with a Vickers’s microhardness tester. 

4.3  Results and discussion 

4.3.1 Scanning electron microscope 

The amorphous carbon films were fabricated onto a silicon wafer with RF magnetron 

sputtering method using woodceramics from rubber trees as a target, as presented in 

Figure 4.8. The appearances of a-C film are functions of film thickness, and the 

thickness related to deposition time and sputtering parameters. The surface of Si 

substrate after being deposited for 60 minutes is shown in Figure 4.9, the scanning 

electron microscope indicates that the carbon particulate distributed on the Si surface 

notes the density of carbon particle effective to the optical transparency of a-C films. 

 

Figure 4.8 Photograph of a-C films coated on the surface of silicon wafer (a) and (b) 

are from 60 minutes deposited condition. 



C h a p t e r  4 .  P r o d u c t i o n  o f  A m o r p h o u s  C a r b o n  F i l m s  u s i n g  

W o o d c e r a m i c s                                                        56 

 

 

Figure 4.9 The SEM image of a-C films deposited at 60 minutes show a particulate 

of carbon on silicon wafer surface. 

 

4.3.2 X-ray diffraction 

The results of XRD pattern investigations of the deposited films before and after etching 

with argon ion with 3.8 kV, 20 mA,  were shown in Figure 4.10. The pattern of graphite 

powder was included in this figure for a comparison to show that there was one strong 

peak at 26.38° and two weakpeaks at 42.30° and 44.31°, which correspond to 

diffractions from (002), (100) and (101) crystal plane of the graphite [14, 15].  

Figure 4.10 X-ray diffraction patterns for the amorphous carbon films before and after 

etching, comparing with one for graphite powder. 
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On the other hand, for the deposited substrates, a broad peak is observed at 

25.36°~26.05°. These peak correspond to the (002) crystal plane of the graphite. For 

the deposited substrate only this peak was detected.  Furthermore, any other diffraction 

peaks generally observed for the typical graphite crystal possessing a high crystallinity 

cannot be detected, indicating that the local structure of the deposited films were 

turbostratic structures or amorphous. 

4.3.3 Raman spectroscopy 

Raman spectrum indicated valuable information with regards to atomic bonds and level 

structure of the molecule[15]. Especially in the nanostructures of a-C films, it has a 

high potential to defining the structure of carbon films, which is highly sensitive to 

changes in the bonding configuration of bonding atom structure. The Raman 

spectroscopy for amorphous carbon films report previously, generally, consisted of two 

peaks around 1345-1355 cm-1 and 1570-1590 cm-1, which correspond to D band and G 

band, respectively. The result of Raman spectroscopy for a deposited film was shown 

in Figure 4.11. There were two peaks centered at 1387.22 cm-1 and 1575.36 cm-1. The 

G band peak is belong to graphite like bonding of sp2 micro domains (bond stretching 

of all pairs sp2  atoms in both rings and chains), while the D peak is belong to the bond 

angle disorder carbon bonding sp2 graphite like micro domains induced by the linking 

with sp3 carbon atom (breathing modes of sp2 atoms in rings). The intensity ratio of D 

and G peaks, ID/IG, the full width half maximum (FWHM) are used to determine the 

structure of the different carbon base materials following Equation 4.1 indicated that 

after the etching process the percentage of sp3 concentration increased from 79.04 to 

81.16 respectively. However, it is difficult to analyze present data because of the 

overlapping of broad D and G peaks [4, 5, 7, 16-19] .  

Table 4.1 Raman results of sp3 content ratio in a-C film before and after etching. 

Condition of 

etching  

Intensity of broad peak 
Sp3 amount (%) 

I(D) I(G) 

Before 1.1466 1.4507 79.04 

After 1.4154 1.7439 81.16 
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Figure 4.11 Raman spectrum of the deposited a-C films. 

  

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑝3 =
𝐼(𝐷)

𝐼(𝐺)
× 100               (4.1) 

 

4.3.4 X-ray photoelectron spectroscopy (XPS) 

XPS analysis, which is ordinarily known in the electron spectroscopy for chemical 

analysis (ESCA), is the most forceful and dependability tool used for analyzing the 

composition of amorphous carbon thin film. XPS survey spectra of film before and after 

etching are shown in Fig. 5. The etching was performed to remove a contaminated 

surface layer. It was found that the film at the utmost surface contained much more 

oxygen than at the inner region of the surface.  The C1s spectrum of deposited films 

before and after process etching by argon ions are report in Figure 4.12, (a) and (b) 

respectively.  In recently, various research groups have proposed the decomposition of 

the C1s peak into one sp2 bonding corresponding to graphite in amorphous or 

hydrogenated amorphous carbon and sp3 bonding corresponding to tetrahedral 

amorphous carbon. The sp3 bonding can be determined from the ratio of the peak area 

over the total C1s peak area [20, 21].  The broad C1s spectra is deconvoluted into three 

kinds of curves, which correspond to binding energies for sp2, sp3 and C-O bonding 

using a Gaussian and a Lorentzian method.  
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Figure 4.12 XPS spectra of a-C films, (a) before and (b) after etching. 

 

Table 4.2, summarizes the peak position and spectrum area for each peak containing 

amorphous carbon (a-C) and tetrahedral amorphous carbon (ta-C) respect to ratio of sp3 

before and after etching as presented in Figure 4.13 (a) before etching in pure argon gas 

and (b) after etching.  The mathematical model to calculate the ratio of sp3 is the 

following Equation 4.2. Before etching, ratios of sp3, sp2 and CO bonding were about 

31 %, 27 % and 27 % respectively, while those after etching were 56 %, 12 % and 17 % 

respectively. There seems to be much CO contaminated phase in the present films.  The 

ratio of sp3 was about 53 % before etching by argon ions, but it increased to 82 % after 

etching, probably because of a decrease in surface contamination and/or an oxygen-rich 

film. It has been reported that films surface layers are often slightly richer in sp2 bonding 

than in the bulk [22-24], which agrees well with present results. It is well know from 

several research papers, that the a-C films had the hardness of highly tetrahedral 

coordinated carbon films due to the presence of sp3 bond [25-34].   
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Figure 4.13 The deconvolution of XPS C1s peak of the amorphous carbon 

films, (a) before etching, (b) after etching, and (c) combined before and after etching. 

(a) 

(c) 

(b) 
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Table 4.2 Peak position, spectrum integrated area of each peak for C1s spectrum 

before and after etching, and ratio of sp3 bonding before and after etching. 

Specimen 

condition 

Bonding 

structure 

Binding 

energy (eV) 

Spectrum area 

(cps eV) 

Ratio of 

sp3 (%) 

Before etching 

sp3 285.103 6621.6  

53.5122 sp2 284.584 5752.4  

C-O 286.014 5839.1  

After etching 

sp3 285.22 14174.5  

81.9975 sp2 284.591 3112.0  

C-O 285.772 4189.6  

 

𝑠𝑝3 𝑟𝑎𝑡𝑖𝑜 =
𝑠𝑝3 𝑎𝑟𝑒𝑎

𝑠𝑝3 𝑎𝑟𝑒𝑎+ 𝑠𝑝2 𝑎𝑟𝑒𝑎
                    (4.2) 

 

4.3.5 Mechanical and tribological 

The average film thickness deposited on the substrate was approximately 200-400 nm 

due to limited coating time at 120 minutes.  The maximum Vickers hardness of 

amorphous carbon films measured was found 11.87 GPa. The hardness of the 

amorphous carbon films fabricated from similar method was found 11-22 Gpa [35]. 

The dynamic friction coefficient measured was 0.25; the films were unstable and failed 

easily after 8 minutes of the test because of the thickness of the films. As a result, the 

results of the friction coefficient were higher than theory and literatures reported for 

amorphous carbon film at 0.05-0.2 [9].    

 

 

Figure 4.14 Photograph of ball on disk test to determine friction coefficient for 

a-C films. 
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4.4  Conclusion 

The a-C thin films with high concentration of sp2 or sp3 hybridized bonds were 

fabricated by RF magnetron sputtering using woodceramics as a target. Studies 

produced amorphous carbon films by magnetron sputtering using woodceramics 

fabricated from biomass charcoal originating from Thai rubber trees.  The films were 

composed of a turbostratic structure, or amorphous carbon, whose carbon electron 

configurations were sp2 and sp3.  The ratio of sp3 bonding was about 53 % before 

etching by argon ions, but it increased to 82 % after treatment to the surface layer via 

the etching process. The average film thickness deposited on the substrate was 

approximately 200-400 nm. Which was slightly increased as a result of an increase of 

sputtering time. The maximum Vickers hardness and the dynamic friction coefficient 

measured were 11.87 GPa and 0.25 respectively. 
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Chapter 5 

 

Electrochemical Deposition of Nickel and 

Copper on Woodceramics 

 

5.1  Introduction 

Electrochemical deposition or electroplating are the method of provide a metal coating 

layer onto metal surface or other surface of materials. This is a process that has been 

used in various industries. The electrochemical deposition is including variety 

technique and physic principle, including chemistry, physics, metallurgy, and electrical 

engineering. This method are apply electric current to the solution of metal to dissolved 

metal cations after this process layer of metal form to coating on surface of coating 

product. The concept of plating also used for electrical oxidation of anions onto a body 

of substrate materials. The principle of process is primarily used to change the 

appearance surface and the properties of sample (e.g. adhesion and wear resistance, 

corrosion resistance, tribology, aesthetic qualities, etc.), however, the process also 

suitable for to increasing the thickness on undersized parts or to form objects by 

electrochemical deposition [1, 2]. Electrochemical depositions with different operation 

parameters such as solution temperature, pH and electric density have potential to 

produce different kinds of deposited structure [3]. The basic concepts of 

electrochemical deposition consists of cathode (negative polarity), anode (positive 

polarity), a power supply unit and an electrolyte as shown in Figure 5.1. The main 

apparatus and procedure are drop sample in a metal solution which is called electrolyte. 

Cathode, acting as the melt metal ions in the electrolyte solution and reduced between 

the interface of solution and the cathode, such that they starting to plating onto the 

cathode. The action of metal coating which is function to the anode dissolved and the 

rate at which the cathode is plated. This concept explain that the ions in the metallic 

solution bath are continuously replenished by anode side.  The electrochemical 

deposition is generally a single metallic element. In addition cyanides and non-metal  
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Figure 5.1 Schematic process of electrochemical deposition [5]. 

In addition, some technique such as carbonates and phosphates possibility to added for 

improve the electric conductivity [4]. The main purposes of electrochemical deposition 

are: 

o Improvement the appearance of sample. 

o Surface protection. 

o Addition special surface properties. 

o Engineering or mechanical properties. 

Basic properties of copper is a ductile metal with very high thermal and great electrical 

conductivity.  [6]. The electrochemical deposition of copper is one technique to 

fabricate a layer of copper on the substrate surface. Base on that properties as higher 

current, the hydrogen bubbles will form on materials to be plated, leaving surface 

imperfectly. In generally, they have variety of chemicals technique are apply to improve 

plating uniformity or improve bright properties. Lacking of some form of additive, it is 

almost difficult to generate a smoothly coating surface. These addition process can be 

anything from dish soap to proprietor element compounds [7]. 

Nickel material is a silvery-white lustrous metal that have slight golden tinge and have 

great physical properties such as hardness and ductile properties. The nickel material 

are used in many application industrial and consumer products, including stainless steel, 

alnico magnets, coinage, rechargeable batteries, electric guitar strings, microphone 

capsules, and special alloys. It is also used for plating and as a green tint in glass [8]. 

Nickel electroplating is simple coating process to generate a thin layer of nickel onto a 
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substrate surface. The layer of nickel can be decorative, improve corrosion resistance, 

wear resistance, or be used to build up worn or increase thickness parts for recover 

original surface [9]. 

The use of eco-material such as woodceramics has become a matter of increasing 

interest in the recent year. Various attempts have been made to utilize the high 

efficiency of woodceramics.  

In this chapter I explore the application of woodceramics by electrochemical deposition 

of nickel or copper layers on woodceramics originating from Thai rubber tree wood 

was attempted. The film’s layer structure and morphology were examined by X-ray 

diffraction and scanning electron microscopy. The mechanical strength of 

woodceramics after deposited with nickel or copper were investigated by the 

compression test. Finally, the practical application of woodceramics with deposited 

with nickel or copper will be discussed. 

5.2   Experimental Procedure 

The substrate material that is used in metallic deposition is woodceramics, which is 

fabricated from biomass charcoal originated from Thai rubber trees wood. The 

fabrication details are 40 percentage of phenolic resin to biomass charcoal in weight 

fraction and carbonized at 1000 °C as detailed in Chapter 1. The specimens are prepared 

in rectangular shape in dimensions of 10 mm. x 10 mm. x 20 mm. The specimens were 

cleaned with an ultrasonic cleaner equipment for remove dust and oil from the surface, 

then put in a dryer machine at 60° holding time 120 minutes. 

The electrochemical process used in this study involved two kinds of metallic elements 

copper, and nickel. The electrolyte of both metals is in the formulas CuSO4 (copper 

sulfate) and NiSO4 (nickel sulfate).  The sulfate solution concentration was decided at 

10% and 20% which were used in this study. Anode and cathode in the electrochemical 

deposition process are connected to an external power supply of direct current of 

electricity. The anode connected to positive of power supply, and the cathode is 

connected to woodceramics. Switched on the power , the metal starting to oxidized to 

form cations with a positive charge as shown in Figure 5.2. 
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The main parameter for electrochemical deposition of nickel and copper has direct 

relation to the thickness and surface properties. The control parameters were as follows 

in Table 5.1. The deposition times used in this studies were  30 minutes and 60 minutes. 

 

 

Figure 5.2 Schematic process of electrochemical deposition of (a) copper 

plating, and (b) nickel plating. 

Figure 5.3 Photograph process of electrochemical deposition of copper. 

 

Table 5.1 Operating condition of electrochemical deposition for copper and nickel. 

Parameters Level 

Temperature (°C) 40-65 

Cathode current density (A/cm2) 0.02-0.1 

pH 3.0-4.5 
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The current density for electrochemical deposition was kept at 0.02 A/cm2, and 

concentration of the solutions as well as deposition time were varied. This is 

comparable to a galvanic cell acting in reverse. The specimen to be coating is the 

cathode of the circuit. In this concept, the anode is made of the metal to be plated on 

the specimen. All components are drop under the solution called an electrolyte that 

allow the flow of electricity as shown in figure 5.3. The metallic powders that were 

used in this research are copper (II) sulfate penthahydrate (CuSO4·5H2O), 99.5% of 

purity) and nickel (II) sulfate hexahydrate (NiSO4·6H2O), 99% of purity were 

purchased from KANTO Chemical Co.Inc.  X-ray diffraction measurements were used 

to investigated the crystal structure of samples before and after deposition, using a 

Rigaku Ultima IV (Cu-Kα radiation (wave length of 1.541 Å) at 40kV and 45mA) at 

room temperature.  The scanning electron microscope (SEM) made by a KEYENCE 

company model  VE-9800, was used to investigate the surface morphology of 

specimens.  A compression test  is used to evaluate the mechanical properties of 

woodceramics after deposited with copper and nickel respectively. 

 

5.3   Results and discussion 

Woodceramics after electrochemical deposition process contain the same colors as the 

original metallic coating. The nickel  deposited surface on woodceramics have flat and 

smooth surface appearance. The copper deposited surfaces have high deposition rate 

and have consistent surface thickness as shown in Figure Figure 5.4. 

 

 

Figure 5.4 The photographs of specimens (a) before deposition, (b) after 

deposition with copper, and (c) after deposition with nickel. 
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Figure 5.5 SEM micrographs of coated surface with various metallic and deposition 

time at sulfate solution concentration in 20% (a) without deposition , (b) NiSO4 

deposition time 60 min. and (c) CuSO4 deposition time 60 min. 

 

Figure 5.6 SEM micrographs of coated surface with various metallic, deposition time, 

and sulfate solution concentration (a) CuSO4 10% deposition time 30 min. , (b) 

CuSO4 20% deposition time 30 min.  and (c) CuSO4 20% deposition time 60 min. 

 

 

5.3.1 Scanning electron microscope (SEM) 

The scanning electron microscopic micrographs of specimen surface are shown in 

Figure 5.5 for, (a) original woodceramics without deposition, (b) suraface after 

deposited with nickel sulfate with 20% of concentration solution for 60 minutes, and 

(c) copper deposited surface with the same deposition parameters. The SEM results 

indicated that nickel surfaces contain smaller grain sizes that support obtaining a 

smooth surface after deposition. However, the copper surface confirmed that large grain 

size that comes from copper is very easy to increase the deposition rate on the 

woodceramics surface. The layer of both metallic elements slightly increased with 

increased deposition time and concentration of nickel or copper sulfate solution. Figure 

5.6 shows micrographs for the ssample for different of solution concentration and 

(a) (c) (b) 

20 µm 20 µm 20 µm 

20 µm 20 µm 20 µm 

(a) (b) (c) 
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deposition time. With an increasing concentration of copper sulfate, the thickness of 

the copper layer slightly increased, and at the same concentration increasing deposition 

time also directly affected to the thickness of the copper layer. The electrochemical 

deposition fills in the elements in pores of woodceramics.   

5.3.2 X-ray diffraction (XRD) 

XRD patterns of woodceramics surfaces after deposition in 20% contration of nickel 

sulfate for 60 minutes was shown in Figure 5.7. The result reported that many broad 

peaks corresponding to nickel crystalline structure. The strong peak occurred at 2θ = 

44.52, 51.92, and 76.4 which corresponding to the nickel littice planes (111), (200) and 

(220) respectively [10, 11]. The XRD pattern of woodceramics surfaces after being 

deposited in copper sulfate with 20% concentration, deposition time of 60 minutes was 

shown in Figure 5.8. The three broad strong peaks corresponding to copper crystalline 

structure. The strong peak occurred at 2θ = 43.46, 50.58, and 74.24 which 

corresponding to the copper planes (111), (200) and (220) lattice planes of the cubic 

copper phase respectively [12].  

Figure 5.7 X-ray diffraction patterns of electrochemical deposition in NiSO4, 20% 

concentration solution and deposition time 60 minutes. 
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Figure 5.8 XRD patterns of woodceramics after electrochemical deposition in CuSO4 

20% concentration solution and deposition time 60 minutes. 

 

Figure 5.9 X-ray diffraction patterns of woodceramics electrochemically deposited in 

CuSO4 solution with different concentrations (10 % and 20 %) for 30 min and 60 min. 
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The X-ray diffraction patterns of woodceramics deposited electrochemically in CuSO4 

solution with different concentrations (10 % and 20 %) for 30 min and 60 min are shown 

in Figure 5.9.  Even for shorter deposition time, diffraction peaks can be labeled as Cu, 

and no graphite peaks due to the woodceramics can be identified.  The intensities of 

diffraction peaks corrsponding to Cu increase when increasing concentation of the 

solution as well as deposition time. Higher concentation and longer deposition time are 

effective to produce thicker deposition layers, although optimization is needed (a weak 

peak observed after 60 min in 20 % CuSO4 solution is probably due to a contamination 

as mentioend earlier). 

For both woodceramics, the strongest three diffraction peaks can be labeled as either 

Ni or Cu (crystal structure of Ni and Cu is fcc), although a weak peak, probably due to 

a contamination, is observed at about 36 degree after deposition in CuSO4 solution.  It 

is found that Cu or Ni layers are successfully deposited on the woodceramics samples.  

No graphite peaks can be identified, while the woodceramics consist of a graphite-like 

structure whose actual structure is a turbostratic one, in which the stacking distance of 

carbon layers are random.  This means that the deposited layers were thick enough that 

the X-ray beam did not penetrate the woodceramics beneath the metallic layers [13].      

The mass gains after deposition for 60 minutes measured by a balance were about 0.36 

g and 0.45 g in NiSO4 and CuSO4 solutions, respectively (corresponding coating rates 

are about 6.0 mg/min and 7.5 mg/min respectively). 

5.3.3 Mechanical properties 

Although the maximum compressive strength of woodceramics before electrochemical 

deposition as shown in Figure 5.10 are about 28 MPa, those after deposition in NiSO4 

and CuSO4 are 40 MPa and 35 MPa respectively.  On the other hand, the strain to failure 

for the woodceramics after deposition in NiSO4 and CuSO4 are about 0.1 and 0.12 

respectively, while before deposition are 0.07.  The electrochemical deposition 

improved compression properties of the woodceramics that have brittle nature.  It was 

found that the compressive strength increased while increasing concentration of the 

solutions and deposition time. 
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Figure 5.10 Comparison of compressive strength with various surface 

modification for woodceramics before and after deposition in NiSO4 and CuSO4. 

 

 

 

 

 

 

 

 

Figure 5.11 Photograph of fracture regions of the tested specimens (a) CuSO4 

deposition, and (b) NiSO4 deposition . 

 

The appearance of fracture regions of woodceramics after electrochemical deposition 

in copper sulfate and nickel sulfate were shown in Figure 5.11. Based on the 

fundamentals that coating materials like nickel have high hardness and mechanical 

strength compared with copper, we look at the cracking regions through the core of a 

specimen [14]. In other words, woodceramics deposited in copper sulfate have not 

completely broken in to small pieces, that has a functional effect with the fundamental 

(a) (b) 
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properties of copper having high plastic deformation, low impact strength, and high 

stiffness properties [15].   

 

5.4  Conclusion 

Nickel (Ni) or copper (Cu) layers could be deposited on woodceramics by 

electrochemical deposition in either NiSO4 or CuSO4 solution.  Thicker metallic 

deposition layers were produced after longer deposition time in higher concentration of 

the solution.  The mass gains after deposition for 60 min were about 0.36 g and 0.45 g 

in NiSO4 and CuSO4 solutions (concentration was 20 %). The maximum compressive 

strengths for the woodceramics in NiSO4 and CuSO4 solution (concentration was 20 %) 

were 45 MPa and 35 MPa, respectively, while that before the deposition it was about 

28 MPa.  The compressive stress of the samples increased with increasing concentration 

of the solutions and coating time. 

It is believed that electrochemical deposition changes the chemical, physical, and 

mechanical properties of the workpiece. Furthermore, nickel deposition would improve 

corrosion resistance.  
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Chapter 6 

 

Concluding Remarks 

 
 

 

6.1  Conclusions of this research work 

Thailand is a middle income country where having agriculture is instrumental  to 

economic development. Biomass from agricultural residue in Thailand is an important 

topic to discuss. Four major sources of biomass in Thailand are rice husk/straw, sugar 

cane, oil parm, and wood waste. The natural rubber trees in Thailand are the main 

source of biomass from wood waste. The productive life period of rubber trees on 

plantations is less than 25 years.  Old trees are no longer useful and need to be cut away 

in order to facilitate the growth of new plants. This is the main cause of the increased 

volume of biomass residue from natural rubber life cycle. Melamine formaldehyde is 

one of the thermosetting plastics that is widely used in kitchenware in Thailand. The 

waste from melamine formaldehyde cannot be remelted and therefore the recycling 

process requires high costs for burning and a lot landfill space, resulting in a serious 

environmental problem. To address this problem we propose three techniques to 

fabricate woodceramics and composites resulting from biomass and used melamine 

formaldehyde. In what follows we summarize these techniques to fabricate 

environmentally friendly materials in Thailand. 

Production of Amorphous Carbon Films using woodceramics. 

Amorphous carbon (a-C) thin films are diamond-like carbon (DLC) films with notable 

physical properties such as high surface scratch resistance, low friction coefficient, and 

optical transparency. The a-C films have applications in the industry, for instance, as a 

coating for improvement of electron field emission. Using woodceramics to fabricate 

a-C films offers enormous potential to reduce operation costs. 
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Electrochemical Deposition of Ni and Cu on Woodceramics 

Woodceramics is a carbon-based hybrid material made of amorphous carbon and glassy 

carbon. Compared to other composite materials woodceramics exhibits increased 

performance against abrasion, suitable values of specific heat and heat absorption, high 

specific surface area, porosity and lightness. The properties of woodceramics can be 

enhanced by electrochemical deposition with nickel and copper. As a result, 

compressive strength increases and protection against corrosion improves. A wide 

range of applications in industry might benefit from using these materials, like 

fabricating high wear resistant components. 

Eco-composite from biomass charcoal and used melamine formaldehyde 

Current environmental concerns urge us to design new eco-composite materials that 

offer mechanical and functional performance. We also need to design materials that are 

harmless to the environment. Eco-composites are recyclable materials resulting from 

biomass charcoal powder waste from melamine formaldehyde and phenolic resin. We 

anticipate a favorable cooperation with companies specializing in melamine 

formaldehyde products in Thailand. 

6.2  Future Works 

A next stage of this work would focus on developing new applications for 

woodceramics and extending the use of raw materials to fabricate woodceramics using 

different agricultural wastes found in Thailand. Nonetheless, there are some additional 

considerations to assess in the future, as follows. 

The specific surface area of woodceramics increases with porosity. Therefore, for 

filtering applications, as in municipal waste water treatment processing or in heavy 

industries, it will be necessary to characterize the specific surface area of woodceramics. 

The characterization of thermal conductivity would help to guide the design of 

woodceramics suitable for applications such as heat plates, heat exchanger parts, etc. 

Porous materials such as woodceramics absorb acoustic waves by means of suppressing 

and dissipating mechanical waves through these materials. Full characterization of the 
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acoustic properties will help to design sound proof materials relevant to the construction 

industry. Proper measurement and characterization of the coefficient of friction (COF) 

of woodceramics is necessary as well. Wear due to mechanical interactions between 

surfaces and deformation of surface material as a result of mechanical friction between 

surfaces is a concern that needs to be addressed to design self-lubricating materials 

based on woodceramics. 

Finally, in Thailand, there are other materials that can be used to fabricate 

woodceramics. A natural extension of this work would include a variety of raw 

materials, such as rice straw, rice husk, bagasse, corn, among others. 
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Appendix 

 

Fabrication of Eco-Composite using 

charcoal from biomass 

 
 

Introduction 

In the concept of composite materials, most of materials science and engineers have 

designed to combine variety of metals, ceramics, and polymers to create a new 

innovation of extraordinary materials. Many kind of composites have been supported 

to improve all of mechanical properties such as high stiffness, high toughness, and 

ambient and high temperature resistance. A composite is a multiphase material. One 

simple scheme for the classification of composite materials is shown in Figure 1, which 

consists of three main types; particle reinforced, fiber reinforced, and structural 

composite. Usually, composite materials are composed of the matrix, which is 

continuous and surrounds the other phase, often indicated in the name of dispersed 

phase as shown in Figure 2. The physical and mechanical properties of composites 

materials are a function of the constituent phase, their relative amounts, and the 

geometry of the dispersed phase [1]. The most important feature of composite materials 

is that they can be designed and tailored to meet different requirements. As a term, 

“eco-composite” is usually used to describe composite material having environmental 

and ecological advantages over conventional composites [2].  

By definition, an eco-composite may contain natural fiber (NF) and natural polymer. A 

number of composite materials have been engineered that consist of more than one 

material type. Many of the recent material developments have involved composite 

materials [3]. However, in the last period of the composite-materials development only 

mechanical and functional performance were taken into account in the design and 

processing. 
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Figure 1 A classification diagram of composite materials. 

 

 

Figure 2 Fundamental phase of composite material. 

 

The idea to fabricate eco-composite materials using biomass charcoal from rubber tree 

wood and used melamine as reinforcement is shown in Figure 3. This is attractive from 

the view point of cost and recycling. These advantages include high strength, low 

weight and low environmental effects. In addition, by using the waste of melamine 

formaldehyde and biomass charcoal from agricultural residue as reinforced composite 

can save raw material cost for manufacturer. 
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Figure 3 Particulate reinforced ecocomposite material system. 

 

Thailand is an agricultural country and a leading producer of crops for exporters, thus 

the biomass situation in Thailand has continuously increased as mentioned in Chapter 

1. The natural rubber plantation area in Thailand has increased more in the last decade 

since the government launched its planting project. The country also has high potential 

for expanding the production area and raising production capacity [4]. The natural 

rubber trees have an economic life less than 25 years, afterwards farmers will cut them 

down in preparation for the new plant as detailed. The by-product is wood to be 

supplied to the wood industry. Only the main stem part of rubber trees can be used as 

an economic wood product. The biomass from rubber trees comes from roots, branches, 

and leaves. In the years 2009-2012, rubber plantations in Thailand covered 27,000 km2 

[5]. Biomass from rubber tree residues provides a basic energy source for cooking and 

heating in rural households of traditional Thai style. 

The melamine formaldehyde resin is one of the thermosetting plastics, which can not 

be recycled, which is made from melamine and formaldehyde by polymerization. 

Thermosetting materials have generally excellent hardness and high thermal resistance. 

Melamine formaldehyde (MF) materials are widely used in Thailand as kitchen utensils 

set, laminate floor products, counter bar, cabinetry, top surface coated, textile finishes, 

paper processing, and binder material. These are some of the application which the 

melamine formaldehyde have outstanding properties continued to be widely used today. 

The melamine production industry began in 1973. Raw materials consisted of 3 major 

components; melamine crystal, alpha cellulose and formaldehyde. Melamine 

formaldehyde resin was not able to be melted by a heating and pressure forming process 
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due to three dimensional networks (cross-linking). The general properties of the 

melamine formaldehyde added which cellulose were shown in Table 1. The melamine 

formaldehyde forming process is to compress and heat simultaneously to the desired 

shape by a hot compression molding machine at suitable pressure, temperature, and 

time. After formation, the melamine product is transferred to grinding and surface 

finishing. During these processes scraps and waste melamine are generated and cannot 

be reformed and recycled. Therefore, the disposal is usually done by landfills or burning  

that leads to the environmental problems and wastage cost for disposal. It will be more 

environmentally friendly if the melamine can be recycled  [6, 7]. 

Table 1 General properties of pure melamine formaldehyde [8]. 

 

Melting Temperture 149-204 °C 

Specific Gravity 1.47-1.52 

Tensile Strength 34-90 MPa 

Compression Strength 227-310 MPa 

Hardness M115-M125 

 

 

The Phenolic resin is a polymer matrix to be used in eco- composite products. The 

fundamental properties of phenolic resins provide high mechanical strength at advanced 

temperatures in a various the environments and comperative with a multitude of 

composite fibers and fillers. Complicated applications benefit by using phenolic resins 

in the main part of composite process. The phenolic resins are composed of a wide 

variety of structures based on a particular product’s reaction. In this research, the 

phenolic resin was used as a binder material. The phenolic resin effortlessly penetrates 

and adheres to the structure of many organic and inorganic fillers and reinforcements, 

which makes it an ideal candidate for variety uses application. A concise thermal 

exposal to created crosslinking or thermosetting fabricated attainment of its last 

properties. The excellent ability of phenolic resin to wet down and to crosslink through 

the fillers and reinforcements provides the desired mechanical, thermal, and chemical 

resistance properties. A main properties of thermosetting resin are have ability to 

outstanding to high temperature under exterinal load with a little deformation shape. In 

general, the phenolic resin propertie are provide the rigid to maintain structural integrity 

and dimension stability under severe condition. For this reason, phenolic resin binders 
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meet the challenges of eco-composite in demand application such as house construction, 

friction, and machinery parts. The application advantage from the great physical 

preperties, as well as thermal and chemical resistance properties from phenolic resins 

include abrasive grinding wheels, friction liner, refractory products, and other 

mechanical parts used at high temperature or in aggressive environments. In recently, 

phenolic resin's outstanding compatibility together cellulose fillers has been applied to 

increase benefit of particleboard, plywood, hardboard, oriented strand board, substrates 

for melamine laminates, and decking applications. Composites were used for variety 

applications such as on oil platforms, missile components, and heat shields [9]. The 

phenolic resin matrix in composite materials generally have lower strength, yet have 

high potential in impact resistance as shown in Table 2. 

Table 2 Mechanical Properties of Composites with various resin [10] 

Matrix materials Flecural strength,MPa Elongation, % Notched Izod, J/m 

Phenolic resin 228 2 1868 

Polyeaster 276 1.75 960 

Vinyl ester 310 2 1227 

 

This study is based on the premise that Thailand is the largest producer of natural rubber 

and a high producer of melamine formaldehyde, which makes a high potential to get 

raw materials for producing eco-composite. Therefore, the author chose biomass 

charcoal originating from Thai rubber tree wood waste, used melamine formaldehyde 

powder, and phenolic resin to fabricate eco-composite material to compare with pure 

melamine formaldehyde and phenolic resin. The aim of this study is to investigate the 

microstructures, physical properties and the mechanical properties such as compressive 

strength by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and 

mechanical test. 

Experimental Procedure 

The biomass from rubber trees were cut in small pieces, put in the furnace prepared to 

carbonizing under oxygen control chamber at 600 °C , holding time was 4 hours to  
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Figure 4 Mechanical crushers machine. 

 

Figure 5 Ceramic ball mill to crush biomass charcoal into powders. 

 

produce biomass charcoal. The biomass charcoal was broken in to small pieces by a 

mechanical crusher machine as shown in Figure 4. The ceramics ball mill equipment 

was used to crush the biomass charcoal preparing the powder in finer incriments as 

shown in Figure 5. The size control was particle size 250 µm by the industrial sieved 

equipment [11, 12].  

The materials used in this study were waste melamine formaldehyde (WMF), or used 

melamine formaldehyde from the heat molding process in the manufacturer that is 

supported by the Suranaree Institute of Technology (SUT), Thailand. The prepared 

process was first broken into small pieces using a ball mill crushers method. These 
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pieces of waste melamine were again pulverized into finer powder and sieved by  

shakers to control particles size around 1-150 µm [7, 13]. 

In addition, pure melamine formaldehyde (PMF) or virgin melamine formaldehyde, 

whose industrial grade was ME6033 (ready to mix with cellulose and formaldehyde), 

was also used for comparison with their eco-composite characteristic. Also the phenolic 

resin was used in this study was industrial phenolic resin received from Aomori 

Research Institute (AITC).    

In order to produce the highest mechanical properties of eco-composite with maximum 

weight ratio of waste melamine formalehyde and biomass charcoal from rubber trees 

residues, these experiments were designed to include the following six conditions in 

weight fraction ratio as shown in Table 3. 

Table 3 Design of parameters to fabricate eco-composite.  

 

Sample 
The powder mixed in weight fraction ratio (%) 

WMF C PMF R 

WMF/R=50/50 50 X X 50 

WMF/C/R=50/30/20 50 30 X 20 

WMF/C/R=30/50/20 30 50 X 20 

C/PMF=50/50 X 50 50 X 

C/R=50/50 X 50 X 50 

PMF/R = 50/50 X X 50 50 

 

 

WMF : Waste melamine formaldehyde 

     Ch : Biomass charcoal 

  PMF : Pure melamine formaldehyde 

       R : Phenolic resin  
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Figure 6 Schematic diagram to fabricate eco-composite materials. 

Figure 7 The schematic diagram of hot press molding to compaction eco-material.  
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The fabrication procedure’s goal was to control the weight ratio following the designed 

weight scale. The second step was to place a sample in the dryer machine to control the 

humidity of sample powder at 60 °C for 120 minutes. The mixing process is very 

important for the properties of composite. In order to produce homogenous powders, 

the mixing equipment used was a ball mill jar. The compaction metod of eco-composite 

used was the hot press molding as shown in Figure 6.  The form parameters of bulk 

shapes were formed by a hot compression mold at a temperature of 523 K and a 

compression pressure of 30 MPa for 30 min to completed melting phenolic resin to cure 

the particle of biomass charcoal and waste melamine formaldehyde particles as shown 

in Figure 7 and 8.  

The particle sizes of WMF and PMF were analyzed using a particle size analyzer, a 

Horiba LA-950V2, which includes two light sources (He-Ne laser (632.8 nm) coupled 

with a beam expander and a blue monochrome tungsten lamp (405 nm). The X-ray 

diffraction (XRD) measurement were used by a Rigaku Ultima IV to determine crystal 

structures of eco-composites using Cu-Kα radiation at 40kV and 45mA at  

 

Figure 8 Hot press molding to fabricate specimen. 
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room temperature (wave length of 1.541 Å).  The surface morphology of the eco-

composite was observed by a  scaning electron microscope (SEM), KEYENCE VE-

9800, at an accelerating voltage of 10kV.  A compression test was also used that was 

made by a TENSILON TOYO BALDWIN SS-207-AP.  

Results and discussion 

The particle size distributions of pure melamine formaldehyde and waste melamine 

formaldehyde were measured by the particle size analyzer. The result are shown in 

Table 4. It is found that the mean particle size of waste melamine formaldehyde 

particles is smaller than that the pure melamine formaldehyde.  

 

Table 4 Mean particle size of pure and waste melamine formaldehyde. 

 

 Median 

Size 

(µm) 

Mean 

Size 

(µm) 

Standard 

Deviation. 

(µm) 

Pure melamine 

formaldehyde 
14.98 17.05 8.89 

Waste melamine 

formaldehyde 
7.89 9.39 6.41 

 

Based on the waste melamine formaldehyde being of smaller size, this was expected to 

occur from the characteristic of thermosetting plastic after being forming by heating to 

over the melting point. Afterwords the polymer structure in micro level has been 

decomposed [14].  

 Scanning electron microscopy  

The SEM results show biomass charcoal obtained after carbonizing Thai rubber tree 

wood and its charcoal powders, which were obtained after crushing and milling in 

Figure 9 (a) and (b) respectively. Although cell structures of the rubber tree still 

remained after burning, those were completely crushed and broken into fine charcoal 

powders after crushing and milling to powder.  
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Figure 9 SEM images showing surface of biomass charcoal from rubber tree (a) 

image of charcoal after carbonized and (b) after crushed with ceramics ball mills. 

 

  

 

 

 

   

 

 

 

 

 

 

 

 

 

Figure 10 SEM images of microcapsules composite specimens (a) C/R=50/50, (b) 

PMF/C=50/50, (c) WMF/R=50/50 and (d) WMF/C/R=50/30/20 

 

The surfaces of eco-composites, along with various materials, and fabricated weight 

fraction ratio were observed by an SEM. The SEM micrographs of the sample with the 

weight fraction ratio of biomass charcoal and phenolic resin in 50/50 percentage, as can 

be seen in Figure 10 (a), shows charcoal still remained inside the composite and some 

particle of waste melamine formaldehyde on figure (d) because the fabrication 

(a) (b) 

20µm 1µm 

(a) (b) 

(c) (d) 

20µm 20µm 

20µm 20µm 
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temperature its not enough to complete the melting of phenolic resin to cure the particle 

of carbon from biomass charcoal and waste melamine formaldehyde. The images of 

figure (b) are pure melamine formaldehyde with biomass charcoal. Here, the pure 

melamine formaldehyde is acting as a binder material instead of phenol resin that can 

see the black carbon from the biomass charcoal remaining inside. It is suggested from 

the forming temperature and holding time that fabricated eco-composite are not 

appropriate for this mixing parameter.  For figure (c) particle size of WMF is very fine 

and the SEM images were shown to have a smooth surface. That, with the effect from 

the small amount of waste formaldehyde, the completed is homogeneously mixed. 

X-ray diffraction 

XRD was applied for determination of the degree of the eco-composite after fabricating 

with various weight fraction ratios. The patterns of the original materials were used to 

fabricate eco-composite including pure melamine formaldehyde, phenolic resin and 

biomass charcoal from rubber tree wood as shown in Figure 11. The pattern of pure 

melamine formaldehyde showed many peaks corresponding to crystalline phase of 

polymer composition [15].  

The XRD patterns of eco-composites after fabrication are shown as Figure 12. The 

weight fraction ration of WMF/C/R=50/30/20, PMF/R=50/50, WMF/R=50/50, and 

Ch:R=50/50 are reported that after phenolic resin is cured (above 200°C) it changes to 

carbonaous phase. The pattern’s intensity of composites show a non crystalline 

structure that suggests amorphous-like graphite. Due to phenolic resin change, this 

structure is similar to those for charcoal and phenolic resin.  The XRD patterns for the 

composites include some strong peaks, which are due to formation of crystalline of 

polymers [16].   
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Figure 11  XRD patterns of the original material were used to fabrication eco-

composite include of pure melamine formaldehyde, phenolic resin and biomass 

charcoal from rubber trees wood. 

Figure 12  X-ray diffraction patterns for charcoal, phenol resin, and composites 

comsisted of WMF/R=50/50 and WMF/C/R=50/30/20. 
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Compressive strength 

The compressive test was performed on four specimens, each with different 

compositions of eco-composite to check the deviation in compressive strength. The 

compressive stress and strain curves for the composites consisted of 

WMF/C/R=50/30/20, WMF/R=50/50, PMF/R=50/50, and Ch:R=50/50 and are show 

in Figure 13. It can be seen that compressive stress increased linearly with copressive 

strain until failure.  The maximum compressive strength, 37.5 MPa, was obtained from 

the composite consisting of the maximum weight fraction of waste melamine 

formaldehyde whose ratio was WMF/C/R=50/30/20. The compressive stress of the 

sample mixed with waste malamine formaldehyde and phenolic resin whose ratio was 

WMF/R=50/50 gave 45.28 MPa as shown in Figure 14. The compressive stress of the 

sample mixed with  pure melamine formaldehyde and phenolic resin, was about 23.75 

MPa as shown in Figure 15. The compressive stress of the sample of biomass charcoal 

was mixed with phenolic resin giving lowest compressive strength at 11.76 MPa as 

shown in Figure 16. The particle reinforced materials as waste melamine formaldehyde, 

pure melamine formaldehyde and biomass charcoal powder have potential to increase 

the compressive strength of eco-composite. The waste malamine formaldehyde is 

thermosetting plastic that, when formed by heating, will keep solid structure and have 

high initial hardness. The pure malamine formaldehyde, after being forming and cued 

with phenolic resin also gives the results of high compressive strength compared with 

that of biomass charcoal mixed with phenolic rein.  The key qualities of this eco-

composite design concept are to use the maximum amount of waste melamine 

formaldehyde and biomass charcoal to increase compressive strength.  
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Figure 13  Compressive stress - strain curves for eco-composite whose mixture in 

weight fraction was WMF/C/R=50/30/20. 

 

Figure 14  Compressive stress - strain curves eco-composite whose mixture in weight 

fraction was WMF:R=50/50 
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Figure 15  Compressive stress - strain curves for eco-composite whose mixture in 

weight fraction was PMF:R=50/50. 

 

Figure 16  Compressive stress - strain curves for the the eco-composite whose mixture 

in weight fraction was C:R=50/50. 
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Ozone treatment 

The ozone treatment was one of the techniques used to modify the surface activity of 

biomass charcoal in powder. The ultraviolet (UV) ozone has dramatic effect on the 

nature of surface oxidation, leading to the production of quinines, esters, and hydroxy 

function group [17]. The ozone treatment  has improved the interfacial adhesion 

between a particle element of carbon, which was the reason to increase the compressive 

strength of eco-composite [18, 19]. Also UV ozone technique increased oxygen 

concentration and adhension of biomass charcoal with phenol resin matrix in eco-

composite [20]. In this study, the ultraviolet (UV) ozone generation process was applied 

to biomass charcoal powder before mixing with particle reinforced materisls to 

fabricate eco-composites. The results of compressive strength were shown in Figure 17.  

 

 

 

 

 

Figure 17  Compressive strength of WCMs effect from Ozone treting method. 

 

 

Conclusion 

Attempts to synthesize Eco-composites using waste malamine formaldehyde and 

biomass charcoal powder originating from Thai rubber tree wood as particle reinforcing 

materials were made. The waste malamine formaldehyde is a thermosetting plastic, that 
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keeps solidity shape permanently after being formed. The curing materials (pure 

melamine formaldehyde or phenolic resin powders) were designed for use with 

different weight fractions to binder materials. The microstructures of solid composites 

whose formed and compressive strengths were mainly investigated.  Waste malamine 

formaldehyde content in eco-composite increases compressive strength. The maximum 

weight fraction of waste melamine formaldehyde to synthesize the composite was 50% 

in weight. The highest compressive strength of 35.7 MPa was obtained from a 

composite mixed with waste melamine formaldehyde (waste melamine formaldehyde 

/charcoal/phenol resin: 50/30/20), while those with pure melamine formaldehyde 

(virgin MF/charcoal: 50/50) and phenolic resin (phenolic resin/charcoal: 50/50) were 

24.1 MPa and 11.5 MPa respectively. 

These eco-composite materials provide high compressive strength when the volume of 

waste malamine forldehyde was increased. The consideration of toxicity, safety, and 

environmental factors of the eco-composite is important and should be investigated in 

the future. 
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