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This thesis investigates on development of advanced motion control system for mobile

robots considering dynamic uncertainty, holonomic and non-holonomic problem, and multi-rate

sampling problem, which remain in the current studies of literature. The mobile robots utilized

in this research are a two wheeled inverted pendulum robot and a four wheeled omni-directional

robot. Then, the development of the mobile robots in this thesis is all-around improvement

relative to these problems. The problems, the contributions, the experiment and the results are

described as follows;

Dynamic model is a mathematical model of a physical system in order to express locomo-

tion of physical system. It is the most important part in motion control design. Then, this thesis

considers the dynamic uncertainty effect to the control performance. To analysis the uncertainty,

system modeling and system identification have been presented for improving and estimating

the dynamic model. Considering the motion of wheeled inverted pendulum robot, the dynamic

models in literature reviews are derive considering only rotation of wheel. In fact, the motion

is produced by rotation of wheel and rotation of body with wheel. Thus, the presented dynamic

model is derived with considering not only wheel-rotation but also body-rotation. Moreover, the

system identification is introduced based on autoregressive with exogenous inputs model (ARX

model), which does not concern about measurement uncertainty. It is an cause to make the error

in the identification. For multiple input multiple output system (MIMO), the uncertainty on each

degree of freedom effects to the identification result of other degrees of freedom.

To evaluate the control systems using odometry, Kinect is mounted in operating space in

order to observe the locomotion of the robots so that the space can locate the locomotion of

the robots. It is called intelligent space. By the way, the space can locate the robot locomotion

precisely than the odometry based locomotion because some uncertainties may appear in the

odometry such as slip motion and global positioning error. However, the uncertainties occur in

the odometry but the robot position can be computed with high frequency than vision system.

In additional, multi-rate control system has introduced to involve the locomotion from both

sources such the intelligent space and the odometry based locomotion. The multi-rate control

systems for holonomic and non-holonomic robots are dissimilar structure because the motion

of non-holonomic robot is limited. Then, only position feedback is not enough to perform the

robot on the trajectory. The trajectory tracking algorithm is included in the motion control to

navigate non-holonomic robot on the trajectory. It is designed corresponding to non-holonomic

constraint. Therefore, the multi-rate control systems for omni-directional robot and the inverted

pendulum robot are contrast at the trajectory tracking algorithm.

Then, this thesis has introduced the new dynamic model of the inverted pendulum robot,

the system identification considering low accuracy measurement, and the multi-rate control sys-

tems for holonomic and non-holonomic robots. The new dynamic model is improved by con-

sidering the rotation of body with wheel and autoregressive moving average with exogenous
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and sensor disturbance model (ARMAXD model) was established in order to identify the linear

model with low accuracy measurement. The sensor noise is assumed that it is the high frequency

of the error between the output and the estimate output, which is derived by the estimate of the

state matrix and the input matrix. Then, it is recognized as the members in the regressive vector

so that the effective of the sensor noise is decreased in the identification result, which means that

the identification accuracy is better. By the way, the multi-rate control systems were evaluated

with the position estimators, which estimate the robot position by involving the robot positions

from the intelligent space and the odometry. To track the trajectory, way point denotes desired

position. It is slided on the trajectory, and then, the control system tracks the way point. It is

called continuous tracking control (CT). For approaching the way point, omni-directional robot

can perform on every degrees of freedom by sliding mode and the input torques of four wheels

can be derived by the attractive force on world coordinate and Jacobian matrix. On the other

hands, the inverted pendulum can not directly perform on sideway so that it approaches to the

desired position by straight or curve motions in order to archive the way point at the flank of the

robot. The trajectory tracking algorithm is evaluated to treat the curve motion. It transforms the

distance error on world coordinate to the distance error on the vehicle fixed coordinate, and then

the distance error is bounded by trigonometric functions. It seems the weight function that the

priority of yawing is higher than the straight motion.

As the result, the presented dynamic model of the inverted pendulum robot is derived with

considering new motion constraint and the new structure model is established as autoregressive

moving average with exogenous and sensor disturbance (ARMAXD) model. The simulation

of system identification and the experiment on friction compensation have corroborated that

ARMAXD model can identify the robot system precisely than ARX model. Moreover, the

experiment of the multi-rate control consists of the experiments of the multi-rate control for the

omni-directional robot and the inverted pendulum robot. The simulation of trajectory tracking

deals the tracking performance of vision feedback control and multi-rate control. It shows that

the robot with the multi-rate control can approach to the end of the trajectory faster than vision

feedback control. The experiment on the omni-directional robot and the inverted pendulum

robot can track the trajectory successfully.



Acknowledgements

I would like to offer my special thanks to Prof. Shimada Akira, who is my supervisor.

He has given many comments and supports during Doctoral course. My special thanks are also

extended to Prof. Mizukawa Makoto, Prof. Matsuhira Nobuto, Prof. Uchimura Yutaka, Prof.

Fujimoto Hiroshi, and also the officers at Shibaura Institute of Technology.

iv



Contents

Abstract i

Acknowledgements iv

List of Figures viii

List of Tables x

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem and Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Dynamics 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Hardware Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Two wheeled inverted pendulum robot . . . . . . . . . . . . . . . . . . 8
2.2.2 Omni-directional Robot . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Two Wheeled Inverted Pendulum Mobile-type Robot . . . . . . . . . . . . . . 11
2.3.1 Inverted Pendulum System . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2.1 Position and Velocity on World Coordinate Frame . . . . . . 13
2.3.2.2 Mass Moment of Inertia . . . . . . . . . . . . . . . . . . . . 15
2.3.2.3 Equation of Motion Based on World Coordinate Frame . . . 16

Kinetic Energy : . . . . . . . . . . . . . . . . . . . . . . . . . 17
Potential Energy : . . . . . . . . . . . . . . . . . . . . . . . . . 18
Lagrangian equation : . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2.4 Motion Constraints . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2.5 Equation of Motion Based on Vehicle Coordinate Frame . . . 22

2.3.3 State Space Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Omni-directional Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Velocity Constraints and Jacobian Matrix . . . . . . . . . . . . . . . . 24
2.4.2 Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2.1 Equation of Motion Based on World Coordinate Frame . . . 26
2.4.2.2 Equation of Motion Based on Vehicle Coordinate Frame . . . 27

v



Contents vi

2.4.3 State Space Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 System Identification for Inaccuracy Measurement 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Principle Knowledge about System Identification . . . . . . . . . . . . . . . . 30

3.2.1 Predicted Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Characterization of Disturbance . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Model Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.3.1 Autoregressive with exogenous inputs model . . . . . . . . . 32
3.2.3.2 Autoregressive moving average with exogenous inputs model 32
3.2.3.3 Autoregressive moving average with exogenous and sensor

disturbance model . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.4 Parameter Estimation Methods . . . . . . . . . . . . . . . . . . . . . . 34

3.2.4.1 Weight Least-mean Square Methods . . . . . . . . . . . . . 34
3.2.4.2 Weight Least-mean Square Methods for Sensor Noise . . . . 35

3.3 Robot Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.2 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.3 Regressive Vector Optimization . . . . . . . . . . . . . . . . . . . . . 41
3.4.4 Satisfaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Friction Compensation 46
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Friction Compensation by Constant Friction Coefficients . . . . . . . . . . . . 47

4.2.1 Prediction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.2 Friction Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.2.1 Friction Coefficient Estimation . . . . . . . . . . . . . . . . 49
4.2.2.2 Satisfaction . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.2.3 Controller Design . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Experiment Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Localization 54
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Kinect Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 Data Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3.1 Camera Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.2 Vector Projection Analysis . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Experiment Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Multi-rate Discrete Control 62
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Multi-sampling rate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3 Holonomic Robot vs Non-Holonomic Robot . . . . . . . . . . . . . . . . . . . 63
6.4 Wheel Slip Motion and Global Positioning Error . . . . . . . . . . . . . . . . 64
6.5 Multi-rate Control for Omni-directional Robot . . . . . . . . . . . . . . . . . . 66



Contents vii

6.5.1 Control Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.5.2 Position estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.5.3 Controller design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.6 Multi-rate Control for Wheeled Inverted Pendulum Robot . . . . . . . . . . . . 69
6.6.1 Control structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.6.2 Trajectory Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.6.3 Position error estimation . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.6.4 Controller design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.7 Simulation result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.7.1 MRC vs Vision control system . . . . . . . . . . . . . . . . . . . . . . 73
6.7.2 Effectiveness of position estimator . . . . . . . . . . . . . . . . . . . . 73

6.8 Experiment result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.8.1 Experiment on Wheeled Inverted Pendulum Robot . . . . . . . . . . . 76
6.8.2 Experiment on Omni-directional Robot . . . . . . . . . . . . . . . . . 76

7 Conclusion 81
7.1 System Identification and Friction Compensation . . . . . . . . . . . . . . . . 81
7.2 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.3 Multi-rate Discrete Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

List of Publications 83

List of Contributions 84

Bibliography 85



List of Figures

1.1 Concept of intelligent space in reference papers. . . . . . . . . . . . . . . . . . 3
1.2 The figure illustrates the problems in the literature reviews. . . . . . . . . . . . 4
1.3 The straight motion of wheeled inverted pendulum robot. . . . . . . . . . . . . 5
1.4 Overview of research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Task of wheeled inverted pendulum robot, omni-directional robot, and intelli-

gent space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Development of the non-holonomic robot in an intelligent space. . . . . . . . . 9
2.2 Development of the holonomic robot in an intelligent space. . . . . . . . . . . 10
2.3 Some kinds of inverted pendulum system. . . . . . . . . . . . . . . . . . . . . 12
2.4 Two wheeled inverted pendulum robot on world coordinate frame (ΣW) and ve-

hicle coordinate frame (ΣV ). . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Two wheeled inverted pendulum robot on world coordinate frame (ΣW) and ve-

hicle coordinate frame (ΣV ). . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 The motion of omni-directional robot in horizontal space. . . . . . . . . . . . . 25

3.1 Original system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 System with disturbance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Autoregressive with exogenous inputs model (ARX model) . . . . . . . . . . . 32
3.4 Block diagram of autoregressive moving average with exogenous inputs model

(ARMAX model). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Block diagram autoregressive moving average with exogenous and sensor dis-

turbance model (ARMAXD model). . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 Block diagram of weight least-mean square. . . . . . . . . . . . . . . . . . . . 35
3.7 Block diagram of weight least-mean square for ARMAXD model. . . . . . . . 36
3.8 Two wheeled inverted pendulum system. . . . . . . . . . . . . . . . . . . . . . 36
3.9 Servo control to balance the inverted pendulum robot. . . . . . . . . . . . . . . 39
3.10 Data for system identification. . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.11 Satisfaction for estimate parameter by ARX and ARMAXD models. . . . . . . 44

4.1 Block diagram of friction compensation with feedback control system. . . . . . 49
4.2 Position, tilt angle, yaw angle, and input torque data for friction coefficient esti-

mation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 The identification results of the estimate unknown parameters by ARX and AR-

MAXD models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Input torque of the inverted pendulum robot for general feedback control, feed-

back control with friction compensation by the friction estimate using ARX and
ARMAXD models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

viii



List of Figures ix

4.5 Position and tilt angle of the friction compensation to show impulse response of
both friction models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 Kinect installation and coordinate frames in Intelligent space. . . . . . . . . . . 55
5.2 Structure of intelligent space. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Flow chart to describe data fusion for color image and depth data. . . . . . . . 57
5.4 Color image to present the intelligent space in perspective view and configura-

tion space in top view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 Color image to present the intelligent space in perspective view and configura-

tion space in top view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.6 Threshold image to present object in intelligent space and configuration space

using depth data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.7 The configuration image in top view using data fusion technique. . . . . . . . . 61

6.1 The motion of the omni-directional robot in the space. . . . . . . . . . . . . . . 64
6.2 The motion of the inverted pendulum robot in the space. . . . . . . . . . . . . 65
6.3 The figure illustrates the wheel on rigid plane and soft plane. . . . . . . . . . . 65
6.4 Robot’s system and sampled data. . . . . . . . . . . . . . . . . . . . . . . . . 66
6.5 The multi-sampling rate control system in the local controller for holonomic robot. 67
6.6 The multi-sampling rate control system in the local controller for non-holonomic

robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.7 The motion of the inverted pendulum robot with the way point. . . . . . . . . . 70
6.8 Figure to show distance error relative to world and vehicle coordinate frames. . 71
6.9 Vision feedback control with Jacobian matrix. . . . . . . . . . . . . . . . . . . 73
6.10 Motion of omni-directional robot using vision feedback control and multi-rate

control system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.11 The step response of MRDC with position estimator and conventional MRC

without position estimator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.12 Robot’s system and sampled data. . . . . . . . . . . . . . . . . . . . . . . . . 77
6.13 Motion of omni-directional robot in top view. . . . . . . . . . . . . . . . . . . 78
6.14 The experiment result of trajectory tracking using multi-rate discrete control

when way point speed is 0.25 m/s.. . . . . . . . . . . . . . . . . . . . . . . . . 79
6.15 Motion of omni-directional robot in top view and perspective view. . . . . . . . 80



List of Tables

2.1 Physical parameters of the inverted pendulum robot . . . . . . . . . . . . . . . 10
2.2 Physical parameters of omni-directional robot . . . . . . . . . . . . . . . . . . 11

4.1 Regression vector and unknown matrix . . . . . . . . . . . . . . . . . . . . . . 48
4.2 System identification using ARX and ARMAXD models . . . . . . . . . . . . 50

5.1 Kinect specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1 The sampling interval of intelligent space’s communication, internal sensors,
and input torque. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

x



Chapter 1

Introduction

This thesis presents the motion control technology on the vehicle robots from the variety

view points. Then this chapter consists of the background, the problems in literature reviews, the

aim of the research, and technical contribution. The vehicle robots utilized in this research are

a two wheeled inverted pendulum robot in Fig.2.1a and a four wheeled omni-directional robot

in Fig.2.2a. They were selected to evaluate the presented control technologies as the suitable

examples.

1.1 Background

Robotics is a branch of technology that it deals design, hardware construction, control,

and application of robot. It requires the knowledge in several engineering fields such mechan-

ical engineering, electronic engineering, and computer engineering. Thus, the knowledge in

the field of robotics is variety and the aim of the development depends on developer viewpoint

and proficient of developer. The development can classify to kinematic and dynamic system[1–

8], motion control system[9–23], motion planning and trajectory tracking[24–33], intelligent

task[34–39], and environment system[40–43]. The developers study about the kinematic and

dynamic system, who focus on system modeling and system identification in order to improve

the model corresponding to actual motion. To identify the dynamic model, the papers[1–8]

introduces the identification method based on autoregressive exogenous model (ARX) with of-

fline prediction[3–9]. It does not consider the uncertainty of the sensor measurements so that

the identification results may not be high accuracy. By the way, the motion control systems

are generally designed as feedback control system and vision system is used to perceive robot

position[25, 26, 29, 32, 33] and it is often introduced to perform the robot in the space. It is called

vision feedback control system or visual control system. Moreover, the motion planning and the

trajectory tracking are rather essential parts of motion control system in order that the robots can

1
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perform on the trajectory with obstacle avoidance. The intelligent task [19, 24, 29, 33, 42] is the

functions of the robots in order that the robots can interact the human intention and they obtain

the brilliant responsibility. Moreover, the environment system is designed to support humans

and robots in the space. It obtains the function relative to localization, 3D map building, sharing

information, and human interaction.

Generally, wheeled mobile robots can be classified to non-holonomic robots can beFtheef

classified to non-holonomic robot [10, 16, 17, 21, 23, 26, 31] and holonomic robot[25, 32, 37,

38]. The development trend for the indoor wheeled mobile robot can be divided to two trends

such intelligent robot trend[11, 12, 36] and service robot with intelligent space trend[19, 40, 42].

The intelligent robot is developed to service human in various purposes and it can interact with

human directly. On the other hands, the service robot with intelligent space is that the robots are

used in intelligent space [24, 29, 33, 41, 42, 44], which is evaluated to support the robot operation

in the space as shown in Fig.1.1. It illustrates 3D structure of an intelligent space and concept

idea of sharing information system of which the details are described in [19, 42], respectively.

The activities in the space are observed by the space system, and then they are provided to each

robot in the space so that the number of sensor in each robot can be reduced. Then, the trend

of the service robots with intelligent spaces seems greater than general intelligent robot trend

because the cost of each robot is reduced and the intelligent space can locate the locomotion of

robots precisely than the odometry based locomotion.

To establish the intelligent space, camera is mounted at fixed-position in the space as shown

in Fig.1.1, the camera presents space image in perspective view, which is non linear scale with

actual position. Then, the robot position is identified in the image and it is converted to the

actual space position by the perspective transformation, which is presented in [19, 42]. The

advantage of vision feedback system is that the global position of the robot and other objects are

identified precisely than odometry such as rotary encoder because the global position error may

be occurred by wheel slip motion, which is included in the measurement data of rotary encoder.

To solve this error, the papers[45–48] have introduced the other methodologies to estimate and

suppress the wheel slip. The disadvantage is that the sampling interval of vision system is low,

which effects to the responsibility and the performance of the robot.

1.2 Problem and Objective

According to literature papers[24–33], the problems in the literature reviews can be summa-

rized to dynamic uncertainty, holonomic and non-holonomic problem, and multi-rate sampling

problem. The problems can be classified to two sections as shown in Fig.1.2. They are dynamic

uncertainty and multi-sampling rate.
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(a) 3D structure of the intelligent space[42].

(b) The concept idea of sharing information in the intelligent space [19].

Figure 1.1: Concept of intelligent space in reference papers.

The dynamic uncertainty consists of system modeling error and system identification con-

sider low accuracy sensor measurement. The motion of the inverted pendulum robot is consid-

ered that the straight motion is produced by rotation of wheel in Fig.1.3c and it can be measured

by rotary encoder. In fact, the straight motion is generated by two rotations such as rotation

of wheel relative to body in Fig.1.3c and rotation of wheel with body in Fig.1.3b, which can

be measured by rotary encoder and IMU sensor, respectively. The summary of both rotations

equals with the rotation of wheel relative to vertical axis. Then, the system modeling based on

the assumption in the literatures is not precise model. By the way, the identification method in

the literature is never considered the effectiveness of the sensor measurement, which exactly an

important cause to make the error in the identification result.
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Figure 1.2: The figure illustrates the problems in the literature reviews.

Generally, sampling intervals of actuators and sensors are different intervals but many

developers usually design control systems based on lowest sampling interval. For example, the

control system is utilized with vision sensor, the control frequency is obtained as same as the

frame rate of the vision system. However, the robot can approach the desired position but the

performance may not be satisfied. To treat this problem, the control system is designed based on

multi-rate control in order to treat the multiple sampled intervals. Moreover, the vehicle robots in

this research are the inverted pendulum robot and the omni-directional robot, motions of which

depends on non-holonomic and holonomic constraints. Thus, the multi-rate control systems for

the both robots are designed considering the holonomic and non-holonomic constraints.

Therefore, this thesis aims to develop advanced motion control system for vehicle robots

considering dynamic uncertainty, holonomic and non-holonomic problem, and multi-rate sam-

pling problem. The dynamic models of the robots are improved by considering the actual motion

and the system identification for inaccuracy sensor measurement is established to accurate the

identification performance in practical. In additional, the control system for holonomic and

non-holonomic robots are designed in view of multi-sampling interval.

1.3 Contribution

This thesis contributes to solve the problems of two types of vehicle robots such the dy-

namic modeling uncertainty, the system identification for the inaccuracy measurement system,

and control system considering multi-sampling interval. The presented solution consists of theo-

retical analysis and experimental on friction compensation and multi-rate visual position control

system for holonomic and non-holonomic robots. Therefore, the presented dynamic model of
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Figure 1.3: The straight motion of wheeled inverted pendulum robot.

the inverted pendulum robot is derived with considering not only wheel-rotation but also body-

rotation. The consideration of their rotations directly effects to the dynamic uncertainty. By

considering the both rotations, the dynamic model becomes the perfect dynamic model and the

new structure model of system identification is created as autoregressive moving average with

exogenous and sensor disturbance (ARMAXD) model in order to estimate the system concern-

ing low accuracy sensor measurement. the estimate model is high accurate than autoregressive

with exogenous (ARX) model, which is conventional and popular model. In additional, multi-

rate control is created to solving the multi-sampling intervals. It becomes similar with the actual

system and the performance is greater than vision feedback control.

1.4 Overview

The development in this thesis consists of system modeling and control system for holo-

nomic and non holonomic robot. Then, the omni-directional robot and the inverted pendulum

robots are suitable example to demonstrate the presented system modeling and the motion con-

trol technologies. The hardware construction of the robots are presented in Chapter 2 and Fig.1.4

expresses the content in this thesis to four parts such as system modeling, intelligent space, ex-

periment on friction compensation, and experiment on multi-rate control for two types of vehicle

robots.

The system modeling introduces the theoretical analysis relative to dynamic modeling and

system identification in Chapter 2 and 3, subsequently. The dynamic models in literature re-

views are derive considering only rotation of wheel. In fact, the motion is produced by rotation

of wheel and rotation of body with wheel. Thus, the presented dynamic model is derived with

considering not only wheel-rotation but also body-rotation. It seems nearby the actual dynamic

than the dynamic model in the literature. The linear dynamic models of the both robots are
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used to design the feedback gain by linear quadratic method. By the way, the system iden-

tification in the literature reviews have been introduced using autoregressive with exogenous

inputs model (ARX), which does not concern about the sensor uncertainty, which is an cause

to make the error in the identification. For multiple input multiple output system (MIMO), the

uncertainty on each degree of freedom effects to the identification result of other degrees of

freedom. Then, the thesis establishes autoregressive moving average with exogenous and sen-

sor disturbance (ARMAXD) model, which is designed with concerning the effectiveness of the

sensor disturbance. The structure and the derivation of ARMAXD model are modified based

on two conventional models structures such autoregressive with exogenous inputs (ARX) model

and autoregressive moving average with exogenous inputs (ARMAX) model. The prediction

algorithm of ARMAXD model is minor modification of weight least mean square method to

feedback the estimate sensor noise. The accuracy of ARMAXD model is compared with ARX

model by simulation as shown in Chapter 3.

Secondly, the experiment on friction compensation control is designed to satisfy the iden-

tification results of ARMAXD model as presented in Chapter 4. It demonstrates by the inverted

pendulum robot and the impulse response of the friction compensation controls, which are used

the estimate friction coefficient of ARX and ARMAXD models. The controller is designed using

the dynamic model without the friction so that the control performance can be indicated by the

accuracy of the estimate friction. The result deals the performance of the friction compensation

control using the estimate friction of ARX and ARMAXD models.

Thirdly, intelligent space is established to derive location of robot in the space as presented

in Chapter 5. Kinect is mounted at the fixed position on the space and the host computer in

the space will process Kinect’s data by localization method, and then the result will be sent to

the vehicle robots via rs-232 platform. The color marker is mounted at the robots for deriving

the position and orientation so that the localization will identify the position and orientation of

the vehicle robots by image processing technique and the distance vectors of the depth data are

derived by projective vector in order to observe the size of the robots and other objects in the

space.

Finally, multi-rate control systems are developed for two types of the robots such as the

omni directional robot and the inverted pendulum robot. They are described in Chapter 6 and

their motion constraints are holonomic and non-holonomic constraints, respectively. By the

way, the omni directional robot can directly performs on all degrees of freedom but the inverted

pendulum robot can perform only straight, pitching and yawing motions because the motion is

bounded as described in non-holonomic constraint. Thus, the trajectory tracking algorithm is

designed with considering non-holonomic constraint. Moreover, the operating space is covered

by the soft material so that the huge slip motion appears in the odometry. Thus, the position
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Figure 1.4: Overview of research.

Figure 1.5: Task of wheeled inverted pendulum robot, omni-directional robot, and intelligent
space.

estimator is also developed to predict the global position of the robots with high sampling rate.

The result is satisfied by the simulation and the experiment, which are presented in Chapter 6.

As above sentences, Fig.1.5 describes the software task for the omni-directional robot,

the inverted pendulum robot, and intelligent space. The inverted pendulum robot consists of

three tasks such Kalman filter, multi-rate control system, and friction compensation. Kalman

filter is basic task to estimate the tilt and angular velocity of body. Then, it is always used

with the friction compensation and multi-rate control in chapter 3 and 5, respectively. By the

way, the omni-directional robot is installed only multi-rate control to experiment in chapter 5.

For intelligent space, it is mainly designed to navigate the robot position in the space. The

function to navigate the robot consists of two tasks that localization is presented to derive the

robot position and the trajectory tracking algorithm is the algorithm to determine the motion the

non-holonomic robot.



Chapter 2

Dynamics

2.1 Introduction

This chapter introduces properties of vehicle robot in our experiment such as inverted

pendulum robot and omni-directional robot. It is organized as follows; principal properties,

hardware construction, kinematic and Jacobian matrix, equation of motion, state space model.

2.2 Hardware Construction

This section describes the construction for the two wheeled inverted pendulum robot, the

omni-directional robot, and the intelligent space.

2.2.1 Two wheeled inverted pendulum robot

Two wheeled inverted pendulum robot is developed as shown in Fig.2.1a and the physical

parameters of the robot is presented in Fig.2.1. The electronic system is presented in Fig.2.1b.

IMU sensor consists of low-cost 3-axis accelerometer and gyro sensor. The data from IMU

sensor is processed to derive tilt and angular velocity of body by Kalman filter. By the way, the

data from rotary encoders are computed to locate the position of robot in a space. To perform the

robot the 32-bit microprocessor generate digital command to DA converter in order to control

the torque of motor by analog motor driver.

Fig.2.1 illustrates wheeled inverted pendulum robot and hardware configuration. The value

of physical parameters for inverted pendulum robot in Fig.2.1(a) are presented in Table.2.1.

To perform the robot, two rotary encoders and an inertial measurement unit (IMU) sensor are

mounted at the robot. Rotary encoders detect the rotation of wheels and IMU sensor consists of

8
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3-axis accelerometer and 3-axis gyro sensor, which measure acceleration and angular velocity

of body of robot. Their data are sent to 32-bit microprocessor and it processes acceleration

and angular velocity to derive tilt angle and pitching rate. Rotary encoder data are used to

compute the position of robot in space. After that these data are feedback data for controller

and sent the command to motor driver for controlling input torque. To treat tilt and pitching

rate, we studied some papers[13, 49, 50], they investigated on how to reduce sensor uncertainty

using complementary and Kalman filter. Then, we applied Kalman filter to estimate the tilt and

pitching rate.

(a) Two wheeled inverted pendulum robot.

(b) Electronic system of the inverted pendulum robot.

Figure 2.1: Development of the non-holonomic robot in an intelligent space.

2.2.2 Omni-directional Robot

Omni-directional robot is developed as shown in Fig.2.2a and the physical parameters of

the robot is presented in Fig.2.1. The electronic system is presented in Fig.2.2b. The data from
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(a) Omni-directional robot.

(b) Electronic system of omni-directional robot.

Figure 2.2: Development of the holonomic robot in an intelligent space.

Table 2.1: Physical parameters of the inverted pendulum robot

Parameters Value Unit
Body’s mass (mb) 3.5 kg.

Wheel’s mass (mw) 0.25 kg.
Inertia of body about pitching (Iyy) 8.5 × 10−4 kg. · m2

Inertia of body about yawing (Izz) 0.0255 kg. · m2

Inertia of wheel (Iw) 0.0013 Kg.
Inertia of rotor (Ir) 1.6 × 10−5 Kg.

Distance of center of gravity (z) 0.04 m.
Width of robot (b) 0.4 m.

Radius of wheel (rw) 0.08 m.
Gear ratio (n) 1/400

rotary encoders are computed to locate the position of robot. To perform the robot the 32-bit

microprocessor generate digital command to DA converter in order to control the torque of
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motor by analog motor driver.

Omni-directional robot is four wheeled-type robot as shown in Fig.2.2(a) and it consists

of omni-directional wheels, motors, motor drivers, digital/analog converters (DAC), and 32-

bit microcontroller. To perform omni-directional robot, the microcontroller receives data from

rotary encoders and compute global position and it send command to control motors via motor

drivers. For the value of physical parameters, they are shown in Table.2.2.

Table 2.2: Physical parameters of omni-directional robot

Part Value Unit
Total weight (Mt) 7.31 kg.
Body width (B) 0.40 m.
Distance between wheel (b) 0.36 m.
Radius of wheel (rw) 0.024 m.
Mass moment of inertia of robot (Iφ) 7.29x10−5 kg./m2

Mass moment of inertia of wheel (Iw) 0.1x10−5 kg./m2

Gear ratio (n) 1/9 -
Pulse number per round (Gc) 12 pulse/round

2.3 Two Wheeled Inverted Pendulum Mobile-type Robot

A two wheeled inverted pendulum mobile-type robot is classified in vehicle robot, which

is used in our experiment. Then, this section introduces inverted pendulum system, hardware

construction, equation of motion, and state space model.

2.3.1 Inverted Pendulum System

Principle of the robot is similar with inverted pendulum system and some kinds of inverted

pendulum system are presented in Fig.2.3 such as prismatic-type, cart-type, and wheeled-type.

However, position (xv) is moved by the difference kind of actuator, but dynamic of them are

similar and wheeled-type is developed to be mobile robot. In Fig.2.3, they are expressed in two

dimensional degrees such xv and θb. Equation of motion is well known as Mc + mb mbglcosθb

mbglcosθb JT


ẍv

θ̈b

 +

−mblθ̇2
bsinθb

−mbglsinθb

 =

10
 f (2.1)

where, f denotes input force. Mc and mb denote mass of cart and inverted pendulum, respec-

tively. JT is mass moment of inertia about pitching axis. l denotes distance from pivot to center

of gravity. xv and θb are distance and tilt angle.
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(a) Prismatic-type (b) Cart-type (c) Wheeled-type

Figure 2.3: Some kinds of inverted pendulum system.

2.3.2 Equation of Motion

As S. Jeong and T. Takahashi [11, 12] presented the method to derive equation of motion

(EOM) by Lagrangian unknown multiplier. At first step, EOM is treated on generalized coor-

dinate (q), q =
[
x y φv θb θwr θwl

]T
, and then it is converted to a new coordinate using

Lagrangian multiplier, which is introduced as an actual control variables so that it is called con-

trol coordinate (ν), ν =
[
ṡ φ̇v θ̇b

]T
. Where, x and y denote position on x-axis and y-axis. φv

denotes the yaw angle of the robot. θb denotes tilt angle of the body. θwr and θwl are rotation

angle of the right and left wheels. s and ṡ denote distance of the robot belong to trajectory and

forwarding velocity, subsequently. The components of q are referred to world coordinate frame

(ΣW) and the components of ν are referred to the vehicle-fixed frame (ΣV ). Then, this section

is organized as follow: kinematic constraints, Jacobian matrix, and the relationship of robot

motion between world coordinate frame (ΣW) and vehicle coordinate frame (ΣV ) are derived.
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Figure 2.4: Two wheeled inverted pendulum robot on world coordinate frame (ΣW ) and vehicle
coordinate frame (ΣV ).

2.3.2.1 Position and Velocity on World Coordinate Frame

Fig.2.4 exhibits motion of an inverted pendulum robot on ΣW . The velocity of robot is

derived by homogeneous transformation between ΣW and ΣV that

Hw
b = Hw

v · H
v
b

= Trans(xv, yv, r)Rot(Zv, φv)Rot(Yv, θb)

=


1 0 0 xv

0 1 0 yv

0 0 1 zv

0 0 0 1




cosφv −sinφv 0 0

sinφv cosφv 0 0

0 0 1 0

0 0 0 1




cosθb 0 sinθb 0

0 1 0 0

−sinθb 0 cosθb 0

0 0 0 1



=


cosφvcosθb −sinφv cosφvsinθb xv

sinφvcosθb cosφv sinφvsinθb yv

−sinθb 0 cosθb zv

0 0 0 1


=

 Rw
b pw

v

01×3 1

 ∈ R4×4 (2.2)
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where, pw
v denotes position of robot based on ΣW and Rw

b denotes rotation matrix of body. In

additional, position of center of gravity based on ΣW (p̄w
c ) is given by

p̄w
c = Hw

b · p̄
b
c

=


cosφvcosθb −sinφv cosφvsinθb xv

sinφvcosθb cosφv sinφvsinθb yv

−sinθb 0 cosθb r

0 0 0 1




0

0

z

1



=


xv + z · cosφvsinθb

yv + z · sinφvsinθb

z · cosθb + r

1


∈ R4 (2.3)

Translation velocity of body (vw
b ) at center of gravity is derived by

vw
c =


ẋv − z · sinφvsinθbφ̇v + z · cosφvcosθbθ̇b

ẏv + z · cosφvsinθbφ̇v + z · sinφvcosθbθ̇b

−z · sinθbθ̇b

 ∈ R3 (2.4)

To derive angular velocity of body (ωw
b ) at center of gravity, it is computed by rotation matrix

by

ωw
b = (Ṙw

b RwT
b )∨ ∈ R3 (2.5)

V operator is presented in [2] that


0 −ωz ωy

ωz 0 ωx

−ωy ωx 0


∨

=


ωx

ωy

ωz

 ∈ R3 (2.6)

Thus, the angular velocity (ωw
b ) is

ωw
b = (Ṙw

b RwT
b )∨

=


0 −φ̇v cosφvθ̇b

φ̇v 0 sinφvθ̇b

−cosφvθ̇b −sinφvθ̇b 0


∨

=


−sinφvθ̇b

cosφvθ̇b

φ̇v

 ∈ R3 (2.7)
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As summary, we know velocity of ΣV , velocity of body (vw
c ) and angular velocity (ωw

b )

based on ΣW as follows;

vw
v =


xv

yv

φv

 (2.8)

vw
b =


ẋv − z · sinφvsinθbφ̇v + z · cosφvcosθbθ̇b

ẏv + z · cosφvsinθbφ̇v + z · sinφvcosθbθ̇b

−z · sinθbθ̇b

 (2.9)

ωw
b =


−sinφvθ̇b

cosφvθ̇b

φ̇v

 (2.10)

2.3.2.2 Mass Moment of Inertia

Generally, mass moment of inertia can computed by shape of mass but it refers on vehicle-

fixed coordinate frame (ΣV ). In order to derive equation of motion based on world coordinate

frame (ΣW), it has to converted the reference frame to ΣW as follows;

Mass moment of inertia of body (Iw
cm) at center of gravity based on ΣW :

Iw
cm = Rw

b Ib
cmRwT

b

=


cφvcθb −sφv cφvsθb

sφvcθb cφv sφvsθb

−sθb 0 cθb




Ixx 0 0

0 Iyy 0

0 0 Izz




cφvcθb sφvcθb −sθb

−sφv cφv 0

cφvsθb sφvsθb cθb


=


Iw
11(φv, θb) Iw

12(φv, θb) Iw
13(φv, θb)

Iw
21(φv, θb) Iw

22(φv, θb) Iw
23(φv, θb)

Iw
31(φv, θb) Iw

32(φv, θb) Iw
33(φv, θb)

 (2.11)

here, Ib
cm denotes moment of inertia based on vehicle-fixed coordinate,

Ib
cm =


Ixx 0 0

0 Iyy 0

0 0 Izz

 ∈ R3×3. Ixx,Iyy,Izz denote moment of inertia about X, Y , and Z axis,

respectively. Ix−z = Ixx − Izz,

Iw
11(φv, θb) = Ixxc2φvc2θb + Iyys2φv + Izzc2φvs2θb,

Iw
12(φv, θb) = Iw

21(φv, θb) = cφvsφv
(
Ixx c2θb − Iyy + Izzs2θb

)
,

Iw
22(φv, θb) = Ixxs2φvc2θb + Iyyc2φv + Izzs2φvs2θb,

Iw
13(φv, θb) = Iw

31(φv, θb) = −Ix−zcφvcθbsθb,

Iw
23 = Iw

32 = −Ix−zsφvcθbsθb,



Dynamics 16

Iw
33(φv, θb) = Ixxs2θb + Izzc2θb

Mass moment of inertia of wheel (Iw
wh) at center of gravity based on Σw :

Iw
wh = Rw

b Ib
whRwT

wh = Rw
v (Rv

bIb
whRvT

b )RwT
v = Rw

v Iv
whRwT

v (2.12)

Iw
wh = Rw

v Iv
whRwT

v =


cφv −sφv 0

sφv cφv 0

0 0 1




Iwx 0 0

0 Iwy 0

0 0 Iwz




cφv sφv 0

−sφv cφv 0

0 0 1


=


Iwxc2φv + Iwys2φv (Iwx − Iwy)sφvcφv 0

(Iwx − Iwy)sφvcφv Iwxs2φv + Iwyc2φv 0

0 0 Iwz

 (2.13)

here, Ib
wh denotes moment of inertia relative to body, Ib

wh =


Iwx 0 0

0 Iwy 0

0 0 Iwz

 ∈ R3×3. Iwx,Iwy,Iwz

denote moment of inertia of wheel about X, Y , and Z axis, respectively and Iwx = Iwz.

Mass moment of inertia of rotor (Iw
r ) at center of gravity based on ΣW :

Iw
r =


Irxc2φv + Irys2φv (Irx − Iry)sφvcφv 0

(Irx − Iry)sφvcφv Irxs2φv + Iryc2φv 0

0 0 Irz

 (2.14)

here, Irx,Iry,Irz denote moment of inertia of rotor about X, Y , and Z axis.

2.3.2.3 Equation of Motion Based on World Coordinate Frame

As above sentences, we know the position, velocity, mass moment of inertia of each part

relative to world coordinate frame. Then, equation of motion can be derived by Lagrangian

equation as follows;

L = T − U (2.15)
d
dt
∂L
∂q̇
−
∂L
∂q

=
∂W
∂q

τ (2.16)



Dynamics 17

where, L denotes Lagrangian equation. T and U denote kinetic and potential energies of system.

q =
[
x y φv θb θwr θwl

]T
and inertia matrix (Mbw) is defined as Mbw =


mbw 0 0

0 mbw 0

0 0 mbw

 ∈
R3×3 , mbw denotes mass of body and wheels.

Kinetic Energy : It consists of four parts that kinetic energy of translation for wheel and body

and kinetic energy of rotation for for wheel and body . Kinetic energy of wheels considering at

the middle of both wheels is given by

Kwt =
1
2

ṗwT
v Mbw ṗw

v

=
1
2

mbw(ẋ2
v + ẏ2

v (2.17)

Kinetic energy of body for translation motion is derived as

Kpt =
1
2

vwT
c Mbwvw

c

=
1
2

mbw(ẋ2
v + ẏ2

v + z2θ̇2
b + z2s2θbφ̇

2
v) + mbwzcθbθ̇b(ẋvcφv + ẏvsφv)

+mbwzsθbφ̇v(−ẋvsφv + ẏvcφv) (2.18)

Kinetic energy of body for rotation motion is derived as

Kpb =
1
2
ωwT

b Iw
cmω

w
b

=
1
2


−sφvθ̇b

cφvθ̇b

φ̇v


T 

Iw
11(φv, θb) Iw

12(φv, θb) Iw
13(φv, θb)

Iw
21(φv, θb) Iw

22(φv, θb) Iw
23(φv, θb)

Iw
31(φv, θb) Iw

32(φv, θb) Iw
33(φv, θb)



−sφvθ̇b

cφvθ̇b

φ̇v


=

1
2

Iyyθ̇
2
b +

1
2

(Ixxs2θb + Izzc2θb)φ̇2
v (2.19)
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where, Iw
cm denotes mass moment of inertia of body based on world coordinate frame. Kinetic

energy of right wheel (Kpwr) and left wheel (Kpwl) is derived as

Kpwr =
1
2
ωwT

whrIw
whω

w
whr

=
1
2


−sφv(θ̇wbr + θ̇b)

cφv(θ̇wbr + θ̇b)

φ̇v


T 

Iwxc2φv + Iwys2φv (Iwx − Iwy)sφvcφv 0

(Iwx − Iwy)sφvcφv Iwxs2φv + Iwyc2φv 0

0 0 Iwz



−sφv(θ̇wbr + θ̇b)

cφv(θ̇wbr + θ̇b)

φ̇v


=

1
2
{Iwys2φ2

v(θ̇wbr + θ̇b)2 + Iwyc2φ2
v(θ̇wbr + θ̇b)2 + Iwzφ̇

2
v} (2.20)

=
1
2
{Iwy(θ̇wbr + θ̇b)2 + Iwzφ̇

2
v} (2.21)

Kpwl =
1
2
{Iwy(θ̇wbl + θ̇b)2 + Iwzφ̇

2
v} (2.22)

(2.23)

Summary of kinetic energy is computed by

Kp = Kpt + Kpb + (Kpwr + Kpwl) + (Kprr + Kprl)

=
1
2

mbw(ẋ2
v + ẏ2

v + z2θ̇2
b + z2s2θbφ̇

2
v) + mbwzcθbθ̇b(ẋvcφv + ẏvsφv) + mbwzsθbφ̇v(−ẋvsφv + ẏvcφv)

+
1
2

Iyyθ̇
2
b +

1
2

(Ixxs2θb + Izzc2θb)φ̇2
v

+
1
2
{Iwy(θ̇wbr + θ̇b)2 + Iwzφ̇

2
v} +

1
2
{Iwy(θ̇wbl + θ̇b)2 + Iwzφ̇

2
v}

+
1
2
{Iry(nθ̇wbr + θ̇b)2 + Irzφ̇

2
v} +

1
2
{Iry(nθ̇wbl + θ̇b)2 + Irzφ̇

2
v}

=
1
2

mbw(ẋ2
v + ẏ2

v + z2θ̇2
b + z2s2θbφ̇

2
v) + mbwzcθbθ̇b(ẋvcφv + ẏvsφv) + mbwzsθbφ̇v(−ẋvsφv + ẏvcφv)

+
1
2

Iyyθ̇
2
b +

1
2

(Ixxs2θb + Izzc2θb)φ̇2
v

+
1
2

(Iwy + n2Iry)(θ̇2
wbr + θ̇2

wbl) + (Iwy + Iry)θ̇2
b + (Iwy + nIry)θ̇b(θ̇wbr + θ̇wbl) + (Iwz + Irz)φ̇2

v

=
1
2

mbw(ẋ2
v + ẏ2

v) +
1
2
{mbwz2 + Iyy + 2(Iwy + Iry)}θ̇2

b

+
1
2
{(mbwz2 + Ixx)s2θb + Izzc2θb + (Iwz + Irz)}φ̇2

v

+mbwzcθbθ̇b(ẋvcφv + ẏvsφv) + mbwzsθbφ̇v(−ẋvsφv + ẏvcφv)

+
1
2

(Iwy + n2Iry)(θ̇2
wbr + θ̇2

wbl) + (Iwy + nIry)θ̇b(θ̇wbr + θ̇wbl) (2.24)

Potential Energy : Potential of body at center of gravity is

Upb = mb(r + zcθb)g (2.25)
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Lagrangian equation : According to Eq. (2.24) and (2.25), Lagrangian equation is

Lp = Kp − Upb = Kpt + Kpb + (Kpwr + Kpwl) + (Kprr + Kprl) − Upb

=
1
2

mbw(ẋ2
v + ẏ2

v) +
1
2
{mbwz2 + Iyy + 2(Iwy + Iry)}θ̇2

b

+
1
2
{(mbwz2 + Ixx)s2θb + Izzc2θb + (Iwz + Irz)}φ̇2

v

+mbwzcθbθ̇b(ẋvcφv + ẏvsφv) + mbwzsθbφ̇v(−ẋvsφv + ẏvcφv)

+
1
2

(Iwy + n2Iry)(θ̇2
wbr + θ̇2

wbl) + (Iwy + nIry)θ̇b(θ̇wbr + θ̇wbl) − mb(r + zcθb)g (2.26)

From Eq.(2.67), equation of motion based on q variables can be expressed by

Mq̈ + V(q, q̇) + G(q) = Eτ (2.27)



mbw 0 m13 m14 0 0

0 mbw m23 m24 0 0

m31 m32 m33 0 0 0

m41 m42 0 m44 m45 m46

0 0 0 m54 m55 0

0 0 0 m64 0 m66





ẍ

ÿ

φ̈v

θ̈b

θ̈wbr

θ̈wbl


+



v1(q, q̇)

v2(q, q̇)

v3(q, q̇)

v4(q, q̇)

0

0


+



0

0

0

g4(q)

0

0


=



0 0

0 0

0 0

0 0

1 0

0 1



τwbr

τwbl

 (2.28)

where, m13 = m31 = −mbwzsθbsφv,

m14 = m41 = mbwzcθbcφv,

m23 = m32 = mbwzsθbcφv,

m24 = m42 = mbwzcθbsφv,

m33 = (mbwz2 + Ixx)s2θb + Izzc2θb + (Iwz + Irz),

m44 = mbwz2 + Iyy + 2(Iwy + Iry),

m45 = m46 = m54 = m64 = Iwy + nIry,

m55 = m66 = Iwy + n2Iry,

v1(q, q̇) = −mbwzsθbcφv(θ̇2
b + φ̇2

v) − 2mbwzcθbsφvθ̇bφ̇b,

v2(q, q̇) = −mbwzsθbsφv(θ̇2
b + φ̇2

v) + 2mbwzcθbcφvθ̇bφ̇b,

v3(q, q̇) = 2sθbcθb(mbwz2 + Ixx − Izz)θ̇bφ̇v,

v4(q, q̇) = −sθbcθb(mbwz2 + Ixx − Izz)φ̇2
v

g4(q) = −mbwgzsθb

To derive input matrix E, it considers that it is produced by the torque of right motor (τwbr) and

torque of left motor (τwbl). Therefore, work input (W) is function of τwbr, τwbl, θwbr and θwbl

then work input can be defined as

W = θwbrτwbr + θwblτwbl (2.29)
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Controlled torque can be shown as

Eτ =



0 0

0 0

0 0

0 0

∂W/∂θwbr 0

0 ∂W/∂θwbl



τwbr

τwbl

 (2.30)

where, E =

0 0 0 0 1 0

0 0 0 0 0 1


T

, τ =
[
τwbr τwbl

]T
.

2.3.2.4 Motion Constraints

In order to design the control system, the dynamic model should be improved to refer

vehicle coordinate frame(ΣV ), it is that ν =
[
ṡ φ̇v θ̇b

]T
, where, s and ṡ denote length of the

robot motion and straight velocity, respectively. φv and θb denote yaw and tilt angles. Lagrangian

multiplier (λ) is used to transform the generalized coordinate (q) to the controlled coordinate

(ν). Generally, the motion of a two-wheeled mobile robot on horizontal plan as shown in Fig.2.5

is assumed that the wheels does not slip. Thus, it has the motion constraints as same as the

constraints of the inverted pendulum robot. The velocity on generalized coordinate (q)can be

denoted as

ẋ = vcosφv (2.31)

ẏ = vsinφv (2.32)

φ̇ =
rw

2b
(θ̇wr − θ̇wl) (2.33)

Eq.(2.31)-(2.32) can be arranged to constraint equations as follows;

ẋsinφv − ẏcosφv = 0 (2.34)

ẋcosφv + ẏsinφv =
rw

2
(θ̇wr + θ̇wl) (2.35)

φ̇v =
rw

2b
(θ̇wr − θ̇wl) (2.36)

Here, Eq.(2.34) and Eq.(2.35) are non-holonomic constraints and Eq.(2.36) is holonomic constraint.v =

ṡ, rw denotes radius of wheels and b is a half of distance between both wheels.
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Figure 2.5: Two wheeled inverted pendulum robot on world coordinate frame (ΣW ) and vehicle
coordinate frame (ΣV ).

According to consider constraints in section 5.3, Eq.(2.34-2.36) can be represented as

follows;

ẋsinφv − ẏcosφv = 0 (2.37)

ẋcosφv + ẏsinφv =
rw

2
(θ̇wbr + θ̇wbl + 2θ̇bl) (2.38)

φ̇v =
rw

2b
(θ̇wbr − θ̇wbl) (2.39)

Then, the constraint matrix (A(q)) represents the constraints of a two-wheeled mobile robot.

Their equations are expressed as A(q)q̇ = 0 then A(q) is given as

A(q) =


sinφv −cosφv 0 0 0 0

cosφv sinφv b −rw −rw 0

cosφv sinφv −b −rw 0 −rw

 (2.40)
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Here, we define a matrix S (q), which is composed of linear independent vector in the null-space

of A(q) as

S (q) =



cosφv 0 0

sinφv 0 0

0 1 0

0 0 1
1
rw

b
rw

−1
1
rw

− b
rw
−1


(2.41)

S (q) included in the null-space of A(q) and q̈ always exists in the null-space of A(q) and the

relation of both coordinates can be satisfied as

A(q)S (q) = 0 (2.42)

q̇ = S (q)ν̇ (2.43)

q̈ = Ṡ (q)ν̇ + S (q)ν̈ (2.44)

2.3.2.5 Equation of Motion Based on Vehicle Coordinate Frame

To derive equation of motion based on vehicle coordinate frame (ΣV ), Eq.(2.28) is trans-

formed by Lagrangian unknown multiplier (λ)

Mq̈ + V(q, q̇) + G(q) + AT (q)λ = Eτ (2.45)

Consequently, Eq.(2.42) - Eq.(2.44) are substituted in Eq.(2.45), Eq.(2.45) is represented

by new coordinate that

S T (q)M(Ṡ (q)ν̇ + S (q)ν̈) + S T (q)V(q, q̇) + S T (q)G(q) + S T (q)AT (q)λ = S T (q)Eτ (2.46)

S T (q)M(Ṡ (q)ν̇ + S (q)ν̈) + S T (q)V(q, q̇) + S T (q)G(q) + (A(q)S (q))Tλ = S T (q)Eτ (2.47)

Therefore, (A(q)S (q))T equal zero and the factor of unknown multiplier is canceled, and then a

new equation of motion is given as follows;

M̄v̈ + H̄(ν)ν̇ + V̄(ν, ν̇) + Ḡ = Ēτ (2.48)
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Where, M̄ = S T (q)MS (q) =


m̄11 0 m̄13

0 m̄22 0

m̄31 0 m̄33

, H̄(ν) = S T (q)MṠ (q) =


0 0 0

mbwzsθbφ̇v 0 0

0 0 0

,

V̄(ν, ν̇) = S T (q)V(q, q̇) =


−mbwzsθb(θ̇2

b + φ̇2
v)

2sθbcθb(mbwz2 + Ixx − Izz)θ̇bφ̇v

−sθbcθb(mbwz2 + Ixx − Izz)φ̇2
v

, Ḡ = S T (q)G(q) =


0

0

−mbwgzsθb

,

Ē = S T (q)E =


1
rw

1
rw

b
rw
− b

rw

−1 −1

, m̄13 = m̄31 = 2 (n−n2)Iry

r2
w

, m̄11 = mbw + 2 Iwy+n2Iry

r2
w

,

m̄22 = (mbwz2 + Ixx)s2θb + Izzc2θb + (Iwz + Irz) + 2( b
rw

)2(Iwy + n2Iry), m̄33 = mbwz2 + Iyy + 2((1 +

n2 − n)Iry − Iwy).

2.3.3 State Space Model

State space model is necessary model to derive controller gain using linear control theory

such as linear quadratic regulator, pole placement, and limited pole placement. In order to treat

state space model, Eq.(2.48) is linearized using Taylor’s series that Taylor’s series is

f (x) =

n∑
i=1

f n

n!
(x − x0) : f n =

dn f
dt

(2.49)

Then, linear model can be derived by Taylor’s series and it is obtained as

MLv̇ + GLν = Eτ (2.50)

ML =


ml,11 0 ml,13

0 ml,22 0

ml,31 0 ml,33

 (2.51)

GL =


0 0 0

0 0 0

0 0 −mbwgz

 (2.52)

E =


1
rw

1
rw

b
rw
− b

rw

−1 −1

 (2.53)

where, ml,11 = mbw + 2 Iwy+n2Iry

r2
w

, ml,22 = Izz + (Iwz + Irz) + 2( b
rw

)2(Iwy + n2Iry), ml,13 = ml,31 =

2 (n−n2)Iry

r2
w

, and ml,33 = mbwz2 + Iyy + 2((1 + n2 − n)Iry − Iwy).
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Therefore, state space model is

ẋss = Assxss + Bssτ (2.54)

Ass =

 03×3 I3×3

−M−1
L GL 03×3

 (2.55)

B =

 03×2

M−1
L E

 (2.56)

xss =
[
s φv θb ṡ φ̇v θ̇b

]T
(2.57)

where, s and ṡ denote length of the robot motion and straight velocity, respectively. φv and θb

denote yaw and tilt angles.

2.4 Omni-directional Robot

This section introduces properties of omni-directional robot such as hardware construction,

physical parameter, equation of motion, state space model. It is basis necessary information to

design control system based on modern control system.

2.4.1 Velocity Constraints and Jacobian Matrix

To consider robot motion on world coordinate frame (ΣW) in Fig.2.6, it consider by homo-

geneous transformation as follows:

0HB =


cφ −sφ 0 x

sφ cφ 0 y

0 0 1 0

0 0 0 1


(2.58)

 Rw
v Pw

v

01×3 1

 (2.59)

Translation velocity based on ΣW is given that

vw
v

[
ẋ ẏ φ̇

]T
(2.60)
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Figure 2.6: The motion of omni-directional robot in horizontal space.

where, v1,v2,v3,v4 denote translation velocities of wheels no. 1, 2, 3, 4, respectively.

Angular velocity is derive by V operation as

ωw
v = (Ṙw

v Rw
v )V (2.61)

=
[
0 0 φ̇

]T
(2.62)

From velocity in Fig.2.6, the relationship of velocity between ΣW and ΣV is in domain of

wheel velocities that 
ẋ

ẏ

φ̇

 =


− 1

2 sφ −1
2 cφ 1

2 sφ 1
2 cφ

1
2 cφ −1

2 sφ − 1
2 cφ 1

2 sφ
rw
2b

rw
2b

rw
2b

rw
2b



θ̇1

θ̇2

θ̇3

θ̇4


(2.63)

Following Jacobian matrix (J) definition in [2], it can be derived from Eq.(2.63) that

v = Jω (2.64)

τ = JT F (2.65)

J =


−

rw
2 sφ −

rw
2 cφ rw

2 sφ rw
2 cφ

rw
2 cφ −

rw
2 sφ −

rw
2 cφ rw

2 sφ
rw
2b

rw
2b

rw
2b

rw
2b

 (2.66)
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2.4.2 Equation of Motion

As velocity in Eq.(2.60) and (2.62), Lagrangian equation is derived based on ΣW . The state

variable q is defined as [x, y, φ, θ1, θ2, θ3, θ4]T as follows:

L = T − V (2.67)

T =
1
2

0
VT

B M0
BVB +

1
2

0
ωT

BI0
BωB (2.68)

+
1
2

0
ωT

w1I0
w1ωw1 +

1
2

0
ωT

w2I0
w2ωw2

+
1
2

0
ωT

w3I0
w3ωw3 +

1
2

0
ωT

w4I0
w4ωw4

V = mbgz (2.69)

where, 0VB = [ẋ, ẏ, 0]T , MB =


mb 0 0

0 mb 0

0 0 mb

, IB =


Ibx 0 0

0 Iby 0

0 0 Ibz

, Iw1 = Iw3 =


Iw 0 0

0 Iws 0

0 0 Iws

,

Iw2 = Iw4 =


Iws 0 0

0 Iw 0

0 0 Iws

. Ibx,Iby,Ibz denote mass moment of inertia of robot about X, Y , and

Z axis, respectively.

2.4.2.1 Equation of Motion Based on World Coordinate Frame

As Lagrangian equation of motion in Eq.(2.69), equation of motion based on world coordinate

frame is obtained as

MI q̈ + V(q, q̇) + H(q)q̇ + G(q) = Eτ (2.70)

where, MI =



mb 0 0 0 0 0 0

0 mb 0 0 0 0 0

0 0 I33 0 0 0 0

0 0 0 I44 0 0 0

0 0 0 0 I55 0 0

0 0 0 0 0 I66 0

0 0 0 0 0 0 I77


, V(q, q̇) =



0

0

0

(Iw − Iws)sφcφφ̇θ̇1

−(Iw − Iws)sφcφφ̇θ̇2

(Iw − Iws)sφcφφ̇θ̇3

−(Iw − Iws)sφcφφ̇θ̇4


, H(q)q̇ = 0,

G(q) = 0, I33 = Ibz + 4Iws, I44 = I66 = Iws2φ + Iwsc2φ. I55 = I77 = Iwc2φ + Iwss2φ. Considering

the input torque (τ) is τ = [τ1, τ2, τ3, τ4]T , work of omni-directional robot system is expressed
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that

W = τ1θ1 + τ2θ2 + τ3θ3 + τ4θ4 (2.71)

Then, the input matrix (E) for omni-directional robot is given

E =



0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(2.72)

2.4.2.2 Equation of Motion Based on Vehicle Coordinate Frame

To transform reference coordinate frame, the constraint matrix A(q) and S (q) are computed

as follow;

A(q) =


−1 0 0 −

rwsφ
2 −

rwcφ
2

rwsφ
2

rwcφ
2

0 −1 0 rwcφ
2 −

rwsφ
2 −

rwcφ
2

rwsφ
2

0 0 −1 rw
2b

rw
2b

rw
2b

rw
2b


and

S (q) =



1 0 0

0 1 0

0 0 1

−
sφ
rw

cφ
rw

b
2rw

−
cφ
rw
−

sφ
rw

b
2rw

sφ
rw

−
cφ
rw

b
2rw

cφ
rw

sφ
rw

b
2rw


Therefore, the equation of motion is derived by Lagrangian equation based on ΣV , state

variable of which is
[
x y φ

]T
and input is torque of four wheels (τ) as

[
τ1 τ2 τ3 τ4

]T
.

Then, it is given as

M̄ν̈ + V̄(ν, ν̇) = Ēτ (2.73)
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M̄ =


Mt + 2

r2
w

Iw 0 0

0 Mt + 2
r2

w
Iw 0

0 0 Iφ + b2

r2
w

Iw

 (2.74)

V̄(ν, ν̇) =


0 2

r2
w

Iwφ̇ẏ 0

− 2
r2

w
Iwφ̇ẋ 0 0

0 0 0

 (2.75)

Ē =


− 1

rw
sφ − 1

rw
cφ 1

rw
sφ 1

rw
cφ

1
rw

cφ − 1
rw

sφ − 1
rw

cφ 1
rw

sφ
b

2rw

b
2rw

b
2rw

b
2rw

 (2.76)

where, Mt denotes total mass of body and wheel. Iφ is mass moment of inertial of the robot

about vertical axis. b is the distance between the wheels. rw denotes radius of wheel. The value

of physical parameters are presented in Table.2.2.

2.4.3 State Space Model

From Eq.(2.73), the equation is linearized by Taylor’s series that

M̄ν̈ = Ēτ (2.77)

and it is transformed to state space model as

ẋss = Assxss + Bssτ (2.78)

Ass =

03×3 I3×3

03×3 03×3

 (2.79)

B =

 03×2

M̄−1E

 (2.80)

xss =
[
x y φv ẋ ẏ φ̇v

]T
(2.81)



Chapter 3

System Identification for Inaccuracy
Measurement

3.1 Introduction

System identification is well-known as the methodology for estimating the unknown sys-

tem. To estimate the unknown, the input and output are measured, and the accuracy of mea-

surement is an important factor to identification result. Therefore, this chapter introduces a

method to identify the system with inaccuracy measurement and the identified system is the

two wheeled inverted pendulum robot system, which is presented in Fig.2.1. The sensor in the

robot is inaccuracy and noisy. The method consists of three parts that structure model, prob-

lem model, and prediction algorithms. The structure model is designed corresponding to actual

system. Autoregressive exogenous (ARX) and autoregressive moving-average model with ex-

ogenous(ARMAX), and output error model (OE) models are suitable to the robot system, which

are presented in [1, 3–6, 9, 51]. The most popular model for ARX model.

By the way, This chapter introduces principle knowledge about system identification, autore-

gressive moving average with exogenous and sensor disturbance (ARMAXD), prediction method-

ology and simulation. Principle knowledge about system identification consists of predicted

model, model structure, and parameter estimation method. The simulation is comparison of

original ARX model and the system identification with inaccuracy sensor measurement. It ex-

hibits the accuracy of them for the inaccuracy sensor measurement system. Therefore, it is

organized as follow;

29
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3.2 Principle Knowledge about System Identification

3.2.1 Predicted Model

System is usually expressed by linear difference equation :

y(t) + a1y(t − 1)+. . .+any(t − n) = b1u(t − 1)+. . .+bmu(t − m) (3.1)

To represent the system in discrete time, primarily since observed data are always collected

by sampling. In Eq.(3.1), we assume sampling interval to be one unit. This is not essential, but

it makes notation easier. Then, Eq.(3.1) can be called as discrete system and the output is given

y(t) = −a1y(t − 1)+. . .+any(t − n) + b1u(t − 1)+. . .+bmu(t − m) (3.2)

It can be simplified as

y(k) = ΦT (t)Θ (3.3)

where,

Φ(t) =
[
−y(t − 1) . . . −y(t − n) u(t − 1) . . . u(t − m)

]T
(3.4)

Θ =
[
a1 . . . a2 b1 . . . bm

]
(3.5)

If we express system by transfer function, we introduce forward shift operator q by

qu(t) = u(t + 1) (3.6)

and backward shift operator by

q−1u(t) = u(t − 1) (3.7)

Then, transfer function of Eq.(3.1) can be derived as follow:

A(q)y(t) = B(q)u(t) (3.8)

G(q) =
y(t)
u(t)

=
B(q)
A(q)

(3.9)
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Figure 3.1: Original system

3.2.2 Characterization of Disturbance

Disturbance appears in most of system and it disturb the motion of mechanical system.

The system with disturbance is shown in Fig.3.2. The value is not known beforehand. Thus, the

characteristic is given

v(t) = H(q)e(t) (3.10)

and output is derived as

y(t) = G(q)u(t) + H(q)e(t) (3.11)

where,v(t) denotes disturbance of system. e(t) denotes white noise, which means a independent

random signal.

Figure 3.2: System with disturbance

3.2.3 Model Structure

This section introduces some principle model structures such as autoregressive exogenous

(ARX) and autoregressive moving-average model with exogenous(ARMAX).
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3.2.3.1 Autoregressive with exogenous inputs model

Autoregressive with exogenous inputs model (ARX model) in Fig.3.3 is the simplest input-

output relationship model, where AR refers to the autoregressive part A(q)y(k) and X to extra

input B(q)u(t), which are obtained by describing as linear difference equation:

A(q)y(t) = B(q)u(t) + e(t) (3.12)

Figure 3.3: Autoregressive with exogenous inputs model (ARX model)

3.2.3.2 Autoregressive moving average with exogenous inputs model

Autoregressive moving average with exogenous inputs model (ARMAX model) in Fig.3.4

is obtained by a minor modification of ARX model, which is added flexibility to that by describ-

ing the equation error (e(k)) as moving average (MA) then it is given

A(q)y(t) = B(q)u(t) + C(q)e(t) (3.13)

To compute the white noise, Ljung [1] introduces the white noise (e(t)) in ARMAX model

is that

e(t) = C−1(q)[B(q)u(t) − A(q)y(t)] (3.14)

However, e(t) can be derive by Eq.(3.14) in theoretical but e(t) may not be derived for online

prediction method because C(q) may be singularity in sometimes.
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Figure 3.4: Block diagram of autoregressive moving average with exogenous inputs model
(ARMAX model).

Figure 3.5: Block diagram autoregressive moving average with exogenous and sensor distur-
bance model (ARMAXD model).

3.2.3.3 Autoregressive moving average with exogenous and sensor disturbance model

Considering the robot system in Fig.3.8b, the white noise in the system is not only single

white noise so that the existence models may not suitable to precise it. By the way, autoregres-

sive moving average with exogenous and sensor disturbance model (ARMAXD) is designed

based on two conventional models such as ARX and ARMAX models. The block diagram of

ARMAXD is presented in Fig.3.5. e(t) denotes white noise and d(t) denotes sensor’s uncertainty.

By the way, if I considers the white noises as the uncertainties of hardware, it will effects

the prediction accuracy. Then, the white noises are assumed that their frequencies are equal

with the sampling rate and the amplitudes are bounded corresponding to hardware specification.

Thus, this study evaluates new method to compute d(t) that the system equation is clarified in
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Eq.(3.1). It is represented with white noise as

y(t) = −a1y(t − 1)+. . .+any(t − n) + b1u(t − 1)+. . .+bmu(t − m)

+C1e(t − k)+. . .+Cme(t − k) (3.15)

y(t) = A(q)y(t − 1) + B(q)u(t) + C(q)e(t) (3.16)

Then, the sensor noise (d(t)) is

d(t) = C−1(q)[y(t) − A(q)y(t) − B(q)u(t) + e(t)] (3.17)

Considering the prediction in realtime. A(q) and B(q)are estimated. Eq.(3.17) can be revised as

d(t) = C−1(q)[y(t) − ŷ(t)] (3.18)

ŷ(t) = Â(q)y(t) + B̂(q)u(t) + e(t) (3.19)

where, ŷ(t) denotes estimate output at t. Â(q) and B̂(q) denote estimate of A(q) and B(q), respec-

tively. As the characteristic of the sensor noise, C(q) can be fixed as frequency filter. The cut-off

frequency depends on frequency of sampled data and maximum of sensor uncertainty.

3.2.4 Parameter Estimation Methods

This section introduces the estimation method, which focuses on weight least-mean square

method. According to Eq.(3.3), we know definition of Φ(t), Θ(t), and Y(t). Then, we define

prediction model that

Ŷ(t | Θ) = ΦT (t)Θ(t − 1) (3.20)

3.2.4.1 Weight Least-mean Square Methods

Weight least-mean square method is a identification method considering weight function.

The error function is represented with forgetting factor (λ) that

V(N, Θ̂) =

N∑
k=1

λN−1ε(k) (3.21)

ε(k) = Y(k) − Ŷ(k | Θ̂) (3.22)
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Figure 3.6: Block diagram of weight least-mean square.

Then, it is solved as same as the previous section. P(N) and (Θ(N)) are shown as follows;

P(N) =

[ N∑
t=1

λN−1Φ(k)Φ(k)T
]−1

(3.23)

=

[
P(N − 1) + λΦ(N)Φ(N)T

]−1

(3.24)

=
1
λ

[
P(N − 1) −

P(N − 1)Φ(N)ΦT (N)P(N − 1)
λ + ΦT (N)P(N − 1)Φ(N)

]
(3.25)

Θ̂(t) = Θ(N − 1) +
P(N − 1)Φ(N)

λ + ΦT (N)P(N − 1)Φ(N)
(3.26)

3.2.4.2 Weight Least-mean Square Methods for Sensor Noise

This sections introduces weight least-mean square for ARMAXD model, which is modi-

fication of general WLS in Fig.3.6. It is added the separator in order to extract high and low

frequencies of the error between the actual output and the estimate output following Eq.(3.18).

It is presented in Fig.3.7. The cut-off frequency is defined slightly less than the frequency of

sampled data. The high frequency denotes the sensor uncertainty and the low frequency denotes

the error (ε(t)).



System Identification for Inaccuracy Measurement 36

Figure 3.7: Block diagram of weight least-mean square for ARMAXD model.

(a) Actual electronic system of two wheeled inverted pendulum robot.

(b) Block diagram of wheeled inverted pendulum robot considering white actuator noise (e1(t)) and white
measurement noise (e2(t)).

Figure 3.8: Two wheeled inverted pendulum system.
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3.3 Robot Model

From Fig.3.8b, it consists of both white noises such as actuator and sensor measurement

noises, The actual model can be expressed by

u(t) = M(q)d(t) + e1(t) (3.27)

A(q)y(t) = B(q)u(t) + C(q)e2(t) (3.28)

A(q)y(t) = B(q)
(
M(q)d(t) + e1(t)

)
+ C(q)e2(t) (3.29)

A(q)y(t) = B(q)M(q)d(t) + B(q)e1(t) + C(q)e2(t) (3.30)

where, d(t) denotes the digital signal to control motor torque. w(t) is undisturbed motor torque

and u(t) is actual torque, which is input of robot system. e1(t) denotes white actuator noise and

e2(t) is white sensor measurement noise.

If we assume that both white noises are random independent signal and the white actuator

noise also effects to output. Then, white actuator noise can be combined with white output noise.

A(q)y(t) = B(q)M(q)d(t) + N(q)e(t) (3.31)

It becomes similar with ARMAX model. Thus, ARMAX model suitable with actual system

more than ARX model. White noise (e(t)) can not be measured. Therefore, Baillie [51] explains

how to compute e(t) for ARMAX that it is function in domain of regressive vector (Φ(t)) and

output error (ε(t)).

In this study, we consider the noise that is high frequency noise and the value are bounded

as same as uncertainty of measurement. Therefore, the error model can be given that

e(t) = H(q)ε(t) (3.32)

where, H(q) denotes high pass filter and ε(t) is error between estimate plant and actual output.

The passed frequency is over than 200-1000 Hz., which equals the sampling interval of control

system.

3.3.1 System Model

Considering linear model of wheeled inverted pendulum robot, system model is given in

difference equation that

Ẍ1 = A1X1 + B1(τc1 − τ f 1) (3.33)
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where, X1 =
[
s φv θb

]T
, A1 =


0 0 −a13

0 0 0

0 0 −a33

, B1 =


1
rw

1
rw

b
rw

b
rw

−1 −1


Fiction torque (τ f ) is defined that it consists of viscous friction and coulomb friction. Then,

τ f is derived that

τ f 1 =
[
τ f wr τ f wl

]T
(3.34)

τ f 1 = Ccusgn(θ̇wb) + Cvθ̇wb (3.35)

θ̇wb =
[
θ̇wbr θ̇wbl

]T
(3.36)

Ccu =

ccu 0

0 ccu

 (3.37)

Cv =

cv 0

0 cv

 (3.38)

where, τwbr and τwbl denote friction at right and left wheels. θ̇wbr and θ̇wbl denote angular velocity

of right and left wheels, respectively. Ccu denote coulomb friction matrix and Cv denote viscous

friction matrix.

Eq.(3.35) is substituted in Eq.(3.33), system model can be rearranged

Ẍ1 = Ā1X̄1 + B̄1τc (3.39)

where, X̄1 =
[
θb sgn(θ̇wb) θ̇wb

]T
, Ā1 =

[
A −B1Ccu −B1Cv

]
, B̄1 = B1

3.4 Simulation

To present the accuracy of system identification, the simulation deals the identification

results of ARX and ARMAXD models on the inverted pendulum robot system. Generally, the

regressive vector is defined as input and state variable but some components in the state variable

are not appears in the state matrix so that we can neglect some components.

3.4.1 Preliminary

Defining the robot system with sensor noise (d(t)), it is identified while it is balancing.

Then, servo control system is designed as shown in Fig.3.9. The plant denotes two dimensional

system of the inverted pendulum robot, which is derived by the physical parameters in Table.2.1

and 3D linear model in Eq.(2.54)-(2.57). The noise is defined as sinusoid disturbance with

high frequency, which consist of the noise of distance (s) and the noise of tilt angle (θb). The
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Figure 3.9: Servo control to balance the inverted pendulum robot.

frequencies are defined at 800 Hz. The amplitude is 0.001 m. and 0.05 rad., respectively. For

ARMAXD model, the cut-off frequency is defined as 740 Hz., The 3D linear model of the

inverted pendulum robot is represented that

ẋss = Assxss + Bssτ (3.40)

Ass =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 1.21 0 0 0

0 0 0 0 0 0

0 0 −9.87 0 0 0


(3.41)

Bss =



0 0

0 0

0 0

−1.73 −1.73

101.46 −101.46

35.39 35.39


(3.42)

xss =
[
s φv θb ṡ φ̇v θ̇b

]T
(3.43)
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The 2D linear model of the inverted pendulum robot can be presented that

ẋ2 = A2x2 + B2τ (3.44)

A2 =


0 0 1 0

0 0 0 1

0 1.21 0 0

0 −9.87 0 0


(3.45)

B2 =


0 0

0 0

−1.73 −1.73

35.39 35.39


(3.46)

x2 =
[
s θb ṡ θ̇b

]T
(3.47)

To identify the linear system, identification model is designed relative to Eq. (3.40) that

ẋ2d = A2d x2d + B2dτ (3.48)

A2d =

0 1.21

0 −9.87

 (3.49)

B2d =

−1.73 −1.73

35.39 35.39

 (3.50)

x2d =
[
s θb

]T
(3.51)

Hence, x2d is designed corresponding to real output of the practical system, components of

which are directly measured by rotary encoders and IMU sensor, respectively.
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3.4.2 Controller Design

The feedback gain (F) and servo gain (Ki) are designed based on extended linear model of

Eq.(3.40), which is

ẋs = Asxs + Bsτ + Nr (3.52)

As =

 A2 0

−C 0

 (3.53)

Bs =

 B2

01×2

 (3.54)

xs =
[
s θb ṡ θ̇b ω

]T
(3.55)

N =

04×1

1

 (3.56)

C =
[
1 0 0 0 0

]
(3.57)

ω = r −Cxs (3.58)

where, r denotes position reference, which is half pulse width signal. Then, (As) and input

matrix (R) can be derived by the physical parameters in Table. I. The weight matrix Q and R are

given as

Q = diag
[
2x105 8x102 1x102 6x103 4x103

]
(3.59)

R = diag
[
4x104 4x104

]
(3.60)

Thus, feedback gain (F) and servo gain (Ki) are derived as

F =

6.7056 2.1560 6.0055 0.6502

6.7056 2.1560 6.0055 0.6502

 (3.61)

Ki =

3.5355

3.5355

 (3.62)

3.4.3 Regressive Vector Optimization

To define the regressive vector, it is generally recognized as input and state variable in

Eq.(3.48). Then, the regressive vector of ARX model is defined such input (u(t)) and state
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variable (
[
s(t) θb(t)

]T
). Thus, the problem model is defined that

Φ1(t) =
[
s(t) θb(t) u(t)

]T
(3.63)

Y(t) =
[
s̈(t) θ̈b(t)

]
(3.64)

Θ1(t) =
[
A2 B2

]T
(3.65)

By the way, the regressive vector of ARMAXD model is defined such input (u(t)), state variable

(
[
s(t) θb(t)

]T
), and sensor disturbance (d(t)). Thus, the problem model is defined that

Φ2(t) =
[
s(t) θb(t) u(t)

]T
(3.66)

Y(t) =
[
s̈(t) θ̈b(t)

]
(3.67)

Θ2(t) =
[
A2 B2 C2

]
(3.68)

where, C2 denotes coefficient of disturbance.

3.4.4 Satisfaction

To satisfy the estimation parameter, the robot is performed and the position, the tilt angle, the

input torque are collected and they are input to the prediction algorithm of ARX and ARMAXD

models. The data is presented in Fig.3.10 and the estimate parameters are presented in Fig.3.11.

Fig.3.11 presents that the estimate parameters are converge to constant values. It means the

results is satisfaction result and the error of the results will be described in next section.

3.4.5 Results

As above sentences, the full state and the optimized regressive vectors are defined, and the

components in A2d and B2d are predicted by ARX and ARMAXD models. The parameter in

Fig.3.11 are presented as follows;

For Â2d and B̂2d on ARX model :

Â2 =

0.0173 1.166

1.262 −12.71

 (3.69)

B̂2 =

−1.672 −1.672

37.71 37.71

 (3.70)
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Figure 3.10: Data for system identification.

For Â2d and B̂2d on ARMAXD model :

Â2 =

0.0172 1.169

1.255 −12.48

 (3.71)

B̂2 =

−1.697 −1.697

36.08 36.08

 (3.72)

Ĉ2 =

 0.0005 0.0001

0.03796 0.008292

 (3.73)

To indicate the accuracy of the predictions, the accuracy is indicated by the percentage of error

between
[
Â2d B̂2

]
and

[
A2d B2

]
. The actual result in Eq.(3.49)-(3.50). The accuracy is com-

puted by

Eer =
1
n

k=n∑
k=0

∣∣∣∣Pest−Pact
Pact

× 100
∣∣∣∣ (3.74)
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Figure 3.11: Satisfaction for estimate parameter by ARX and ARMAXD models.

where, Pest and Pact denote the estimate parameters and actual parameters of matrices A2d and

B2d. n denotes the number of components in matrices A2d and B2d. If the component is zero, the

denominator is one. Therefore, the error (Eer) of ARX and ARMAXD models are

Eer,ARX = 31.02 (3.75)

Eer,ARMAXD = 26.5 (3.76)

From the percentage of the errors, the identification result of ARMAXD model is greater than

ARX model. Although, the errors are remained but the result shows the evaluation to precise
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the identification.



Chapter 4

Friction Compensation

4.1 Introduction

Friction exists in almost mechanical systems and it disturbs the motion of mechanism so

that it is a important factor to indicate the mechanical efficiency. As literature reviews[3–9], they

focus on two topics with respect to identification accuracy [4, 7] and some applications such as

friction compensation [5, 6, 8] and parameter tuning effects [9]. For friction compensation, it

consists of two functions that friction estimation and compensation functions. Friction estima-

tion methods have described in [3–6, 8, 9], the estimation based on system identification seems

the best method to identify the friction in the actual system in practice because it not estimates

only the friction but also the other parameters. Many developers usually select ARX model to

identify the system in practice [4, 9], which is simplest model but the accuracy may not pre-

cise because it does not consider the white measurement noise so that it directly effects to the

performance of friction compensation.

Considering wheeled inverted pendulum robot system in Fig.3.8a, we suppose that the

robot system consists of several components such as software in 32-bit controller, digital-analog

converter, motor driver, motor, rotary encoder, and IMU sensor. Each component remains some

uncertainty such resolution and electronic disturbance. Then, the system should be written as

shown in Fig.3.8b. It contains the uncertainties of actuator driving system and sensor measure-

ment.

Therefore, this chapter develops friction compensation to treat the uncertainties of actuator

and sensor measurement. It respects to a new model structure as shown in Fig.3.8a for wheeled

inverted pendulum robot. Moreover, the adaptive friction compensation is approached by Lya-

punov stability, which is used to satisfy the identification result in real time and the friction

coefficients are adapted during stability period.

46
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4.2 Friction Compensation by Constant Friction Coefficients

The aim of our study is to develop a friction compensation technique for two-wheeled in-

verted pendulum robot. The technique is based on on-line system identification method using

ARX and actual models. The actual model seems similar with ARMAX model but it is con-

cerned the uncertainties of hardware, and then definition of error is given as high frequency

noise corresponding to the uncertainties. Therefore, it applied to identify friction coefficients

of two-wheeled inverted pendulum robot, and then it is used to estimate the friction in real

time. The new model is designed based on ARMAX model, which is called autoregressive

moving average with exogenous and sensor disturbance model (ARMAXD). For the compensa-

tion methodology, it is separated to two steps. First step is the friction coefficient identification.

The coefficients are derived by the estimate parameters using ARX and a new ARMAX models

then the results are satisfied by considering the convergence of the estimate parameters in time

domain. Second step is the friction estimation and compensation that the friction is predicted

by the estimate friction coefficients in previous step. After that it is added with the input torque

in order to compensate the actual friction. The experiment result shows the effectiveness of the

presented method based on the on-line system identification for the both models. The impulse

response of general feedback control, feedback control with friction compensation using the

friction estimate of ARX and ARMAXD models are indexed. As result, the response of the esti-

mate friction of a ARMAXD model is smoothly than ARX model and general feedback control.

It exhibits that the friction compensation can treat the friction in the system successfully and

ARMAXD model is suitable to estimate the friction better than ARX model.

4.2.1 Prediction Model

In this experiment, the system parameters are in identified by weight least mean square

method (WLS method), which is a popular approach to deal with time-varying systems. We

give a prediction model as

Y(n) = ΦT (n)Θ̂(n − 1) (4.1)

where, Y(n) denotes sampled output data at step n. Φ(n) denotes regressive vector, which is

variable parameters. Θ̂(n) denotes estimate system parameters.
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Table 4.1: Regression vector and unknown matrix

Model structure Regressive vector Unknown parameter matrix
(ϕ) (Θ)

ARX [x̄[k − 1], u(k)]T
[
Ā B̄

]T

ARMAXD [x̄[k − 1], u(k), e(k)]T
[
Ā B̄ C

]T

To design prediction model for ARX model, Eq.(3.39) can be simplified in domain of

regressive vector and unknown parameter matrix that

Y(n) = Ẍ1 (4.2)

Φ(n) =

X̄1

τc

 (4.3)

Θ̂(n − 1) =
[

ˆ̄A1 B̄1

]T
(4.4)

On the other hands, prediction model for original ARMAX model is given

Y(n) = Ẍ1 (4.5)

Φ(n) =


X̄1

τc

e(t)

 (4.6)

Θ̂(n − 1) =
[

ˆ̄A1 B̄1 C
]T

(4.7)

where, e(t) is high frequency white noise, which contrasts with the definition in [51] and it is

given in Eq.(3.32).

According to previous chapter, ARX and ARMAXD models are described, and then Y,Φ,Θ in

Eq.(4.2)-(4.7) are given as shown in Table.4.1.

4.2.2 Friction Compensation

This section introduces the feedback control with the friction compensation as shown in

Fig.4.1. It illustrates the feedback control with friction compensation. It consists of friction esti-

mation and feedback gain. The friction estimation and compensation describes the methodology

to predict the friction estimate (τ̂ f ). The controller design describes the method and parameters

to design feedback gain (F). The friction estimation part is in the dashed line rectangular. It

converted the data from the output of plant to angular velocity of wheels and it is used to com-

pute the friction estimate (τ̂ f ) corresponding to Eq.(3.35). Then, the friction estimate is added

to with the control torque (τc) in order to cancel the real friction (τ f ).
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Figure 4.1: Block diagram of friction compensation with feedback control system.

4.2.2.1 Friction Coefficient Estimation

This experiment uses weight least-mean square method to estimate friction coefficients by

sampled data in Fig.4.2. To estimate the coefficients, they are estimate by ARX and ARMAXD

models, and then the estimate coefficients are used to compute the friction in real time relative

to Eq.(3.34).

By the way, if ˆ̄B1 is non singular matrix and Ā1 in Eq.(3.39) is identified, friction coefficient

matrix can be extracted from the matrix B̄1Ccu and B̄1Cv by

Ĉcu = ˆ̄B−1
1 ( ˆ̄B1Ĉcu) (4.8)

Ĉv = ˆ̄B−1
1 ( ˆ̄B1Ĉv) (4.9)

4.2.2.2 Satisfaction

To satisfy the identification results, we consider on two points that convergence of iden-

tification result and non singularity of matrix ˆ̄B1. The convergence of the estimate unknown

parameter as shown in Fig.4.3. The upper graph shows the estimate parameters by ARX model

and the lower graph show the estimate parameters by ARMAXD model. The parameters are

converted to some values. It means that the friction coefficients are also satisfaction if they are

derived from these estimate parameters. The result of friction coefficient estimation is shown in

Table.4.2
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Figure 4.2: Position, tilt angle, yaw angle, and input torque data for friction coefficient estima-
tion.

Table 4.2: System identification using ARX and ARMAXD models

ARX model
Parameters Value

Coulomb friction coefficient (ccu) 0.0067
Viscous friction coefficient (cv) 0.0187

ARMAXD model
Parameters Value

Coulomb friction coefficient (ccu) 0.0061
Viscous friction coefficient (cv) 0.0106

4.2.2.3 Controller Design

The feedback gain (F) is designed based on linear model in Eq.(3.33) and the friction (τ f )

is given as zero. It is used to derived the control torque (τc) in order to stabilize the robot. To

define the feedback gain, linear quadratic regulator (LQR) method is used to design the feedback

gain based on the dynamic model, which are derived by Eq.(3.33) and the parameters in Table.

I. Hence, state matrix (A) and input matrix (R) can be derived by the physical parameters in
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Figure 4.3: The identification results of the estimate unknown parameters by ARX and AR-
MAXD models.

Table. I. The weight matrix Q and R are given as

Q = diag
[
2x105 5x103 102 104 103 8x104

]
(4.10)

Thus, feedback gain (F) is derived as

F =

−0.3 0.05 −1.0 −0.49 0.03 −0.2

−0.3 −0.05 −1.0 −0.49 −0.03 −0.2

 (4.11)

4.3 Experiment Result

This section introduces the results of feedback controller with friction compensation and

the assumption is given that the inverted pendulum robot is stabilizing then the disturbance is

given at both wheels as impulse disturbance. The inverted pendulum robot has the response

as follows: Fig.4.4 illustrates the input torque of right and left wheels in experiments, which

consists of input torque of general feedback control, feedback control with the friction compen-

sation using the friction estimate of ARX and ARMAXD models. The disturbances of three

experiments are nearby and appear during 1.2-1.6 sec. Fig.4.5 presents the position errors and

the tilt errors of the inverted pendulum robot. The solid line and first dash line show the position

error of the robot for the friction compensation function, the friction coefficients of which are

estimated by ARX and ARMAXD models, respectively. Another line exhibits the position error
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of the robot for general feedback control. It expresses the ability of controller that the friction

compensation is greater than general feedback control. The results of the friction compensation

are greater than the result of general feedback control, however the position error remains a little

for the compensation by the estimate friction of ARMAXD model.

Figure 4.4: Input torque of the inverted pendulum robot for general feedback control, feedback
control with friction compensation by the friction estimate using ARX and ARMAXD models.
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Figure 4.5: Position and tilt angle of the friction compensation to show impulse response of
both friction models.



Chapter 5

Localization

5.1 Introduction

According to literature reviews, Kinect or camera is used as environment sensor and the

space may be presented in perspective view. The scale of pixel per actual distance is nonlinearity.

To treat this problem, the specific techniques such as SLAM[44], motion detection using color

histogram[19], eight-points algorithm[42], and perspective projection method[40] are required

to derive robot position with perspective view. On the other hands, other papers [29, 30, 40, 42]

solves this problem by changing sensor location, which points to the area belong to vertical axis.

Then, the area is presented in top view and the scale is linearity so that robot position can locate

by simple method such threshold technique [29, 40, 42] and data fusion of environment and

internal sensors[30].

In our study, the space is covered by carpet then wheel slip always occur. The position is

computed by kinematic constraint[45], it can not provide the accuracy position because internal

sensors such as rotary encoders cannot detected by internal sensors. Thus, Localization is re-

quired to observe the position and orientation of robot in space. Kinect is mounted at space in

order to assist the robot in the space. Then, the space can be able to know the activity in space,

which is called intelligent space [41]. For intelligent space, it requires two kinds of sensor data

such camera and IR depth sensor. They are installed in Kinect. Camera is utilized to locate robot

position and orientation. IR depth sensor is utilized to scan robot, obstacle, and available space.

The combination of them exhibits 3D space information for motion planning. Thus, this section

is organized as intelligent space installation, and data process.

54
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Figure 5.1: Kinect installation and coordinate frames in Intelligent space.

5.2 Kinect Installation

Fig.5.1 illustrates Kinect installation, orientation, and coordinate frames. Kinect is mounted

on top and it points to space. Kinect specification is presented in Table.5.1 and color image

presents the area in 3D view as perspective view and it is shown in Fig.5.4a. Coordinate frames

are defined in Fig.5.1 as global coordinate frame (ΣG), global coordinate frame at Kinect (ΣG1),

sensor coordinate frame (ΣS ), sensor coordinate frame at center of image (ΣS 1). Global coordi-

nate frame (ΣG) is defined at the space and it is under Kinect. xG denotes distance from global

coordinate frame to center of image, xG = 1.00 m. zG denotes height of sensor, zG = 2.78 m.

To consider orientation of Kinect, homogeneous transformation from ΣG1 to ΣS presents

orientation of Kinect. Homogeneous transformation from ΣS 1 to ΣG2 presents orientation of

image viewpoint relative to the real space, and it is necessary part to transform the image to

space’s map. They are given as follows;

G1HS =

Rz(γ)Ry(α)Rx(ρ) 03×1

01×3 1

 (5.1)

S 1HG2 =

Rz(θz)Ry(θy)Rx(θx) 03×1

01×3 1

 (5.2)

where, Rx, Ry, and Rz denote rotation matrix about X, Y , and Z axis, respectively. ρ, α, and γ

denote roll, pitch, and yaw angle of Kinect’s orientation. They are given that ρ = 0.059 rad,

α = 1.223 rad, and γ = 0.500 rad. θx, θy, and θz are the rotation angle about X, Y , and Z axis of

ΣS 1.
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Figure 5.2: Structure of intelligent space.

Table 5.1: Kinect specification

Sensor Value Unit
Camera view angle in vertical (αV ) 0.7505 rad.
Camera view angle in horizontal (αH) 0.9948 rad.
Resolution (PH , PV ) 640x480 pixel.
Camera frame rate 30 fps.
Depth image sampling rate 30 fps.
Microphone 4 −

Audio input resolution 24-bit ADC −

Audio format frequency 16000 Hz.
Audio format 24-bit PCM
Accelerometer characteristics 2G/4G/8G G
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5.3 Data Process

To process Kinect data, it is separated to two processes as shown in Fig.5.3. It consists

of camera process and depth data analysis. Color image from camera is processed to derive

position and orientation of robot and depth data is projected to ΣG. It is described space status

and compute size of objects in space. For robot position, it is sent to local controller in robot by

communication system.

Figure 5.3: Flow chart to describe data fusion for color image and depth data.

(a) perspective view image (b) top view image

Figure 5.4: Color image to present the intelligent space in perspective view and configuration
space in top view.



Localization 58

5.3.1 Camera Process

This process consists of 3 steps that geometric transformation, threshold marker, and posi-

tion and orientation calculation. Geometric transformation is introduced to transform perspec-

tive view in Fig.5.4(a) to top view image in Fig.5.4(b). It is a function in OpenCV library[52]

and C + + program is presented as follows;

Mat Rmat;

Point2f old[4];

// Define position of trapezoid corner

Point2f new[4];

// Define the rectangle corner for top view image

Rmat = getPerspectiveTransform(old, new);

// Derive rotation matrix (Rmat)

warpPerspective(img, result, Rmat, size, flags, mode, value);

// Transform perspective view to top view

where, img and result denotes original perspective image and top view image, respectively.

Rmat denotes rotation matrix of perspective view to top view. size is resolution of top view

image. flags is the combination of interpolation methods. mode is the extrapolation method.

value denotes the value used in case of a constant border, which is defined as 0 by default.

After that the marker on robot is separate from the screen and press into top view image

as shown in Fig.5.4(b), and then it is derived the position and orientation, which denotes robot

position in XY coordinate [Px,v, Py,v] and yaw angle (φv).

5.3.2 Vector Projection Analysis

The depth data is the set of distance vector from Kinect to each position in the perspective

image. By the way, the orientation of Kinect based on ΣG1 equals the orientation of depth data

at the center of image. Then, the roll angle equals ρ in Eq.(5.1). The pitch angle (αD) and yaw

angle (γD) can be computed relative to the orientation of Kinect in Eq.(5.1) and the specification

of Kinect in Table.5.1 are given that

αD = α + αV
( PV

2 − y)
PV

(5.3)

γD = α + αH
( PH

2 − x)
PH

(5.4)
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where, x and y denote pixel number in horizontal and vertical axis, and then actual position of

each pixel based on ΣG1 can be derived as follows;

~d = G1RS ~D (5.5)
~dx

~dy

~dz

 =
[
Rz(γD)Ry(αD)Rx(ρ)

] 
Dx

0

0

 (5.6)

where, ~d and ~D denote distance vector based on ΣG1 and ΣS , respectively. G1RS denotes rotation

matrix from orientation of vector ~D to ΣG1.~dx,~dy,~dz denote the distance vector from Kinect on

X,Y ,Z axis of ΣG1. Dx is distance vector, which is measured by Kinect.

(a) Color image and configuration space in border.

(b) Top view image of configuration space using image processing.

Figure 5.5: Color image to present the intelligent space in perspective view and configuration
space in top view.
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(a) Threshold image of depth data to detect object in intelligent space.

(b) Threshold image to present object in configuration space.

Figure 5.6: Threshold image to present object in intelligent space and configuration space using
depth data.

5.4 Experiment Result

According to previous sections, the methodology has been described to perceive the infor-

mation in horizontal plane using image processing and vector projective analysis. Therefore,

this section shows the demonstration of the process in real situation as shown in Fig.5.5-5.7 .

Fig.5.5 illustrates perspective and top view images, which are detected by camera and

geometric transformation process. The trapezoid in Fig.5.5(a) is defined as configuration space.

It means the space to operate the robot and it equals with rectangular area in actual, size of which

is high 2.0 m. and wide 2.5 m. After that, the area in trapezoid is transformed to top view image
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Figure 5.7: The configuration image in top view using data fusion technique.

as shown in Fig.5.5(b). The scales of Fig.5.5(b) seems linear than Fig.5.5(a). Horizontal scale is

0.00487 m./pixel and vertical scale is 0.00551 m./pixel. The robot position and orientation are

identified by markers on the robot.

Moreover, Fig.5.6(a) shows the depth image, which is sort out only the objects from the

screen. Black area denotes the available space and yellow area is the object area. It means that

the robot can be perform only in the black area. After that, it is transform to configuration space

as shown in Fig.5.6(b).

At summary, the robot can be identified by the marker and the objects can be sorted out

from the screen. The orientation of the robot can be derived by the location of markers. From

the combination image of the robot position in Fig.5.5(b) with the objects in Fig.5.6(b), we can

identify the robot and the obstacles as shown in Fig.5.7 that the yellow areas are the obstacle

areas and the yellow area with marker means the robot area. It is necessary information for

motion planning.



Chapter 6

Multi-rate Discrete Control

6.1 Introduction

In last several years, intelligent space is introduced to assist humans and robots in a space

and it is given the definition in [41] that it is room or area, where is equipped with sensors

and they enable the space to perceive activities in the space. Then, this paper aims to develop

localization and multi-rate discrete control system for omni-directional robot in space. The

localization is a function of intelligent space to locate robot position in space. In general pattern

to find the location, it is computed the position and orientation using internal sensor [45]. Multi-

rate discrete control system is designed to derive global positioning error in feedback control

system with internal sensors such as wheel slip.

In additional, vision feedback control system is often presented [19, 25, 29, 30, 40, 42]

and the performance may not be high because the sampling rate of the vision sensor is low.

Then, Multi-rate control (MRC) in [14, 18, 22, 33] seem suitable with actual system than vision

feedback control. It is utilized to increase the sampling interval and it involves the sensor data

with multiple sampling rates.

As above sentences, this study deals localization and multi-rate discrete control system.

Kinect is used as an environment sensor. To locate robot position, geometric transformation

using trapezoid corners is introduced to transform the perspective image to top view image and

the depth image from IR depth sensor is projective to world coordinate frame. The combination

of both data exhibits objects in space and 3D map information. After that robot position and

orientation are identified by marker. In particular, this paper contrasts with previous studies on

the control system that multi-rate discrete control system (MRDC) is applied to perform robot

instead of vision control system. It treats global positioning error in feedback control system

with internal sensors and low sampling rate vision system.

62
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Table 6.1: The sampling interval of intelligent space’s communication, internal sensors, and
input torque.

Sampling period time (sec.)
Intelligent space’s communication (Tv) 0.095
Position output (Ty) 0.005
Input torque (Tu) 0.005

Therefore, this study improves the control systems in the previous studies[19, 25, 29, 30,

40, 42], which perform the robots by vision control system and multi-rate discrete control sys-

tem is treated the multi-sampling rate problem. It is specialized for omni-system. This article is

organized as follows: omni-directional robot, dynamic model, localization, localizing demon-

stration, multi-rate discrete control system, experiment result, and conclusion. It is divided

MRCD control for non-holonimc robot and holonomic robot, which are two wheeled inverted

pendulum robot in Fig.2.1a and four wheeled omni-directional robot in Fig.2.2a, respectively.

6.2 Multi-sampling rate System

The robot system of multi-rate system is shown in Fig.6.4(a), it obtains multiple sampling

rates such as sampling interval of communication (Tv), position of internal sensors (Ty), and

actuator (Tu). Intelligent space system derives the location of robot (Pev) and desired position

(Pd). Then, it is sent to the robot via communication system. The data from internal sensors

such rotary encoder are computed to derive the location of robot (Plo), Plo =
[
Px,l Py,l φl

]T
.

However, the position of the robot by internal sensors can be computed with sampling interval

Ty, the controller recognizes the position of the robot with Tu period. Then, the sampling inter-

val of internal sensors may be configured that Tu = Ty. The sampling intervals are presented

relationship with time domain as follows;

t = kTy = kTu : k = 0, 1, 2, ...., n (6.1)

t = iTv : i = 0, 1, 2, ....,m (6.2)

i = k/N : N =
Tv

Ty
(6.3)

where, Tu = Ty = 0.005sec., and Tv = 0.095sec..

6.3 Holonomic Robot vs Non-Holonomic Robot

The mobile robots utilized in this research are a two wheeled inverted pendulum robot in

Fig.2.1a and a four wheeled omni-directional robot in Fig.2.2a. They obtains the properties of
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Figure 6.1: The motion of the omni-directional robot in the space.

non-holonomic and holonomic constraints, respectively. Fig.6.1 and Fig.6.2 illustrate the motion

of the omni-directional robot and the inverted pendulum robot, respectively. Fig.6.1 presents that

the omni-directional robot can directly perform on sliding mode belong to all degrees of freedom

in world coordinate frame (ΣW). The position control system can be designed using Jacobain

matrix and the position error in world coordinate.

On the other hands, Fig.6.2 deals the motion of the inverted pendulum robot with the

trajectory. The motion is stricted by non-holonomic constraint so that the robot cannot perform

on sideway. The motion of robot consists of two types that the robot is performed by position

feedback with Jacobian matrix, and position feedback with trajectory tracking. If the inverted

pendulum robot is performed with Jacobian matrix, the trajectory will equal as solid blue line

and the curve motion depends on the distance error and the yawing feedback gain (Kφ). If

Kφ is huge and the distance error is constant, the curve motion becomes nearby the trajectory.

However, the robot can successfully approach the desired positions but it can not be strict on the

trajectory and the motion varies on several parameters. Thus, the trajectory tracking algorithm

is required to fix the curve motion as shown in red line. It denotes the algorithm for ranking the

priority of the error of each degree of freedom.

6.4 Wheel Slip Motion and Global Positioning Error

Wheel Slip is important factor to produce an effect of global positioning error and it is a

critical cause of accident in vehicle. In [46, 47], the authors have introduced wheel slip constraint

[46] and the method to control slip motion [47]. Generally, the floors are determined as flat and

solid, but the space in our experiment is covered by carpet. It complicates to derive the slip

model so that we purpose a development.
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Figure 6.2: The motion of the inverted pendulum robot in the space.

Figure 6.3: The figure illustrates the wheel on rigid plane and soft plane.

In this experiment space is cover by soft material so that the wheel is submerge in to the

space as shown at right image in Fig.6.3. Then, the translation friction and slip motion are

important factor to produce the global positioning error.

Generally, wheel slip usually appear relative to the dynamic friction between wheel and

plane and the kind of plane. The wheel slip model is given that

sL[k] = 1 −
vactual[k]
vdetect[k]

(6.4)

Then, the global positioning error (Per) at k is given as step discrete function that

Per[k] = Per[k − 1] + (I3×3sL[k])vdetect[k]Ty (6.5)

where, sL[k] denotes the slip model based on world coordinate frame at step k, I3×3 denotes

identity matrix of size 3. sL[k] =
[
sx[k] sy[k] sφ[k]

]T
, sx[k] and sy[k] are slip model on X
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(a) Overview of robot system with multiple sampling intervals

(b) Figure shows actual position and sampled position of Ty, Tu, and Tv.

Figure 6.4: Robot’s system and sampled data.

and Y axis at step k. sφ[k] denotes slip model of rotation about Z axis at step k. vactual and vdetect

are actual velocity and detected velocity based on world coordinate frame and vdetect = Jθ̇. J

denotes Jacobian matrix in Eq.(2.66). Per[k] is position and angle errors at step k and Per[k] =[
Pe,x[k] Pe,y[k] Pe,φ[k]

]T
.

6.5 Multi-rate Control for Omni-directional Robot

6.5.1 Control Structure

The control system of the omni-directional robot is designed as shown in Fig.6.5 that it

consists of plant, Jacobian matrix, position estimator and feedback gain. The plant denotes the

dynamic of the omni-directional robot and Jacobian matrix of the robot is presented in Eq.(2.66).

The combination of the robot position with different i and k intervals, which is called position
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Figure 6.5: The multi-sampling rate control system in the local controller for holonomic robot.

estimator. The feedback gain is designed based on discrete system. The description of each part

will present in next section.

6.5.2 Position estimator

To treat wheel slip error for the omni directional robot, Fig.6.4 (b) shows dot line denote ideal

position, center line denotes actual position (Pac). Thin solid line denotes sampled position

from rotary encoders. Dash line denotes sampled position from environment system (Pev) and

position estimate(Pes) is configured by Pev and Pac. It describes that the actual position (Pac)

may be different with Plo because rotary encoder measure rotation of wheel with slip motion.

Then, position estimate (Pes) is approximated as the actual position. It is given that

Pes[i, k] = Pev[i] + (Plo[k] − Plo[i]) (6.6)

By the way, the different between Plo at sampling interval Ty and Tv means distance of robot

motion during interval Tv. In particular, sampled data of Pev adjusts the reference of estimate

position Pes corresponding to actual position. Thus, it effects to decrease the accumulated error

from wheel slip.

6.5.3 Controller design

As the description of the multi-rate system, the equation of motion in Eq.(2.73) can be

simplified as integrated plant. The dimension of input is redefined to force (F) corresponding to
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Eq.(2.65). Then, linear system in time-invariant is given by

ẋs1(t) = Axs1(t) + BF(t) (6.7)

y(t) = Cxs1(t) (6.8)

The discrete system is realized that

xs1[i, k + 1] = Ad xs1[i, k] + BdF[i, k] (6.9)

y[i, k] = Cd x[i, k] (6.10)

where, A =

03x3 I3x3

03x3 03x3

, B =

 03x3

M−1EJT

, Ad = eATu ,

Bd =
∫

eAτsdτsB, C = Cd =
[
I3x3 03x3

]
. xs1 =

[
q q̇

]T
∈ R6

The control system is designed as shown in Fig.6.5 and it consists of double loops that

inner loop is velocity feedback and outer loop is position error feedback. Then, state space in

Eq.(6.9) is redefined that

ẋs2(t) = As2xs2(t) + Bs2F(t) (6.11)

xs2(t) =
[
x1(t) x2(t)

]T
(6.12)

x1 = Pev(t) − Pd(t) , Ṗd(t) = 0 (6.13)

x2 = Ṗac(t) (6.14)

Therefore, state matrix (As2) and input matrix (As2) in time-variant are

As2 =

03×3 I3×3

03×3 03×3

 (6.15)

Bs2 =

 03x3

M−1EJT

 (6.16)

Discrete state space model with sampling interval Tu is given by

xs2[k + 1] = Ads2xs2[k] + Bds2F[k] (6.17)

Ads2 =

I3×3 TuI3×3

03×3 I3×3

 (6.18)

Bds2 =

 03x3

TuM−1EJT

 (6.19)
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where, EJT = I3×3

xs2[k] =
[
x1[k] x2[k]

]T
(6.20)

x1[k] = Pd[k] − Pev[k] ,
Pd[k] − Pd[k − 1]

Tu
= 0 (6.21)

x2[k] = Ṗac[k] (6.22)

Considering the estimate position (Pes) in Eq.(6.6), it seems full state feedback as shown

in Fig.6.5, and then input force is given that

F(t) = Kp(Pd(t) − Pev(t)) − Kd(Ṗes(t)) (6.23)

where, Kp and Kd is proportional gain and derivative gain, respectively. Ṗes(t) = Ṗlo(t), even if

wheel slip is neglected, Pes(t) = Plo(t).

Controller gain is derived using digital linear quadratic regulator (DLQR) by

Q = diag[1.4, 1.4, 0.0975, 17.5, 17.55, 1] × 104 (6.24)

R = diag[23, 23, 5] × 102 (6.25)

and feedback gain Kp and Kd are

Kp =


2.45 0 0

0 2.45 0

0 0 1.23

 (6.26)

Kd =


10 0 0

0 10 0

0 0 4

 (6.27)

6.6 Multi-rate Control for Wheeled Inverted Pendulum Robot

6.6.1 Control structure

The control system is designed as shown in Fig.6.6 and the structure for non-holonomic

robot contrasts with the structure of holonomic robot that the motion of non-holonomic robot

may not perform on the trajectory to the desired position. Then, trajectory tracking algorithm

is used to define the motion planning. In particular, the motion of the inverted pendulum robot

not concern only non-holonomic constraint but also the stabilization of the body. The controller

will be separated to two parts for the position tracking and the stabilizing. Thus, the control
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system of the inverted pendulum robot consists of plant, position estimator, trajectory tracking

and controller. The position estimator, trajectory tracking and controller design will be described

in next section.

Figure 6.6: The multi-sampling rate control system in the local controller for non-holonomic
robot.

Figure 6.7: The motion of the inverted pendulum robot with the way point.
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Figure 6.8: Figure to show distance error relative to world and vehicle coordinate frames.

6.6.2 Trajectory Tracking

The way point denotes the desired position (Pd[i]), which is defined based on world coordi-

nate frame but it is not convenience information for performing the robot. Then, it is converted

to the desired position based on vehicle coordinate frame (Pd,V [i]). Thus, trajectory tracking is

designed to derive the distance error (Pd,V [i]). The error is shown in Fig.6.7 and Fig.6.8. The

trajectory tracking algorithm is given that

Pe[i] =
[
se φh

]T
(6.28)

φh = φT − φr (6.29)

φT = atan2(yd − yr, xd − xr) (6.30)

se = cos(φh)
√

((xd − xr)cos(φh))2 + ((yd − yr)sin(φh))2 (6.31)

where, Pe[i] denotes the position error from the robot to the way point at i interval. φh denotes

heading error from the yaw of the robot (φr) to the yaw of the desired position (φT ). se is not

real distance to the desired position but it denotes the forwarding distance error based on vehicle

coordinate frame. Thus, the robot will rotate about z axis before it moves forward, if the desired

position is on the sideway of the robot.

6.6.3 Position error estimation

From Fig.6.7, it exhibit that the route of the robot is presented as the dot line. It can detected

by the odometry with the slip noise and s denotes the distance belong to the route. The error

from the trajectory tracking is updated every i interval. To treat the wheel slip, the error will be
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estimated as follows;

Pe,es[i, k] = Pd,V [i] − Pr,h[k] (6.32)

Pd,V [i] = Pe[i] + Pr,l[i] (6.33)

where, Pe,es[i, k] denotes the estimate position error from the robot to the way point. Pd,V [k]

denotes the desired position based on vehicle coordinate frame. Pr,l[i] and Pr,h[k] denote the

robot position based on vehicle coordinate frame of i and k intervals.

6.6.4 Controller design

To design the controller, the state space in Eq.(2.55) is represented in discrete multi sam-

pling rate system as follows;

xss[i, k + 1] = Ad,ssxss[i, k] + Bd,ssτ[i, k] (6.34)

xss =
[
s φv θb ṡ φ̇v θ̇b

]T
(6.35)

where, Ass =

 03×3 I3×3

−M−1
L GL 03×3

, Bss =

 03×2

M−1
L E

, Ad,ss = eAssTu , and Bd,ss =
∫

eAd,ssτsdτsBss.

The discrete state space model with sampling interval Tu is given by

xip[k + 1] = Ad,ipxip[k] + Bd,ipτ[k] (6.36)

Ad,ip =

 I3×3 TuI3×3

TuM−1
L GL I3×3

 (6.37)

Bd,ip =

 03x3

TuM−1
L E

 (6.38)

where, xip[k] =
[
x1[k] x2[k]

]T
, x1[k] = Pd,V [k] − Pr,l[k], Ṗd,V [k] = 0.

Input torque is given that

τ[k] = −Kx1[k] − F1x2[k] (6.39)

where, K and F1 is position tracking gain and balancing gain, subsequently.

Controller gain is derived using digital linear quadratic regulator (DLQR) by

Q = diag[5, 1, 0.8, 0.05, 0.1, 1] × 103 (6.40)

R = diag[104, 104] (6.41)
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Figure 6.9: Vision feedback control with Jacobian matrix.

and feedback gain Kp and Kd are

K =

0.4351 −0.2217

0.4351 0.2217

 (6.42)

F1 =

1.3328 0.5548 −0.0843 0.2023

1.3328 0.5548 0.0843 0.2023

 (6.43)

6.7 Simulation result

6.7.1 MRC vs Vision control system

This simulation presents the comparison of multi-rate control and vision feedback control.

It demonstrates by the omni-directional robot and the vision feedback control is designed as

Fig.6.9. The performance of both control systems is considered based on step response. The

position reference is given as solid blue line in Fig.6.10 and the responses of the vision control

and the multi-rate control are given as solid red line and dashed line, respectively.

The preliminary of this simulation is given that the multi-control system is presented in

the previous sections and the vision feedback control is designed as Fig.6.9. The sampling

interval of the vision control system equals with TV . The proportional and derivative gains are

defined as Eq.(6.26) and Eq.(6.27) and the integral gain is zero. Fig.6.10 deals the trajectory

and the motion of the omni-directional robot. The motion of vision feedback control obtains the

overshoot and oscillation motions because the sampled rate of the vision system is low. Then,

the simulation result can confirm that the performance of the multi-rate control is greater than

the vision feedback control.

6.7.2 Effectiveness of position estimator

This section shows the simulation of MRDC with position estimator in Fig.6.5 and the

conventional MRC system without position estimator in Fig.?? at various values of slip noise.

The slip noise is added as global positioning uncertainty, which is described in Eq.(6.5). The
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Figure 6.10: Motion of omni-directional robot using vision feedback control and multi-rate
control system.

conventional MRC system without position estimator in Fig.?? is designed based on the con-

cept of multi-rate control in [18], which involves the robot position from intelligent space and

odometry and the robot position from both sources are directly used to control the robot.

To analyze the effectiveness of position estimator and wheel slip, the robot motion is

observed at non-slip motion and slip motion. Then, the slip model and the feedback gain

are defined that the slip model is given as constant value such that sL =
[
0 0 0

]T
and

sL =
[
1.3 1.3 1.3

]T
. For controller gain of MRDC with position estimator, it seems PD

controller and Kp and Kd are defined as Eq. (??)-(??). On the other hands, PID controller in

Fig.?? should consist of Kp, Ki and Kd. In order to compare the result with MRDC with

position estimator, Ki is given as zero. Kp and Kd also equal Eq. (??)-(??). The step response

of translation motion is shown in Fig.6.11 that black dash line is reference position Blue center
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Figure 6.11: The step response of MRDC with position estimator and conventional MRC with-
out position estimator.

and green solid lines denote the step response of the conventional MRC at sL =
[
0 0 0

]T
and

sL =
[
1.3 1.3 1.3

]T
, respectively.

As result, the wheel slip has the effectiveness to the responsibility of the conventional

MRC without position estimator. When the wheel slip does not appear, the robot can perform

to reference position successfully. If wheel slip appear, the robot can not perform to reference

position. On the other words, MRDC with position estimator can control the robot to reference

position with slip and non-slip cases. The effectiveness of the position estimator can treat the

problem of global positioning error and the step response of MRDC with position estimator does

not vary on wheel slip because it is treated by position estimator.

6.8 Experiment result

This section introduces the experiment result of multi-rate control based on the omni-

directional robot and the inverted pendulum robot. The results are presented as follows;



Multi-rate Discrete Control 76

6.8.1 Experiment on Wheeled Inverted Pendulum Robot

Fig.6.12 exhibits the motion of the inverted pendulum robot, which is performed by the

multi-rate control system. Fig.6.13 shows the motion of the robot while it tracks the trajectory.

The robot can track the trajectory, successfully. The result deals robot motion with trajectory

that blue line denotes trajectory and red line denotes robot position, which is detected by the

intelligent space, respectively. Fig.6.12(a) illustrates that the motions of the inverted pendulum

robot in XY plane perturbs because the robot has to balance itself while it changes the direction

or confines the position. To exhibit the successful of the trajectory tracking, Fig.6.12(b) deals

the trajectory and the robot position in time domain. It shows that the robot can perform to track

the trajectory, successfully.

6.8.2 Experiment on Omni-directional Robot

From the control system in Fig.6.5, omni-directional robot is performed in configuration

space as shown in Fig.6.14. Trajectory is designed as center line, and then way point is defined

on trajectory and it is presented instead of desired position (Pd). After that it is moved on

the trajectory with 0.25 m/s., the robot is performed to track it. Robot position is computed

by rotary encoders and intelligent space. They are recored to compare accuracy. To show

the motion, Fig.6.15 illustrates the robot motion while it tracks the trajectory, which is shown

in top view and perspective view. The left and right columns denote the top and perspective

views, subsequently. The result deals robot motion with trajectory , where center line denotes

trajectory. Dash line and solid line denotes robot position, which is detected by rotary encoders

and intelligent space, respectively. Fig.6.14 shows that the position of robot by intelligent space

is high accuracy than rotary encoder because the effective of wheel slip. If local controller uses

only robot position by rotary encoders, the trajectory tracking may not approach to the desired

position in space. The result exhibits that robot can track the trajectory successfully with a small

error.
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(a) Position of the inverted pendulum robot in XY plane.

(b) Position of the inverted pendulum robot in time domain.

Figure 6.12: Robot’s system and sampled data.
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Figure 6.13: Motion of omni-directional robot in top view.
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Figure 6.14: The experiment result of trajectory tracking using multi-rate discrete control when
way point speed is 0.25 m/s..
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Figure 6.15: Motion of omni-directional robot in top view and perspective view.



Chapter 7

Conclusion

This thesis treated some problems for development of vehicle robots such as unknown sys-

tem parameters, friction in mechanical system, global positioning error, and multi-rate sampling

interval. They are benefits to improve the motion of the robots in indoor space. In previous

chapters exhibit the principle knowledges, the new methodologies, and experiments and this

chapter concludes the results of them. It is organized as follows:

7.1 System Identification and Friction Compensation

Many researchers studied about system identification for dynamic system, who prefer ARX

model as model reference but it may not suitable corresponding to actual condition. Then, this

study introduces another model such as ARMAX model with new assumption considering the

uncertainties of actuator and sensor measurement. As the result, the identification results can

be admired. The position and tilt angle errors in Fig.4.5 exhibits that the friction compensation

successfully improve the control performance and the friction compensation using the friction

estimate of the ARMAX model performs better than ARX model result and general feedback

control, however the errors are remained a little. Therefore, we confirm that ARMAX model

with high frequency error is suitable in practically more than ARX model in order to identify

wheeled inverted pendulum robot system.

7.2 Localization

This study approaches the localization with perspective view The localization result shows

a robot and objects in space. The size configuration space is 2.5×2.0 m. and image scale in

81
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domain of pixel is 513 × 363 pixel. The scale of configuration image seems linear scale that

horizontal scale is 0.00487 m./pixel and vertical scale is 0.00551 m./pixel.

7.3 Multi-rate Discrete Control

Multi-rate discrete control system for omni-directional robot in intelligent space is designed

with position estimation, which estimates robot position by the position from localization and

rotary encoders. Fig.6.4(b) illustrates comparison of estimate position, actual position, and

position from localization and rotary encoders. The estimate position seems similar with the

actual as same as the position from localization but the sampling interval is higher. The control

systems for the inverted pendulum robot and omni-directional robot are different that the motion

of the inverted pendulum robot is bounded. Then, the inverted pendulum robot may not tract to

the trajectory as described in Fig.6.2, if the control system is designed based on Jacobian matrix.

Then, the trajectory tracking algorithm is established to derive the distance error from the robot

to the desired position and the result of the trajectory tracking is presented Fig.6.12 and 6.13.

On the other hands, the control system for the omni-directional robot can perform to track the

trajectory by Jacobain matrix and the result is shown in Fig.6.14-6.15. The results shows the

robots can perform to track the trajectory successfully and they deal trajectory, position of robot

by localization and rotary encoders. The position from rotary encoders is not high precision

because the effective of wheel slip.
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