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The speech vocoder or speech coding is designed to reduce the 
speech information in the sender before transmitting it via transmission 
media to the receiver and to reproduce the speech information. This 
kind of methodology saves the transmission system bandwidth and 
increases the number of users in the transmission system. However, we 
must carefully design the speech vocoder; otherwise, the quality of the 
reconstructed speech waveform deteriorates. 
 

The famous speech coding is the Linear Predictive Coding (LPC-
10) and Code-Excited Linear Prediction (CELP) based on speech 
analysis and speech synthesis system. Spectral envelopes are the 
critical speech parameter in speech processing. However, many 
methods based on Cepstrum and LPC cannot always synthesize 
natural-sounding speech. This dissertation extracts the high-quality 
spectral envelope from the WORLD vocoder to examine the speech 
quantization performance based on deep learning — the full spectral 
envelopes estimated from the WORLD vocoder can synthesize the 
high-fidelity speech waveform. However, the spectral envelopes are 
hard to quantify to obtain the quantized spectral envelopes acceptable 
to synthesize the natural, high-quality speech waveform. 

 
The proper conventional compression technique required to 

quantize the spectral envelope parameters is Vector Quantization (VQ). 
Lately, deep learning technologies have shown an advantage compared 
to conventional VQ. The Vector Quantized Variational AutoEncoder 
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(VQ-VAE) is an end-to-end compression technique based on the deep 
learning method. The VQ-VAE is the quantization version of the 
Variational AutoEncoder (VAE). The difference between a VAE and a 
VQ-VAE is that the VAE learns continuous z-latent representations, 
whereas the VQ-VAE learns discrete z-latent representations. The 
compression based on deep learning widely introduces the VQ-VAE 
because the VQ-VAE provides better performance than conventional 
VQ methods such as LBG or K-means. 

 
This dissertation's whole study focuses on the advantage of deep 

learning in reducing the reconstruction errors of speech spectral 
envelope quantization compared to the conventional VQ and the VQ-
VAE.  

 
The first part of the study in this dissertation examined the effect 

of deep learning architecture on VQ based on deep learning. The 
conventional VQ and the VQ based on deep learning were compared 
for the spectral envelope quantization performance. The spectral 
envelope parameters were extracted from a high-quality vocoder 
named WORLD at 48 kHz sampling frequency in the experiments. The 
quantization performance in four target bitrate operations varied from 
low to high bitrates was evaluated. We proposed the Multi-layers 
Perceptron Vector Quantized Variation AutoEncoder (MLP-VQ-
VAE). It reduced the memory sizes of z-latent representations and 
embedding space (codebook) by around 1.6 times compared to the 
conventional VQ and 21.4 times for the VQ-VAE. It also decreased the 
average Log Spectral Distortion (LSD) by around 1.1 points in dB 
lower than the conventional VQ and around 2.5 points in dB than the 
VQ-VAE. 

 
The second study was about the techniques of VQ in VQ-VAE 

and investigated the possibility of improving the reconstruction 
performance. We proposed the Sub-band Vector Quantized Variational 
AutoEncoder (Sub-band VQ-VAE) and the Predictive Vector 
Quantized Variational AutoEncoder (Predictive VQ-VAE). The 
spectral envelope quantization performance of the WORLD vocoder at 
48 kHz sampling frequency was compared. The experimental results 
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for the four target bitrates showed that the Sub-band VQ-VAE reduced 
the average LSD by around 1.3 points in dB compared to the 
conventional VQ-VAE. The Predictive VQ-VAE results indicated that 
it had a lower distortion in terms of LSD than the VQ-VAE, about 2.58 
points in dB for the four target bitrates. 
 

The last study in the dissertation was the advanced deep learning 
training technique in VQ-VAE. The collaborative design of the VQ-
VAE and the Generative Adversarial Network (GAN) worked together 
in the spectral envelope quantization of the WORLD vocoder, operated 
at 16 kHz sampling frequency. We proposed the three different 
methods in deep learning trainings with GAN architectures: the 
VAEGAN implemented in VQ-VAE, the VQ-VAE-EMGAN, and the 
VQ-VAE-EMDEC. They were compared with the VQ-VAE for the 
quantization performance in four target bitrate operations. The 
proposed training methods with GAN showed the effectiveness. The 
VQ-VAE-EMDEC reduced the average LSD by around 0.98 points in 
dB, the average L2 z-latent error by around 0.11 and in terms of 
reconstructed speech waveform, it also improved the Perceptual 
Evaluation Speech Quality (PESQ) by around 0.32 compared to the 
VQ-VAE.  
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Chapter 1 
 
Introduction 
 
1.1 The speech compression  

 
In digital signal processing [1, 2, 3], speech compression [4, 5, 6, 7] is 

the technique to reduce the speech information at the encoder before 
transmitting, and the speech decompression reproduces the speech information 
from the reduced data at the decoder. This kind of application can save the 
digital transmission bandwidth [8, 9, 10, 11], the power consumption of the 
system, and increase the number of users in the transmission system for the 
world society [12, 13, 14]. However, we must carefully design those 
compression techniques because some speech parameters are susceptible to 
quantization distortion [15, 16, 17]. If a quantizer is not good enough, the 
quantized speech parameters include the distortion and impact to reconstruct 
the output speech waveform. The human speech waveforms are transformed 
from the analog signal to the digital signal by Analog to Digital Converter 
(Pulse Code Modulation techniques) [18, 19, 20] such as A-law and 𝜇-law 
algorithms (G.711) [21, 22, 23] as speech encoding. The transformed digital 
speech signal is called a raw speech signal and is applied to the speech coding 
or vocoder [24, 25] to reduce the speech information before sending the 
transmission system. The received of the reduced data applied the speech 
decoding technique to represent the raw speech again in digital speech signal 
representation. Finally, the Digital to Analog Converter [26, 27] is applied to 
the digital signal to reproduce the speech signal at the end. 

 
The famous speech vocoder and encoder are the Linear Predictive 

Coding (LPC-10) [28, 29, 30] and Code-Excited Linear Prediction (CELP) 
[31, 32, 33] based on speech analysis and speech synthesis systems. First, the 
raw speech waveform is analyzed to extract speech parameters such as the 
fundamental frequency (F0), aperiodicity (AP), and the spectral envelope (SP) 
during the speech analysis process. Then, those parameters are applied to 
reproduce the raw speech parameters during the synthesis process. At the 
intermediate, the compression techniques compress the extracted speech 
parameters before transmitting, and the decompression techniques reproduce 
the speech parameters. The most valuable parameter and most complex 
parameter for speech synthesis is the SP parameter [34, 35] compared to the 
F0 and AP because SP is very sensitive to distortions; if the compressor or 
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quantizer is not good enough, the reconstructed SP parameter's quality is low 
and leads to produce the low-quality speech waveform.  

 
Speech coding techniques are widely used in speech communication 

systems [36, 37], especially in wireless cellular phone systems [38, 39]. The 
codec algorithms give complete performances through many studies in coding 
technologies. The speech vocoder is one of the fundamental compression 
techniques to reduce human speech data at a low bitrate. The spectral envelope 
parameter is the critical speech parameter for the vocoder's quality and 
intelligibility [34, 35]. Therefore, the proper conventional compression 
technique is required to quantize the spectral envelope parameter. Vector 
Quantization (VQ) [40, 41] is the conventional compression method for 
spectral envelope parameter quantization, such as the LPC-10 vocoder [28, 29, 
30].  
 

Lately, deep learning has shown an advantage compared to conventional 
VQ. In speech processing, compression technologies have been applied to 
reduce the amount of speech data in the limited communication bandwidth for 
information transmissions. One of the classic compression methods used in 
speech processing is Vector Quantization (VQ). The VQ method uses Linde–
Buzo–Gray (LBG) or K-means algorithms [40, 41]. Some research studies 
have been conducted about deep learning for VQ. Deep learning Vector 
Quantization (DLVQ) [42] is introduced as a method for acoustic information 
retrieval. This model learns the code-constrained embedding space and 
performs better than the conventional VQ method in classification problems. 
In another research shown in [43], the mixture of deep learning and the VQ 
method has shown improvement. The model applied VQ as an encoder 
network and constructed the decoder network with deep learning networks. 
The deep learning decoder network has given the state-of-the-art method 
compared to the conventional inverse VQ as the decoder. As mentioned in 
these examples, the deep learning approach improved the performance of the 
VQ method.  
 

The Vector Quantized Variational AutoEncoder (VQ-VAE) [44, 45] has 
been proposed as an end-to-end VQ method based on deep learning. The VQ-
VAE architecture constructs of AutoEncoder (AE) [46, 47, 48, 49, 50] 
cooperated with the VQ method [40, 41]. The first research mentioned that AE 
was applied as an unsupervised deep learning model [51]. The AE consists of 
an encoder network for transforming the input data into z-latents, and a 
decoder network utilizes the z-latents as input to reconstruct the output data 
indicated to the input data. The AE technique has been fashioned to apply in 



3 
 

various applications, such as speech enhancements [52, 53], speech 
recognition [54, 55], and some research focused on improving the performance 
of AE [56, 57, 58, 59]. The VQ-VAE has changed the regular AE. The z-latents 
of AE are continuous variables, but the z-latents of VQ-VAE are discrete 
variables. The VQ-VAE applies the VQ technique to quantize the continuous 
variables of the z-latents. Last few years, much research investigated a variety 
of applications of VQ-VAE. In [60], a comparison of several text compression 
methods for sequence generation showed that VQ-VAE could be used to 
compress a text. For the brain recording signal compression [61], the 
Compressive AutoEncoder (CAE) proposed for deep learning was based on 
the spike compression model to reduce the data transmission rate. The CAE 
also used VQ-VAE to compress the brain signal, but the architecture of the 
encoder and the decoder differed from the original VQ-VAE. In [62], it showed 
the advantage of the VQ-VAE in decreasing the data size at the communication 
bottleneck. The VQ-VAE was also introduced to reduce the data usage in 
controlling statistical speech synthesis [63]. Furthermore, the VQ-VAE was 
applied in script generation [64] and dialog generation [65].  
 
  Nowadays, deep learning has superseded in speech processing fields. 
The WaveNet [66, 67] model was proposed for text to high-quality speech 
synthesis. The Generative Adversarial Networks (GAN) [68] was proposed 
for speech enhancement. The Generative Adversarial Networks is the 
generative model with high fidelity synthesis, but the model stability in 
training processes is still a challenging problem compared to the AE. After a 
few years, GAN became a popular research area, and the trend was about 
increasing the training stability of the model and the fidelity of the 
reconstruction of generated data. Some research focused on improving the 
original GAN model by modifying loss function terms [69, 70] or constraining 
the discriminator network over the gradient penalties [71]. In [72], the paper 
concentrated on network architecture modification. In [73], it proposed a 
cooperat ion framework between VAE and GAN. The face image 
reconstruction study indicated that the VAE produced the blurred output 
image, compared with the GAN and the proposed Variational AutoEncoder 
Generative Adversarial Network (VAE-GAN).  
 
  Furthermore, the GAN technique in the AE was investigated in [56] to 
match the z-latents of AE to arbitrary distributions. In [74], the AutoEncoder 
guided GAN technique can improve the performance of supervised AE in 
calligraphy synthesis problems. The GAN technique that improved the 
unsupervised AE performance shown in [73] proposed an extension of the 
VAE model by combining a VAE with GAN that produced fidelity face image 
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output. The GAN objective distortion major had an advantage compared to the 
traditional objective distortion such as Mean Absolute Error (L1) and Mean 
Square Error (L2) to measure the distortion for deep learning methodology. 
 
1.2 Objectives 

 
 The objectives of this dissertation are the followings. 
 

(1) To study the advantage of deep learning to improve the reconstruction 
error of speech spectral envelope quantization. 

(2) To study the effect of deep learning architectures for Vector 
Quantization based on deep learning for speech spectral envelope 
quantization. 

(3) To study the effect of the conventional Vector Quantization techniques 
based on deep learning for speech spectral envelope quantization. 

(4) To study deep learning adversarial techniques for Vector Quantization 
for speech spectral envelope quantization.  

(5) To develop Vector Quantization based on deep learning adversarial 
technique for speech spectral envelope quantization. 

 
 

1.3 Structure of this dissertation 
 
 The rest of the organization of the dissertation is as follows: 
 
 Chapter 2 discusses the literature review of related studies in both 
conventional speech quantization and end-to-end speech quantization based on 
deep learning.  
 
 Chapter 3 presents the overview of the whole studies in this 
dissertation. 
 
 Chapter 4 describes the first study of the dissertation. The objective is 
to examine the effect of deep learning architecture on VQ based on 
fundamental deep learning methods. The conventional VQ, such as K-means 
or LBG, is a famous speech spectral envelope quantization tool. However, this 
method limits the reconstruction performance due to using the codebook 
patterns in the direct domain. On the other hand, the deep learning method can 
improve reconstruction performance based on the quantization in a perfectly 
trained z-latent domain. In this chapter, we compare the conventional VQ 
technique (K-means) with the standard VQ-VAE architecture constructed 
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from the Convolutional Neural Networks and the Multi-layer Perceptron 
architecture as the Multi-layer Perceptron Vector Quantized Variational 
AutoEncoder (MLP-VQ-VAE). The experiments organize four models with 
different target bitrates. At the end of the chapter, deep learning can improve 
the reconstruction performance, especially for the proposed MLP-VQ-VAE. 
 

The proposed MLP-VQ-VAE replaces the Convolutional Neural 
Networks (CNN) with Multilayer Perceptron (MLP) in the architecture of the 
encoder network and decoder network of VQ-VAE. The CNN made the model 
which created the z-latents with massive sizes in 3 dimensions and took effect 
to have a large size of embedding space. The MLP-VQ-VAE can manage the 
number of z-latent vectors more flexibly than the VQ-VAE and complete the 
dimensional reduction task. The experiment results evaluated the MLP-VQ-
VAE to quantize the spectral envelope parameters of the 48 kHz WORLD 
vocoder [75] in four target bitrates. As a result, the MLP-VQ-VAE had lower 
Log Spectral Distortion (LSD) compared to conventional vector quantization 
and the VQ-VAE and a more reduced representation of z-latents and 
codebooks or embedding space compared to conventional vector quantization 
and VQ-VAE. 
 
 Chapter 5 is the second study. The objective is to examine the several 
techniques utilized in the conventional VQ, including the Sub-band VQ and 
the predictive VQ, for improving the reconstruction error of speech spectral 
envelope quantization based on deep learning. Four target bitrate VQ-VAE 
models construct quantizers of the spectral envelope to compare the proposed 
sub-band Vector Quantized Variational AutoEncoder (sub-band VQ-VAE) 
and the Predictive Vector Quantized Variational AutoEncoder (Predictive VQ-
VAE). 
 

We designed the sub-band VQ-VAE to quantize the speech spectral 
envelope parameters extracted by the high-quality WORLD vocoder [75]. This 
vocoder operates with a 48kHz sampling frequency and every 5ms parameter 
extraction. The parameters include fundamental frequency (F0), spectral 
envelope parameters (SP), and aperiodic parameters (AP). The WORLD 
vocoder synthesizes output speech waveforms by using those parameters. We 
investigated quantization techniques for the SP. In the SP, most human speech 
information is contained in frequencies below 16 kHz. The frequency above 
16kHz has little human speech information. The VQ-VAE uses all the data 
lengths of SP as input data for quantization. It includes unnecessary speech 
information in frequencies above 16 kHz. Sub-band coding methods [76, 77] 
split the data into different frequency bands and compress each band before 
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transmission. The sub-band VQ-VAE uses this method. It splits SP data into 
two frequency bands. The first band is the lower frequency band between 0 
to16 kHz, and the second is the higher frequency band between 16 and 24 kHz. 
We assign more bits to the lower band and fewer to the higher frequency band. 
The performance of the proposed methods is compared with the full-band 
VQVAE at the same bit rates. In the experiments at four target bitrates, The 
Sub-band VQ-VAE have lower LSDs at the expense of the larger embedding 
space size associated with the VQ-VAE. 

 
For the examination of predictive techniques, we proposed the 

Predictive Vector Quantized-Variational AutoEncoder (Predictive VQ-VAE), 
an improved version of the conventional VQ-VAE with a prediction 
mechanism. The evaluation results showed effectiveness for the high-quality 
48 kHz WORLD vocoder [75] spectral envelope quantization and the 
quantization performance by the Log-Spectral Distortion (LSD). Furthermore, 
the average LSD results indicated that the Predictive VQ-VAE has a lower 
LSD value than the VQ-VAE for four target bitrates. 
 
 In chapter 6, we discuss the fourth and fifth objectives in the 
dissertation to introduce the advanced deep learning training techniques in 
VQ-VAE to improve the reconstruction performance. The combination 
between VQ-VAE and the Generative Adversarial Network was designed to 
work together in the spectral envelope quantization in four different target 
bitrates compared to the conventional VQ. The studies investigated the effect 
of the adversarial loss update on the whole networks of VQ-VAE and only the 
embedding space of quantization in the VQ-VAE. Based on the results, we 
proposed the Vector Quantized Variational AutoEncoder Embedding 
Generative Adversarial Networks as a spectral envelope vector quantization 
model based on deep learning. The VAEGAN implemented in VQ-VAE, the 
VQ-VAE-EMGAN, and the VQ-VAE-EMDEC introduced objective 
distortion measures and training procedures of the GAN technique to replace 
the conventional distortion measure of VQ-VAE for embedding space 
learning. The experiments organized four models in each VQ-VAE, the 
VAEGAN implemented in VQ-VAE, the VQ-VAE-EMGAN, and the VQ-
VAE-EMDEC, respectively. The models are trained to quantize the WORLD 
vocoder’s spectral envelope [75]. The spectral envelopes are extracted from 
the 16 kHz raw speech waveform from the LibriSpeech corpus [78], varied 
from the 128, 256, 512, and 1024 bits/spectral envelope frame. The 
quantization performance was evaluated by Log Spectral Distortion (LSD) and 
the z-latent error (L2). The Perceptual Evaluation Speech of Speech Quality 
(PESQ), standardized as ITU-T recommendation P.862 [23], is also used to 
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measure the quality of the reconstructed 16 kHz speech waveform of WORLD 
vocoder without spectral envelope quantization and with spectral envelope 
quantization techniques. In the experiments for comparing unquantized z-
latents and quantized z-latents for embedding space updating, the results 
showed that the proposed GAN technique approximated the embedding space 
better than the Mean Square Error of conventional VQ. The proposed model 
increased the average PESQ of the waveform by about 0.17 with a reduced 
average LSD of 0.5 dB with significant results compared to the VQ-VAE and 
the VAEGAN implemented in VQ-VAE. 
 
 Finally, chapter 7 concludes the study and discusses future works 
opportunities. 
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Chapter 2 
 
Related Studies 
 
2.1 The speech vocoder 
 
 The speech vocoder [24, 25] is the human speech analysis and synthesis 
system. It encodes human voices into speech parameters and decodes them into 
the human voice. The speech vocoder was first designed to reduce the data size 
of the raw speech data in the communication bandwidth and replace the natural 
carrier sound of the human speech with a synthesized carrier sound at a higher 
frequency bandwidth. As a result, the speech data could be reproduced more 
clearly over a long distance since wider frequency band sounds are heard more 
clearly than narrower ones. The speech vocoder is also helpful in studying the 
human speech system as a laboratory tool. Text-to-speech tools also 
incorporate the various vocoders to generate speech sounds. 
 
 Linear Prediction Coding (LPC) [28, 29, 30] is the famous speech 
representation of speech parameters based on human speech production. The 
fundamental idea of LPC is that human speech signals could be approximated 
as a linear combination of past speech samples. The essential LPC 
representation is the all-pole filter model, which approximates human speech. 
The LPC analysis process consists of spectrum analysis, pitch analysis, 
amplitude analysis, and the voice or unvoiced decision. This information 
corresponds to human vocal tract resonance frequencies, pitch repetitions, 
loudness, and vocal cord vibrations. The synthesis process regenerates speech 
signals from the parameters in the analysis process. 
 

In the communication system, the raw speech signal is transformed into 
a digital signal by Pulse Amplitude Moderation (PAM). The digital version of 
the speech signal is too large to transmit over long-range communication. The 
vocoder was invented to manage the digital speech data size by analyzing the 
speech signal into other domains to reduce the data size before applying the 
transmission system. The well-known vocoder is the Linear Prediction Coding 
such as (LPC-10) [28, 29, 30] and the Code-Exited Linear Prediction (CELP) 
[31, 32, 33] in Figure 2.1 (a) and (b). LPC-10 consists of two parts: a feature 
extraction part at the encoder and a synthesis part at the decoder. On the other 
hand, CELP has a local decoder at the encoder, which simulates the decoder 
to find the best codes to minimize the distortion between input and output 
speech. 
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 Those vocoders are mainly operated in the 8 kHz sampling frequency 
for telephone line communications. However, the WORLD [75] is a high-
quality vocoder that manipulates the 48 kHz raw speech waveform. Figure 
2.2 (a) shows the block diagram of the WORLD. First, the analysis system 
extracts speech parameters from 5ms of input raw speech waveform. The 
speech parameters consist of the single value fundamental frequency (F0), 
the vector of the aperiodic parameter (AP), and the vector of spectral 
envelope parameter (SP). Then, the synthesis system uses these speech 
parameters to reconstruct the 5ms output speech waveform.  

 

 
Figure 2.1 (a) Linear Prediction Coding (LPC-10)  

 
 

 
 

Figure 2.1 (b) Code-Excited Linear Prediction (CELP)  
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Figure 2.2 (a) The WORLD vocoder 

 

 
 
Figure 2.2 (b) The spectral envelope estimation comparison, DFT, Mel-
cepstral spectral envelope, LPC-10 spectral envelope, and the WORLD 

vocoder spectral envelope. 
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The spectral envelope is the critical speech parameter in speech 
processing, and Cepstrum and LPC are general methods to represent the 
spectral envelope with a small number of parameters. However, many methods 
based on Cepstrum and LPC do not synthesize high-quality natural speech. 
The difference between the LPC vocoder and the WORLD vocoder is that the 
LPC vocoder estimates the spectral envelope utilizing the LPC method and 
represents the LPC coefficients about 10 to 12 coefficients. However, the 
WORLD vocoder utilizes the full spectral envelope representation from the 
high-quality spectral envelope estimation method. This point makes the 
WORLD vocoder synthesize natural speech and show the clear spectral 
envelope of speech. Figure. 2.2 (b) shows the comparison spectral envelope 
estimation.  
 
2.2 The Vector quantization 

 
2.2.1 Conventional Vector Quantization 

 
As the VQ method, the popular conventional technique is the LBG, or K-
means [40, 41]. The main idea aims to replace the continuous input data with 
finite discrete representations prepared as a codebook. The codebook is 
designed with a fixed number of vector patterns. In the encoder, the squared 
Euclidean distances between the input vector and vector patterns in the 
codebook are calculated, and the lowest distance vector picks the index 
number in the codebook. The index number is the code for transmission as the 
discrete representation. Finally, the decoder obtains the quantized output 
vector from the vector pattern in the codebook corresponding to the index 
number. The manner of vector quantization denotes as follows:  
 𝐼 = 𝐸(𝑥), (2.1) 𝑥 ̃ = 𝐷(𝐼), (2.2) 
 
where 𝑥 is the input vector, 𝐼 is the index number, 𝐸 (.) is the encoder, 𝐷 (.) is 
the decoder, and the 𝑥 ̃ is the quantized output vector. 

 
2.2.2 Sub-band Vector Quantization 
 
Figure 2.3 shows the Sub-band Vector Quantization (Sub-band VQ) [76, 

77] model. The input vector with a length of 𝑥 is divided into n sub-vectors, 
and each sub-vector is quantized by the parallel vector quantizers. The output 
vector 𝑥𝑞 is reconstructed by merging the n quantized sub-band vectors as the 
quantized data. 
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Figure 2.3: The Sub-band Vector Quantization. 
 
 
2.2.3 Predictive Vector Quantization 
 
The Predictive Vector Quantization (PVQ) [79, 80] was the improved 

version of conventional vector quantization. Regarding the conventional 
vector quantization, the current input quantization does not depend on the 
previous input. The PVQ is designed to use the relationship between the 
current input and the previous input in the quantization process. The PVQ 
consists of the encoding and the decoding process, as shown in Figure 2.4. In 
the encoding process, the input data 𝑥 is fed into the quantizer to produce both 
the discrete representation index 𝑖 and the quantized output data 𝑥𝑞. Then the 
index 𝑖 is transmitted to the decoding process. The vector predictor block 
utilizes the 𝑥𝑞 to provide the predicted data 𝑥 ̃ to subtract the following input 
data 𝑥 and add with the following output data 𝑥𝑞. In the decoding process, the 
index 𝑖 is received from the encoding process, and the quantized output data 𝑥𝑞 is reconstructed. The vector predictor outputs the 𝑥 ̃ from the current output 𝑥𝑞, and the 𝑥 ̃ is added to the following output data 𝑥𝑞. 
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Figure 2.4: The Predictive Vector Quantization. 
 

 
2.3 Deep learning  

 
2.3.1 The AutoEncoder 
 
The AutoEncoder [51, 52, 53, 54, 55, 56, 57, 58, 59] is a neural network 

designed for dimensional reduction tasks based on neural networks. The 
identity function is trained as an unsupervised way to reconstruct the original 
input while compressing the data in the encoding process and discovering a 
more efficient and compressed representation. The intermediate representation 
between the encoder network and the decoder network is called z-latents, 
which is the reduction of the input data representation. The AutoEncoder block 
diagram is presented in Figure 2.5. It consists of two networks. 
The encoder network transforms the original high-dimension input into the z-
latent low-dimensional representations, and the decoder network reconstructs 
the original high-dimensional input data from the z-latent.  

 
The encoder network task is the compressor of input data, and the 

decoder network is the decompressor for reconstructing the input data from the 
compressed data called z-latents from the encoder network. The idea of 
dimensional reduction is similar to the Principal Component Analysis (PCA) 
but utilizes the neural network. 
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Figure 2.5: AutoEncoder 

 
The AutoEncoder consists of two main networks. The encoder 

network 𝐸 .  with network parameter 𝜙 and the decoder network 𝐷 .  with 
network parameter 𝜃. The intermediate z-latent 𝑧 = 𝐸 𝑥  is produced from 
the input data 𝑥  via the encoder network, and the reconstructed input data 
is 𝑥= 𝐷 𝐸 𝑥  is produced from 𝑧 received at the decoder network. The 
encoder network and decoder network parameters 𝜃,𝜙  are trained to 
optimize reconstructed data to be the same as the input data by minimizing the 
loss function in Equation 2.3. 

 𝐿 𝜃,𝜙 =  1𝑛 𝑥 −𝐷 𝐸 𝑥 , 
 

 
(2.3) 

where 𝑥 , 𝑖 = 1, … ,𝑛  are the training data, and 𝑛 is the number of the data. 
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Figure 2.6: VAE z-latent estimation (Normal distribution) 

 
2.3.2 The Variational AutoEncoder 
 
The Variational AutoEncoder (VAE) [48] is designed to produce the z-

latent from a distribution. Figure 2.6 shows the VAE z-latent estimation under 
the condition of normal distributions. The AutoEncoder produces the z-latent 
without preliminarily hypothesized distributions. On the contrary, the VAE is 
different. The VAE maps the input vector with the distribution to produce the 
z-latent with a particular meaning. The label distribution 𝑝  is parameterized 
by 𝜃 (in the figure, normal distribution). The relationship between the input 
data 𝑥 and the z-latent 𝑧  represented by the 𝑝 𝑧  is the prior distribution, 
the 𝐸∅ 𝑧|𝑥  is the posterior distribution, and the 𝑝 𝑥 𝑧  is the likelihood. 
The process of reproducing the input data 𝑥 is started by drawing the 𝑧  from 
the prior distribution 𝑝 𝑧 . Then the encoder z-latent outputs 𝑧 produced 
from the encoder network 𝐸∅ 𝑧|𝑥 . The suitable parameter of 𝜃 is derived by 
maximizing the probability of input data 𝑥 as shown in Equation 2.4. 𝜃 = max log 𝑝 𝑥 , 

𝑝 𝑥 =  𝑝 𝑥|𝑧 𝑝 𝑧 𝑑𝑧, 
 
 
 
 
(2.4) 

where, 𝑥 is the input data, the 𝑝 𝑥  is the expected function to produce the 
input data 𝑥 with parameter 𝜃, the 𝑝 𝑥 𝑧  is the likelihood, and the 𝑧  is the 
z-latent drawn from the normal distribution. 
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Since it is hard to solve the 𝑝 𝑥  directly, approximation of 𝐸 𝑧|𝑥  is 
introduced to solve the problem. 𝑝 𝑥 𝑧  is the conditional probability with 
the same function as the decoder network 𝐷 𝑥|𝑧 . In the encoder network, 
the Kullback-Leibler divergence (KL divergence) is used to measure the 
distance between 𝐸 𝑧|𝑥  and 𝑝 𝑥 𝑧 . The KL divergence in Equation 2.5 
minimizes the function with the encoder parameter 𝜙.  𝐿 𝐸 (𝑧|𝑥)||𝑝 𝑥 𝑧 = log 𝑝 (𝑥) + 𝐿 𝐸 (𝑧|𝑥)||𝑝 (𝑧 )                                      −𝐸 ~ (𝑧|𝑥) log𝑝 𝑥 𝑧 . 

 
 
(2.5) 

 
From Equation 2.5, the VAE loss function can be defined in Equation 2.6. 𝐿 (𝜃,𝜙) =  − log 𝑝 (𝑥) + 𝐷 𝑞 (𝑧|𝑥)||𝑝 (𝑥|𝑧 )  =  −𝐸 ~ (𝑧|𝑥) log 𝑝 𝑥 𝑧 +  𝐷 𝐸 (𝑧|𝑥)||𝑝 𝑧  ,  

 
(2.6) 

where, the 𝑥 is the input data, 𝐸 (𝑧|𝑥) is the encoder network (approximated 
normal distribution),  𝑝 𝑥 𝑧  is the likelihood, the 𝑝 (𝑥) is the expected 
function to produce the input data 𝑥 form parameters 𝜃, the 𝑧 is the encoder 
network z-latent, and the  𝑧  is the z-latent drawn from the normal distribution.  

 Figure 2.7 shows the VAE block diagram with the multivariate Gaussian 
(= normal distribution) assumption. The estimation of the z-latent of encoder 
network 𝑧 is expected to be the normal distribution. The reparameterization 
trick is applied to change the form of the encoder network. The multivariate 
Gaussian is presented to estimate the normal distribution in Equations 2.7 and 
2.8:  𝑧 ~ 𝐸 (𝑧|𝑥) =  𝑁(𝜇 = 0 ,𝜎 = 1),    (2.7) 𝑧 =  𝜇 + (𝜎 ∗ 𝜖);  𝜖 ~𝑁(𝜇 = 0,𝜎 =  1),  (2.8) 

where, the 𝑧  is the encoder network z-latent, the 𝐸 (𝑧|𝑥)  is the encoder 
network, the 𝑁(0 ,1) is the probability of normal distribution, the 𝜇  is the 
mean, 𝜎  is the variance, and 𝜎 is the standard deviation. 
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Figure 2.7: VAE with the multivariate Gaussian assumption. 
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2.3.3 The Vector Quantized Variational Autoencoder 
 
The Vector Quantized Variational AutoEncoder (VQ-VAE) [44,45] is 

the discrete version of the z-latents in the VAE. The idea of the conventional 
vector quantization (VQ) is introduced to quantize the continuous z-latents to 
represent discrete z-latents to apply to specific problems such as classification 
and digital compression.  

Figure 2.8 shows the VQ-VAE block diagram. As conventional VQ uses, 
the technique transforms continuous z-latent into a discrete format. The 
embedding space corresponding to the conventional VQ codebook is defined 
as 𝑒 ∈ 𝑅 , 𝑖 = 1, … ,𝐾,  where 𝐾  is the number of vector patterns in the 
embedding space, and 𝐷 is the length of each vector pattern in the embedding 
space. The z-latent 𝑧 (𝑥) is the output of the encoder network and applied as 
a reshaping method to change the dimension matching to 𝐷 of the embedding 
space. The encoder measures the Euclidean distance between the 𝑧 (𝑥) and 
the 𝐾 vector patterns and selects the index of the vector pattern that minimizes 
the distance in Equation 2.9. 

 𝑧 (𝑥) = 𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑒 𝑧 (𝑥) = 𝑒  , 𝑘 = min(∥ 𝑧 (𝑥) − 𝑒 ∥ ) , (2.9) 

where the 𝑧 (𝑥) is the encoder network z-latent, the 𝑒 is the embedding space, 
and the 𝑧 (𝑥) is the quantized z-latent. 

 

Figure 2.8: Vector Quantized Variational AutoEncoder. 
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In the backpropagation process, the min(. ) cannot be backpropagated 
because non-differentiable on the discrete representation. The gradient is 
calculated from the error between 𝑧 (𝑥) and 𝑧 (𝑥) and added into the loss 
function of the VQ-VAE in Equation 2.10: 𝐿  = − log𝑝 𝑥 𝑧 (𝑥) + ‖𝑧 (𝑥) − 𝑒‖ + 𝛽‖𝑧 (𝑥) − 𝑒‖ ,  (2.10) 

where 𝑥 is the input data, 𝛽 is the single constant to commit the encoder. 𝑧 (𝑥) 
is the encoder network z-latent, 𝑒 is the embedding space, and 𝑧 (𝑥) is the 
quantized z-latent. In the equation, the first term is the reconstruction loss, 
which optimizes 𝜃 and 𝜙 of the decoder network 𝑝 𝑥 𝑧 (𝑥)  and encoder 
network 𝑞 (𝑧 (𝑥)|𝑥) parameters. The second term is embedding space loss. 
Based on the gradients bypass, to obtain the embedding 𝑒,  the dictionary 
learning algorithm uses the 𝐿  error to move the embedding vectors 𝑒 towards 
the encoder network z-latent output 𝑧 (𝑥). The third term is commitment loss. 
Since the embedding space values are dimensionless, they can grow arbitrarily 
if the embedding’s 𝑒 do not train as fast as the encoder network parameters 𝜙. 
The commitment loss is added to make sure that the encoder network 𝑞 (𝑧 (𝑥)|𝑥) commits to an embedding 𝑒. 

 We propose two types of vector quantization methods in VQ-VAE. The 
first one is the classic K-means algorithm [40,41]. At the initial state of the 
model, the 𝜙  parameters of the encoder network 𝑞 (𝑧 (𝑥)|𝑥) , the 𝜃 
parameters of the decoder network 𝑝 𝑥 𝑧 (𝑥) , and the parameters of 
embedding space are initialized by random noise from the distribution, and the 
shape is shown in Figure 2.9. The embedding defines the vectors as 𝑒  , 𝑖 =1, … ,𝐾 , where 𝐾  is the number vectors, and 𝑒  has the 𝐷  elements as the 
length. 

Figure 2.10 shows the 𝑧 (𝑥), reshaped 𝑧 (𝑥), and the embedding space. 
The output of the encoder network reshapes from [H, W, D] into the [H×W, 
D], in which D is equal to the dimension of the embedding space. Then each 
vector 𝑧  ; 𝑖 = 1, … ,𝑛(= 𝐻 × 𝑊) of reshaped 𝑧 (𝑥) finds the distance from 
each vector 𝑒  ; 𝑖 = 1, … ,𝐾 in embedding space 𝑒: 𝑠𝑢𝑚_𝑧 =  ∑ (𝑧 ) ; 𝑖 = 1, … ,𝑛(= 𝐻 × 𝑊), (2.11) 𝑠𝑢𝑚_𝑒 =  ∑ (𝑒 ) ; 𝑖 = 1, … ,𝐾, (2.12) 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑢𝑚_𝑧 +  𝑠𝑢𝑚_𝑒 + 2 × 𝑧 × 𝑒 . (2.13) 
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Figure 2.9: Embedding space 𝒆. 

  

Figure 2.10: 𝒛𝒆(𝒙), reshaped 𝒛𝒆(𝒙), and Embedding space. 

Then, each distance 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ; 𝑖 = 1, … ,𝑛(= 𝐻 × 𝑊)  finds the 
minimum distance value and the indices are encoded into a one-hot vector:  𝑖𝑛𝑑𝑖𝑐𝑒𝑠 =  argmin 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒  ;    

𝑖 = 1, 2, … ,𝑛(= 𝐻 × 𝑊),𝑎𝑛𝑑 𝑗 = 1, 2, … ,𝐾 

 
 
(2.14) 

  𝑜𝑛𝑒_ℎ𝑜𝑡 = 1, 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 = 𝑗0, 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 ≠ 𝑗  ;  𝑖 = 1, 2, … ,𝑛(= 𝐻 × 𝑊),𝑎𝑛𝑑 𝑗 = 1, 2, … ,𝐾 

 
 
 
(2.15) 

The quantized z-latent 𝑧 (𝑥)  is a matrix product of 𝑜𝑛𝑒_ℎ𝑜𝑡  and 
embedding 𝑒 and reshape it to the original shape [H, W, C]:  𝑧 (𝑥) =  𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝑜𝑛𝑒_ℎ𝑜𝑡 × 𝑒) (2.16) 

The last process is loss calculations and performs the loss back 
propagation to updater VQ-VAE model parameters:  𝐶𝑜𝑑𝑒𝑏𝑜𝑜𝑘_𝑙𝑜𝑠𝑠 = 𝑀𝑆𝐸 𝑧 (𝑥), 𝑧 (𝑥)  (2.17) 𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡_𝑙𝑜𝑠𝑠 =  𝛽 × 𝑀𝑆𝐸 𝑧 (𝑥), 𝑧 (𝑥)  ;𝛽 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (2.18) 
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Figure 2.11: Embedding space, EMA, and EMA cluster size. 

The second vector quantization method in VQ-VAE is based on the 
Exponential Moving Average (EMA) method to update the embedding 𝑒 
(codebook). The initial state, the embedding 𝑒 , the EMA cluster size 𝑒𝑚𝑎_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 , and the EMA table 𝑒𝑚𝑎  are defined with the random 
values from the normal distribution. Figure 2.11 shows the Embedding space, 
EMA, and EMA cluster size. 

The quantization process still uses the same process as the previous K-
means technique. It calculates the distance between the output of the encoder 𝑧 (𝑥) and embedding 𝑒 and returns the indices 𝑖𝑛𝑑𝑖𝑐𝑒𝑠  corresponding to the 
minimum distance of each 𝑧  , then encodes into 𝑜𝑛𝑒_ℎ𝑜𝑡. The difference 
between the first and the second methods is to use the EMA technique to 
update the embedding 𝑒 without using the previous codebook loss term in 
backpropagation to update 𝑒. 

 The EMA process starts with calculating the ema cluster size: 𝑒𝑚𝑎_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 =  𝑒𝑚𝑎_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 × 𝑑𝑒𝑐𝑎𝑦(1 − 𝑑𝑒𝑐𝑎𝑦) ×  ∑ 𝑜𝑛𝑒_ℎ𝑜𝑡𝑖𝑛=𝐻×𝑊𝑖=1  ;  
𝑑𝑒𝑐𝑎𝑦 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (0.99). 

 
 
 
(2.19) 

Next is to calculate the accumulated vector count 𝑁, EMA volume 𝑑𝑤, and 
recalculate the 𝑒𝑚𝑎_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒: 

𝑁 =  𝑒𝑚𝑎_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 ,  
 
(2.20) 𝑑𝑤 = 𝑜𝑛𝑒_ℎ𝑜𝑡 × 𝑧 , where 𝑧  refers to reshaped 𝑧 (𝑥),  
(2.21) 𝑒𝑚𝑎_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 =  𝑒𝑚𝑎_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 + 𝑒𝑝𝑠𝑖𝑙𝑜𝑛𝑁 + (𝐾 × 𝑒𝑝𝑠𝑖𝑙𝑜𝑛) × 𝑁 ;  𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (1×10 ). 
 
 
 
(2.22) 
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Then, calculate the EMA table 𝑒𝑚𝑎 and update embedding 𝑒:  𝑒𝑚𝑎 = 𝑒𝑚𝑎 × 𝑑𝑒𝑐𝑎𝑦 + (1 − 𝑑𝑒𝑐𝑎𝑦) × 𝑑𝑤 ;  𝑑𝑒𝑐𝑎𝑦 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (0.99) 

 
 
(2.23) 

  𝑒 = 𝑒𝑚𝑎𝑒𝑚𝑎_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒  
(2.24) 

However, the commitment loss still needs to calculate for applying 
backpropagation technique to update encoder 𝜙 parameters: 𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡_𝑙𝑜𝑠𝑠 =  𝛽 × 𝑀𝑆𝐸 𝑧 (𝑥), 𝑧 (𝑥)  ;𝛽 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡   (2.25) 
 

2.3.4 The Generative Adversarial Networks   
 

  The Generative Adversarial Network (GAN) [68, 69, 70, 71] is an 
unsupervised deep learning technique to generate high-quality output. Figure 
2.12 shows the block diagram of GAN. The GAN consists of the generator 
network to produce the generated data from random noise and the 
discriminator network to distinguish the real data and the generated data (as 
fake data) from the generator network. The generator network tries to generate 
data similar to the real data, and the discriminator networks distinguish 
between real data and the generated data. The process is a game of two 
networks, and they try against each other by adopting the generator loss shown 
in Equation 2.26 to update parameters in the generator network and the 
discriminator loss in Equation 2.27 for the discriminator network.  
 min 𝐿 (𝐺) = E ~ log 1 − 𝐷 𝐺(𝑧) ,  

(2.26) 
 max 𝐿 (𝐷) = E ~ log 𝐷(𝑥) + E ~ log 1 − 𝐷 𝐺(𝑧) ,  

(2.27) 
 

where 𝐺(. ) is the generator network output, 𝐷(. ) is the discriminator network 
output,  𝑧 is random noise, 𝑝  is the data distribution of random noise, 𝑥 is the 
real data, and 𝑝  is the distribution of the real data. 
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Figure 2.12: The Generative Adversarial Networks 

 
2.4 Perceptual Evaluation of Speech Quality 
 

2.4.1 Subjective Quality Assessments 
The Subjective Quality Assessments [81, 82] are the processes to 

evaluate waveform quality performance by listening and comparing the 
reference (clean) speech and the transformed (quantized) speech.  

 
The international standard ITU-T Recommendation P.800 defines the 

Subjective Quality Assessments by the naïve listeners and the headset over one 
ear. The mean opinion score (MOS) is the average score of the subjective 
listening tests, scaled from one to five for the worst to the best, as shown in 
Table 2.1. 
 

2.4.2 Objective Quality Assessments 
 
2.4.2.1 Mean Squared Error 
 
The Mean Squared Error (MSE) [83, 84] is one of the primary objective 

quality assessments and is applied in many experiments to measure the 
distortion between the reference (unquantized) and the target (quantized) 
variables. The formulation of calculating the distortion is presented in 
Equation 2.28, which calculates the error power of two variable vectors. The 
MSE value should be minimized for better results (low MSE distortion). 
 𝐿 =  1𝑛 (𝑢𝑛𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑  – 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑 ) ,  

(2.28) 
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where n is the variable's length, unquantized is the unquantized variable, and 
quantized is the quantized one. 
 
 

Table 2.1  
Mean Opinion Score (MOS) 

 
Rating Label 

5 Excellent 

4 Good 

3 Fair 

2 Poor 

1 Bad 
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 2.4.2.2 L2 Error  
 

The L2 Error is another well-known objective quality assessment 
method for measuring the distortion between two variables. Equation 2.29 
shows the formula for calculating the squared errors of two variables. The L2 
is the same trend as the MSE; the value should be minimized for better results 
(low L2 distortion). 𝐿2 = (𝑢𝑛𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑 − 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑 ) ,  

(2.29) 

where n is the length of the variables, unquantized is the unquantized variable, 
and quantized is the quantized one. 
 

2.4.2.3 Log Spectral Distortion 
 
The Log Spectral Distortion (LSD) [85, 86] is the distortion measure of 

objective quality assessments for speech spectral envelopes. The LSD 
measures the errors of the two spectral envelopes of the root mean square log-
spectral distance. The LSD is defined in Equation 2.30. The LSD is also the 
same trend as the MSE and L2; the value should be minimized for better results 
(low LSD distortion). 
 𝐿𝑆𝐷( ) = 10 × ∑ ∑ 𝑋 − 𝑌 , 

 
(2.30) 

where 𝑀 is the number of log-spectral coefficients frames, 𝑁 is the vector 
length of the log-spectral frame, 𝑋  is the original logarithm with base ten 
unquantized spectral coefficients, and 𝑌  is the quantized logarithm with base 
ten spectral coefficients. In this research, we use the spectral coefficients of 
the WORLD. 

 
2.4.2.4 Perceptual Evaluation of Speech Quality (PESQ) 
 
The PESQ [87] is the ITU-T Recommendation P.862. The PESQ is a 

standard objective quality assessment measure for calculating the waveform 
distortion at an 8 kHz sampling rate for narrow-band and 16 kHz for wide-
band. The PESQ measures the distortion between two speech waveforms. The 
objective score was developed to estimate the traditional MOS method of 
subjective quality assessment. The score varies from the lowest to the highest 
(-0.5 to 4.5). The PESQ MOS score output a higher score when the distortion 
between two waveforms is lower. The maximization of the PESQ MOS score 
helps improve the waveform's subjective quality. 
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Chapter 3  

Overview of speech spectral envelope 
quantization based on deep learning 

 
3.1 Overview 
 

This chapter discusses the general idea of the development flow for 
speech spectral envelope quantization. We explain each study's concept and 
how it relates to the final gold of speech spectral envelope quantization based 
on deep learning.  
 

The speech parameters produced by the WORLD vocoder [75] analysis 
consist of the Fundamental Frequency (F0), the Aperiodicity Parameter (AP), 
and the Spectral Envelope Parameter (SP). Those parameters reproduce the 
raw input speech waveform at the vocoder's output. The most critical 
parameter for synthesizing high-quality output speech waveform is the SP 
compared to the F0 and AP. The F0 is the constant that represents the 
Fundamental Frequency of the input speech frame (5 ms raw speech input 
data). The Aperiodicity is a vector of indices in the frequency domain. The 
vector shows either voice frequency parts or unvoiced/noisy frequency 
components. The Spectral Envelope is the vector of speech frequency envelope 
estimation of the raw speech input. The SP is the most sensitive parameter for 
noise compared to F0 and AP. Suppose the SP got the same distortion with the 
F0 and AP. The distorted SP will reproduce the bad quality output speech 
waveform. On the other hand, if the F0 and the AP got some distortion, the 
synthesized output speech waveform quality is not affected so badly. The bit 
allocation is also an important parameter when designing the quantizer.  

 
This dissertation studies WORLD Spectral Envelope Quantization by 

applying the conventional and recent quantization techniques based on Deep 
learning. Figure 3.1 shows the overall system of the WORLD spectral 
envelope quantization process. First, the 5 ms input is analyzed, the SP vector 
is extracted, and F0 and Ap parameters are extracted. Secondly, the SP vector 
is logarithmically compressed and normalized between Min-Max limits, 
obtaining 𝑆𝑃  vector. Then, proposed quantization methods are applied to 
the 𝑆𝑃 , and 𝑆𝑃  is obtained. The WORLD synthesizes the output 
speech by using the 𝑆𝑃  vector, the F0 constant, and the AP vector. 

 



27 
 

 
 

Figure 3.1: The WORLD vocoder Spectral Envelope Quantization 
 
 

3.2 Scope of the Spectral Envelope Quantization  
 

In this dissertation, the conventional Vector Quantization (K-means) 
[40, 41] is applied to quantize the WORLD spectral envelope compared with 
deep learning techniques. The database of the raw speech waveform utilized 
in this dissertation is the VCTK corpus (48 kHz sampling frequency) and the 
LibriSpeech corpus (16 kHz sampling frequency) to study the effect of deep 
learning quantization techniques. 
 

In Chapter 4, three Vector Quantization techniques are investigated for 
the performance to quantize the WORLD spectral envelopes of 48 kHz raw 
speech waveforms. The VQ techniques include the K-mean, the Vector 
Quantized Variational AutoEncoder (VQ-VAE), and the proposed Multi-
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Layers Perceptron (MLP-VQ-VAE). The proposed MLP-VQ-VAE takes 
advantage of the conventional technique (K-means) and the Vector 
Quantization based on deep learning (VQ-VAE) in terms of the reconstruction 
error. 

 
In Chapter 5, the fundamental two conventional Vector Quantization 

methods such as the Sub-band Vector Quantization [76, 77], the Predictive 
Vector Quantization [79, 80] are investigated in the Vector Quantization based 
on the frameworks of deep learning called Vector Quantized Variation 
AutoEncoder (VQ-VAE) by utilizing the 48 kHz raw speech waveforms, the 
proposed Sub-band VQ-VAE, and the Predictive VQ-VAE.  In the 
experiments, the conventional VQ method can boost the reconstruction 
performance of the VQ-VAE. 
 

In Chapter 6, the Adversarial Deep learning Techniques such as the 
Generative Adversarial Technique [68] are combined with the VQ-VAE to 
reduce the z-latent errors for the 16 kHz raw speech waveform. The 
Adversarial Loss terms and the Adversarial Deep learning Technique can 
increase the z-latent reconstruction performance compared to the conventional 
Euclidian distance error of VQ-VAE. 
 

Chapter 7 is the conclusion of the dissertation. The whole study is 
summarized into the point and mentions the advantages and disadvantages of 
the VQ based on deep learning. The end of the chapter also presents the future 
work in the last session. 
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Chapter 4 
 
The vector quantization based on deep 
learning for speech spectral envelope 
quantization  
 
4.1 Overview 
 
 This section aims to study the effect of deep learning architecture on 
VQ. The conventional VQ technique (K-means) [40, 41] constructed to 
quantize the spectral envelope in four different target bitrates are compared to 
the standard VQ-VAE [44, 45] that architecture is constructed from the 
Convolutional Neural Networks and the Multi-layer Perceptron architecture as 
the Multi-layer Perceptron Vector Quantized Variational AutoEncoder (MLP-
VQ-VAE). 

 
Figure 4.1 shows an overview of the spectral envelope quantization. The 

MLP-VQ-VAE is proposed to replace the Convolutional Neural Networks 
(CNN) [88] with Multilayer Perceptron (MLP) [89] in the architecture of the 
encoder network and decoder network of VQ-VAE. The CNN makes a model 
that creates the z-latents with massive sizes in three dimensions and takes 
effect to have a large size of embedding space. The MLP-VQ-VAE can 
manage the number of z-latent vectors more flexibly than the VQ-VAE and 
complete the dimensional reduction task.  

 
The experiment results evaluated the MLP-VQ-VAE to quantize the 

spectral envelope parameters of the 48 kHz WORLD vocoder [75] in four 
target bitrates. It showed that the MLP-VQ-VAE had lower Log Spectral 
Distortion (LSD) compared to conventional vector quantization and the VQ-
VAE and had a smaller representation of z-latents and codebook or embedding 
space compared to conventional vector quantization and VQ-VAE. 
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Figure 4.1: Overview of the well-known conventional vector 
quantization compared to the vector quantization based on deep 

learning for speech spectral envelope quantization. 
 

4.2 Methodology 
 

4.2.1 Conventional Vector Quantization  
 

The LBG or K-means [40, 41] is used as popular conventional VQ 
methods. the main idea aims to replace the continuous input data with finite 
discrete representations. The codebook is designed with fixed number of 
vector patterns. In the encoder, the squared Euclidean distance between the 
input vector and the vector patterns in the codebook is calculated, and the index 
number is picked by the lowest distance vector in the codebook. The index 
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number is the discrete representation. In the decoder, the quantized output 
vector is constructed from the vector pattern in the codebook directed by the 
index number. The manner of vector quantization denotes as follows:  

 𝐼 = 𝐸(𝑥) (4.1) 𝑥 ̃ = 𝐷(𝐼) (4.2) 
 
where 𝑥 is the input vector, 𝐼 is the index number, 𝐸 (.) is the encoder, 𝐷 (.) is 
the decoder, and the 𝑥 ̃ is the quantized output vector. 
 

4.2.2 Vector Quantized Variational AutoEncoder (VQ-VAE) 
 

The Vector Quantized-Variational AutoEncoder (VQ-VAE) [44, 45] is 
an end-to-end vector quantization method based on deep learning, inspired by 
conventional vector quantization. The encoder network is implemented in the 
model with two stride convolutional layers (stride by 2) connected to two 
residual blocks and one convolutional layer to prepare the z-latent shape (stride 
by 1) and the fixed embedding space utilized for z-latent quantization. The 
decoder network is a counterpart of the encoder network, in which one 
transposed convolutional layer (stride by 1) is used for recovering the suitable 
shape for the two residual blocks, followed by two transposed convolutional 
layers.  

The input data 𝑥 are fed into the encoder network to produce the z-
latent 𝑍 (𝑥). The reshape technique is applied to 𝑍 (𝑥), and the reshaped z-
latent is sub-vectors with suitable shape for quantization that corresponds to 
vector patterns in embedding space 𝑒. The vector quantization is applied to 
each sub-vector of reshaped z-latent by calculating the squared Euclidean 
distance and returning a set of one-hot vectors for discrete representation. 
From the set of one-hot vectors, the quantized version of reshaped z-latent is 
organized by selecting the vector pattern that corresponds to the set of one-hot 
vectors from 𝑒. The quantized version of reshaped z-latent is obtained by 
reshaping the original shape as the 𝑍 (𝑥) to represent the quantized z-latent 𝑍 (𝑥). The decoder network uses the 𝑍 (𝑥) as input to produce the output data 𝑥 ̃ that indicates the input data 𝑥. The overall training loss consists of three 
terms. The first term is negative log-likelihood for optimizing the encoder and 
the decoder networks about reconstruction error. The second term is the least-
squares error of changes of vector patterns in 𝑒 toward the reshaped z-latent. 
The last term is the commitment loss to make sure that the 𝑒 can be trained as 
fast as the encoder network. The loss is described as follows:  
 
 𝐿 = − log(𝑝(𝑥|𝑍 (𝑥)) + ‖𝑠𝑔 𝑍 (𝑥) −  𝑒‖ + 𝛽‖𝑍 (𝑥) −  𝑠𝑔(𝑒)‖  (4.3) 
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Figure 4.2: The block diagram of MLP-VQ-VAE. 
 
where 𝑥 is the input data, the 𝑍 (𝑥) is the z-latent, the 𝑒 is embedding space, 
the 𝑍 (𝑥) is the quantized z-latent, the 𝑠𝑔 (.) is the stop gradient operator, and 𝛽 is the hyper-parameter. 
 

4.2.3 Multilayer Perceptron Vector Quantized Variational 
AutoEncoder (MLP-VQ-VAE) 

 
We propose the Multilayer Perceptron Vector Quantized Variational 

AutoEncoder (MLP-VQ-VAE) to improve the flexibility to control the z-latent 
size and entire dimensionality reduction. The VQ-VAE encoder network 
transforms the input data into a z-latent. The stride and the filter parameters 
control the size of the z-latents. However, since the encoder network cannot 
complete the dimensional reduction task, the z-latent is still vast, and hard to 
control the size. The MLP-VQ-VAE replaces the convolutional neural network 
with the simple Multilayer Perceptron (MLP). As a result, the MLP can 
efficiently operate the dimensional reduction of the input data and has the 
flexibility to control the z-latent size.  
 

As shown in Figure 4.2, the model consists of the encoder and decoder 
networks formed with MLP to cooperate with the embedding space (𝑒) related 
to quantization. Suppose 𝑥 is the input data. The encoder network transforms 𝑥 into the z-latent vector 𝑍 (𝑥) that is a smaller representation with the shape 
(H = 1, W), where H is the height dimension, and W is the width dimension. 
The fixed embedding space is designed with the shape (𝐾,𝐷 ), where K 



33 
 

is the number of vector patterns, and 𝐷  is the length of the vector. The 𝑍 (𝑥) is reshaped into N sub-vectors with the length of 𝐷 . The vector 
quantization is applied to each sub-vector of reshaped z-latent to obtain the set 
of one-hot vectors. The quantization of reshaped z-latent sub-vectors is 
constructed by choosing the vector pattern that corresponds to the one-hot 
vectors, and it reshapes back to (H = 1, W) to represent the quantized z-latent 𝑍 (𝑥) . The decoder network uses the 𝑍 (𝑥) to produce the output data 𝑥 ̃ that 
indicates to 𝑥. The training loss function in the practice of the MLP-VQ-VAE 
also uses the same loss of the VQ-VAE in Equation (3) for model optimization. 

 
4.3 Experiments and Results 
 

4.3.1 WORLD vocoder spectral envelope quantization  
 

The WORLD vocoder [57] is the high-quality vocoder that manipulates 
the 48 kHz raw speech waveform. The analysis system extracts speech 
parameters from 5 milliseconds of input raw speech waveform. The speech 
parameters consist of the single value fundamental frequency (F0), the vector 
of the aperiodic parameter (AP) with the length of 1025, and the vector of the 
spectral envelope parameter (SP) with the length of 1025. The synthesis 
system uses speech parameters to reconstruct the five milliseconds output 
speech waveform. The SP parameter is a highly complex structure and 
necessary to synthesize speech waveform. The proposed MLP-VQ-VAE was 
applied to quantize the SP parameter and compared with the conventional 
vector quantization and VQ-VAE. 
 

The WORLD analysis and synthesis processes in the experiment were 
as follows: The five milliseconds input raw speech waveform was applied to 
extract speech parameters. The constant of F0 and the AP vector were sent to 
the synthesis part without applying the quantization. The SP vector was 
applied to the logarithm base 10, followed by the min-max normalization to 
scale values between 0 and 1, and vector quantization techniques were utilized 
to quantize. The quantized SP vector was applied to the inverse min-max 
normalization and the inverse logarithm base 10 to transform data into the 
original values of the quantized spectral envelope parameter. The synthesis 
system used the F0 constant, AP vector, and quantized SP vector to reconstruct 
the five milliseconds output speech waveform. 
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Table 4.1 
The implementation of four conventional vector quantization models 

 
 

4.3.2 Raw speech waveform database  
 
 We used the CSTR VCTK corpus [90] as the raw speech waveform 
database. The speech database is 16 bits with 48 kHz as sampling frequency, 
recorded from 109 English native speakers with about 400 sentences with 
various accents. To construct the SP vector database, the WORLD vocoder 
appropriately extracted the spectral envelope parameters from every five 
milliseconds of the waveforms. Then, in the training process of vector 
quantization techniques, the SP vector database was processed with the 
logarithmic base ten and min-max normalization to transform the values into 
a scale between 0 to 1. 
 

4.3.3 The comparison of MLP-VQ-VAE and conventional vector 
quantization for spectral envelope quantization  

 
The experiment investigated the MLP-VQ-VAE and the conventional 

vector quantization performance for quantization of the SP vector. The SP 
vector length was 1025. The codebook for conventional vector quantization 
and the embedding space for MLP-VQ-VAE was fixed with the same number 
of K = 512 vector patterns or 9 bits quantization. 
 

We implemented four models to operate in four different bitrates as the 
conventional vector quantization. Because of the limitation of the reshaping 
method, it affected finding the number of 𝑁 sub-vectors. The four shapes of 
reshaped vectors were selected, and the implementation detail for the four 
models was shown in Table 4.1. The first model reshaped the SP vector into 
shape (𝑁 = 5, 𝐷 = 205) to represent the reshaped vector for quantization, 
where 𝑁 is sub-vectors to quantize, and 𝐷  was the length of the vector 
corresponding to the length of vector patterns in the codebook. The VQ process 
assigned each sub-vector with the nearest vector patterns in the codebook; the 
first model is 45 bits/SP vector. The reshaped vectors are (𝑁 = 25, 𝐷  = 
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41), (𝑁 = 41, 𝐷  = 25), (𝑁 = 205, 𝐷  = 5), the bitrates became 225 
bits/SP vector for the second model, 369, and 1845 bits/SP vector for the third, 
and the fourth model, respectively.  

 
Figure 4.3 shows the quantization process of conventional VQ. The 

input SP vector was reshaped into the compatible shape for quantization, 
related to the designed Codebook vector patterns. The VQ process was applied 
to quantize each of the reshaped vectors to transform the continuous vector 
into a discrete representation. The inverse VQ received the discrete 
representation and reconstructed the quantized version of the reshaped vectors 
by selecting the corresponding vector patterns in the codebook that matched 
the discrete representation. At the end of the quantization process, the 
quantized reshaped vector was transformed into the quantized SP vector by the 
applied reshaping method. 

 
Figure 4.4 shows the Conventional VQ Training process. The training 

of four conventional vector quantization models utilized the maximum number 
of iterations of the k-means algorithm set for 300 iterations and relative 
tolerance with regards to inertia to declare convergence set to 0.0001.  

 
In the training process, the input SP vector calculated the distance 

(Euclidean distance) with all K vector patterns in the codebook with Equation 
4.4: 
 𝑑 (𝑝, 𝑞 ) =  (𝑝 − 𝑞 )     ;   𝑖 = 1,2, … ,𝐾,  (4.4) 

 
where 𝑝 was the SP vector and 𝑞  was the vector pattern in the codebook. 𝐾 
was the number of vector patterns in the codebook. 
 

The discrete representation of the input SP vector was represented with 
the index number 𝐼 of the minimum distance 𝑑 , calculated from Equation 4.5: 
 min∈ 𝑑 (𝑝, 𝑞 ), (4.5) 

 
where 𝑝 was the SP vector and  𝑞  was the vector pattern in the codebook. 
min(.) was the minimum function. 
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Figure 4.3: The Conventional VQ quantization diagram. 
 

 
 

Figure 4.4: The Conventional VQ Training process. 
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The final training process updated the vector pattern in the codebook 

corresponding to the input SP vector with Equation 4.6: 
 𝑘 =  1|𝑆 | 𝑝∈  ; 𝑖 = 1,2, … ,𝐾 𝑎𝑛𝑑 𝑗 = 1,2, … ,𝑀, 

 

 
(4.6) 

where 𝑆  is the input SP vector cluster indexed as 𝑖. 𝐾 is the number of vector 
patterns (centroids) in the codebook. 𝑀 is the number of input SP vectors in 
each cluster. 𝐾 is the number of vector patterns (centroids) in the codebook. 𝑝  (𝑗 = 1, … ,𝑀) is the SP vector in the cluster 𝑆 , and 𝑘  (𝑖 = 1, … ,𝐾) is the 𝑖-th vector pattern (centroid) with a minimum distance from SP vectors in the 
cluster 𝑆 .  

 
 The MLP-VQ-VAE architecture was constructed with Multilayer 
Perceptron networks. The encoder network consists of three layers. The input 
layer assembled with 1025 neurons, 1025 bias, and Rectified Linear Unit 
(ReLU) was used as the activation function. The hidden layer was assembled 
with 900 neurons, 900 biases, and ReLU. The coding layer was flexibly 
designed with a specific number of neurons with the same number of biases. 
The decoder network was a counterpart of the encoder, and the input layer used 
the same structure as the coding layer of the encoder network. The hidden layer 
was also the same structure as the hidden layer of the encoder network. The 
output layer was built with the same structure as the input layer of the encoder 
network, but Sigmoid was implemented as the activation function.  
 

 Table 4.2 shows the implementation conditions of the four models of 
MLP-VQ-VAE, designed with the four target bitrates to compare with the 
conventional vector quantization. The number of neurons and bias were the 
same. The ReLU was applied to the input layer and the hidden layer as the 
activation function, while it was not to the coding layer. The encoder networks 
were 1025-900-615, 1025- 900-625, 1025-900-615, and 1025-900-615 for the 
first, second, third, and fourth models, respectively. The z-latent vector sizes 
were (1, 615), (1, 625), (1, 615), (1, 615), the reshaped z-latents were (𝑁 = 5, 𝐷   = 123), (𝑁 = 25, 𝐷  = 25), (𝑁 = 41, 𝐷  = 15), and (𝑁 = 205, 𝐷 = 3), for the first, second, third, and the fourth models, respectively. 
The number of 𝑁 sub-vectors was set as the same as the four conventional 
vector quantization models, and 𝐷  was the length corresponding to the 
length of vector patterns in the embedding space. The bitrates became 45, 225, 
369, and 1845 bits/SP vector, respectively.  
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Table 4.2 

The implementation of four MLP-VQ-VAE models for comparison with 
conventional vector quantization 

 

 
 

 
Figure 4.5 shows the quantization process of the MLP-VQ-VAE. The 

SP vector is the input of the encoder network to produce the z-latent vector. 
The reshaping method is applied to the z-latent vector for the reshaped z-latent 
vectors with the vector length corresponding to the vector length of the 
designed embedding space. The VQ is applied to transform the continuously 
reshaped z-latent vectors into a discrete presentation, and the inverse VQ is 
transformed back to the quantized continuous z-latent vectors as quantized 
reshaped z-latent vectors. The input of the decoder network is the quantized z-
latent vectors that reshape from the quantized reshaped z-latent vectors and 
reproduce the quantized SP vector.  

 
Figure 4.6 shows the proposed MLP-VQ-VAE training process. In the 

experiment, the training of MLP-VQ-VAE models used the value of 0.0001 as 
the learning rate. Adam optimizer was applied to optimize network parameters. 
The number of training epochs was set to 500,000, and each epoch used the 
random of eight SP vectors from the SP vector database as a mini-batch. In the 
training process, the encoder network received the input SP vector and 
produced the z-latent. The VQ process utilized the z-latents to find the 
minimum (Euclidian distance) based on Equation 4.4. It returned the index of 
the vector pattern in the embedding space as the discreet representation of the 
z-latent. In the inverse VQ process, the obtained index was utilized to choose 
the corresponded vector pattern in the embedding space to represent the 
quantized z-latent. The decoder network produced the quantized SP vector 
from the quantized z-latent. In the end, Equation 4.3 calculated the loss, and 
the Adam optimizer updated the network parameters consisting of the encoder 
network, decoder network, and embedding space.  
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Figure 4.5: The proposed MLP-VQ-VAE diagram. 

 

 
Figure 4.6: The proposed MLP-VQ-VAE training process. 
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The experimental results calculate the Log Spectral Distortion (LSD) 
[85, 86] as the spectral envelope distortion indicator; the LSD equation is 
defined in Equation 4.7:  

 𝐿𝑆𝐷( ) = 10 × ∑ ∑ 𝑋 − 𝑌 , 
 
(4.7) 

 
where 𝑀 is the number of log-spectral coefficients frames, 𝑁 is the length of 
each log-spectral coefficient, 𝑋  is the original logarithm with base ten 
spectral coefficients of the WORLD output waveform, and 𝑌  is the logarithm 
with base ten spectral coefficients of the WORLD quantized SP output 
waveform. 

 
Figures 4.7 and 4.8 show the process of calculating the average LSD for 

the conventional VQ and the proposed MLP-VQ-VAE, respectively. The 
testing set consisted of 100 raw speech waveforms from the VCTK corpus that 
were not included in the training process of the conventional VQ and the 
proposed MLP-VQ-VAE. The WORLD vocoder extracted the speech 
parameters from each raw speech waveform, only the spectral envelope 
parameter (SP) was applied to quantize, and the synthesis process 
reconstructed the raw speech waveform again based on the quantized SP and 
other parameters. The LSD was calculated to measure the distortion between 
SP and quantized SP for each raw speech waveform. Finally, the average LSDs 
were calculated for each condition. 
 

Figure 4.9 shows the average values of LSD that were evaluated from 
the four models of both conventional vector quantization and the MLP-VQ-
VAE with four target bitrates. 

 
 Figure 4.10 shows the examples of the quantized SP vectors for four 

target bits/SP vector. 
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Figure 4.7: The conventional VQ average LSD evaluation. 
 

 

 
Figure 4.8: The proposed MLP-VQ-VAE average LSD evaluation. 

 



42 
 

 

 
 

Figure 4.9: The comparison of LSD (dB) in four targets of bits/SP vector, 
the conventional vector quantization, and the proposed MLP-VQ-VAE. 
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Figure 4.10: The example of quantized spectral envelope parameter 
frames; (a), (c), (e), (g) are 45, 255, 369, 1845 bits/SP vector of 

conventional vector quantization, respectively. (b), (d), (f), (h) are 45, 
255, 369, 1845 bits/SP vector of MLP-VQ-VAE, respectively. 
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4.3.4 The comparison of MLP-VQ-VAE and VQ-VAE for spectral  
 envelope quantization  

 
This experiment investigated the performance of quantizing the SP 

vector of both the MLP-VQ-VAE and the VQ-VAE methods. The embedding 
space was fixed to the number of K = 512 vector patterns for both techniques. 
As for the VQ-VAE architecture, the encoder network was implemented with 
two convolutional layers as (stride 2, 4×4 filter with 64 filter depth, ReLU) and 
(stride 2, 4×4 filter with 128 filter depth, ReLU), followed by two residual 
blocks implemented as (stride 1, 3×3 filter with 64 filter depth, ReLU) and 
(stride 1, 1×1 filter with 128 filter depth, ReLU), connected with one 
convolutional layer implemented as (stride 1, 1×1 filter with 64 filter depth). 
The decoder was a counterpart of the encoder network, one transposed 
convolutional layer (stride 1, 1× 1 filter with 128 filter depth, ReLU) renewed 
the suitable shape for the same two residual blocks as the encoder network, 
and followed by the first transposed convolutional layer (stride 1, 4×4 filter 
with 64 filter depth, ReLU) followed with the second transposed convolutional 
layer (stride 1, 4×4 filter with 1 filter depth, Sigmoid). 
 

The four models of VQ-VAE were constructed to operate in four target 
bitrates as shown in Table 4.3. The SP vector length was 1025. The z-latent 
conducted from the encoder network had a limited shape for reshaping. 
However, the four reshaped z-latent shapes were (N=8,𝐷 =2056), (N=32, 𝐷 =514), (N=64, 𝐷 =257), and (N=257, 𝐷 =64), and the output 
bitrates were 72, 288, 576, and 2313 bits/SP vector for the first to the fourth 
models, respectively.  

 
Figure 4.11 shows the quantization process of the VQ-VAE. The SP 

vector was the input of the encoder network to produce the z-latent matrix. The 
reshaping method was applied to the z-latent matrix for the reshaped z-latent 
vectors with the vector length corresponding to the vector length of the 
designed embedding space. The VQ was applied to transform the continuous 
reshaped z-latent vectors into a discrete presentation, and the inverse VQ was 
transformed back to the quantized z-latent matrix as quantized reshaped z-
latent vectors. The input of the decoder network was the quantized z-latent 
matrix that was reshaped from the quantized reshaped z-latent vectors and 
reproduced the quantized SP vector. 
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Table 4.3 
The implementation of four VQ-VAE models 

 

 
 

 

 
 

Figure 4.11: The VQ-VAE diagram. 
 
Figure 4.12 shows the VQ-VAE training process. In training, the 

encoder network receives the input SP vector and produces the z-latent, which 
minimizes Equation 4.4, and the index is sent to the decoder. The decoder 
network receives the index and reconstructs the quantized z-latents by picking 
the corresponding vector pattern in the embedding space. In the end, Equation 
4.3 calculates the VQ-VAE loss, and the Adam optimizer updates network 
parameters consisting of the encoder network, decoder network, and 
embedding space (codebook). The training of VQ-VAE models used the same 
parameter values as the MLP-VQ-VAE training. (The learning rate: 0.0001, 
The optimizer: Adam, The number of training epochs: 500,000, Minibatch: the 
random of eight SP vectors from the SP vector database.)   
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Figure 4.12: The VQ-VAE training process. 
 
 

The MLP-VQ-VAE architecture compared the previous model with the 
conventional vector quantization. The coding layer was changed because of 
the redesign of the expected four target bitrates being the same as the VQ-VAE 
model. Table 4.4 shows the four models of MLP-VQ-VAE, created with the 
four target bitrates, corresponding to the VQ-VAE. The encoder networks 
were 1025-900-768, 1025-900-768, 1025-900- 768, and 1025-900-771, the z-
latent vector sizes were (1, 768), (1, 768), (1, 768), (1, 771), the reshaped z-
latents are (𝑁 =8, 𝐷  = 96), (𝑁 = 32, 𝐷 = 24), (𝑁 =64, 𝐷 = 12), 
and (𝑁 = 257, 𝐷  = 3), the bitrates became 72, 288, 576, and 2313 bits/SP 
vector for the first to the fourth models, respectively. 
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Table 4.4 
The implementation of four MLP-VQ-VAE models for compression  

with VQ-VAE 
 

 
 

 
Figure 4.13 presents the quantization process of the MLP-VQ-VAE. The 

process was the same as Figure 4.5 in subsection 4.3.3.  
 

 Figure 4.14 shows the proposed MLP-VQ-VAE training process. The 
process was the same as Figure 4.6 in subsection 4.3.3. The MLP-VQ-VAE 
training parameters were also the same in subsection 4.3.3. (The learning rate: 
0.0001, The optimizer: Adam, The number of training epochs: 500,000, 
Minibatch: the random of eight SP vectors from the SP vector database.) 
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Figure 4.13: The proposed MLP-VQ-VAE diagram. 

 
 

 
Figure 4.14: The proposed MLP-VQ-VAE training process. 
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The experimental results for comparing VQ-VAE and the proposed 
MLP-VQ-VAE calculated the LSD defined in Equation 4.7. Figures 4.15 and 
4.16 presented the process of calculating the average LSD for the VQ-VAE 
and the proposed MLP-VQ-VAE, respectively. These processes were the 
same, except that the encoder and decoder were either VQ-VAE or MLP-VQ-
VAE.  

 
The testing set consisted of 100 raw speech waveforms from the VCTK 

corpus that were not included in the training process of the VQ-VAE and the 
proposed MLP-VQ-VAE. The WORLD vocoder extracted the speech 
parameters from each raw speech waveform, only the spectral envelope 
parameter (SP) was applied to quantize, and the synthesis process 
reconstructed the raw speech waveform again based on the quantized SP and 
other parameters. The LSD was applied to measure the distortion between SP 
and quantized SP for each raw speech waveform. Finally, the average LSDs of 
100 samples were calculated for each condition. 
 

Figure 4.17 shows the LSDs of four models of both VQ-VAE and the 
MLP-VQ-VAE with four target bitrates. Moreover, Figure 4.18 shows the 
examples of quantized SP vectors for four target bits/SP vector. 
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Figure 4.15: The VQ-VAE average LSD evaluation. 

 

 
Figure 4.16: The proposed MLP-VQ-VAE average LSD evaluation. 
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Figure 4.17: The comparison of LSD (dB) in four targets of bits/SP 
vector, the VQ-VAE, and the proposed MLP-VQ-VAE. 
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Figure 4.18: The example of quantized spectral envelope parameter 
frames. (a), (c), (e), (g) are 72, 288, 576, 2313 bits/SP vector of VQ-VAE, 
and (b), (d), (f), (h) are 72, 288, 576, 2313 bits/SP vector of MLP-VQ-
VAE, respectively. 
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4.4 Discussion 
 

We examined the performance of MLP-VQ-VAE with the flexibility of 
controlling the z-latent size and the ability of dimensionality reduction. The 
experiments were designed to quantize the spectral envelope parameters of the 
WORLD vocoder.  
 

In the first experiment, the conventional vector quantization and the 
MLP-VQ-VAE were compared for the four target bitrates. The results from 
Table 4.1 and Table 4.2 show that the MLP-VQ-VAE can decrease the input 
vector size and the codebook size space by around 1.6 times. From the results 
in Figure 4.9, the average of the MLP-VQ-VAE LSD gives lower LSDs than 
those of conventional vector quantization. The average difference for four 
target bitrates is around 1.1 points in dB. 

 
The second experiment was the comparison of VQ-VAE and the MLP-

VQ-VAE. The results from Table 4.3 and Table 4.4 express that the MLP-VQ-
VAE can decrease the z-latent and the embedding space size by around 21.4 
times. The MLP-VQ-VAE also points out the significant ability to reduce LSD 
distortion. The average from four target bitrates is around 2.5 points in dB, 
from the results shown in Figure 4.17.  
 

The MLP-VQ-VAE has shown an effective way to design the z-latent in 
a flexible size, corresponding to the embedding space size. As results have 
shown, the smaller reshaped z-latent vector takes effect to give lower LSD than 
the longer reshaped z-latent vector in the vector quantization process. As 
shown in Figure 4.10 and Figure 4.17, the MLP-VQ-VAE has a better ability 
to recover the spectral envelope parameters, especially at lower bitrates. The 
MLP-VQ-VAE has less computational complexity than the VQ-VAE and is 
also flexible in designing the end-to-end quantization system based on deep 
learning in the embedded system. 
 
4.5 Conclusion 
 
 In conclusion, this chapter provides the following contributions: 
 
 The MLP-VQ-VAE has been proposed to quantize the spectral envelope 

parameters of the high-quality 48kHz WORLD vocoder. 
 
 The MLP-VQ-VAE has a smaller codebook size, around 1.6 times 

associated with a conventional vector quantization method and around 
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21 times smaller in the embedding space and z-latent sizes compared 
with the VQ-VAE. 

 
 In terms of the Log Spectral Distortion (LSD), the average results from 

four operation bitrates, the MLP-VQ-VAE has reduced by around 1.1 
points in dB compared to conventional vector quantization and around 
2.5 points in dB compared to the VQ-VAE. 
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Chapter 5 
 
The effect of vector quantization 
techniques in vector quantization based 
on deep learning for speech spectral 
envelope quantization  
 
 
5.1 Overview 
 

The objective of this section is to study two techniques utilized in the 
conventional VQ [40, 41], the Sub-band VQ [76, 77], and the predictive VQ 
[79, 80] for VQ-VAE deep-learning based architectures. When applying those 
techniques in VQ-based learning, we investigate the reconstruction 
performance. 

 
Figure 5.1 shows an overview of the spectral envelope quantization of 

the conventional vector quantization techniques in Vector Quantized 
Variational AutoEncoder (VQ-VAE) [44, 45]. We propose the Sub-band VQ-
VAE, a sub-band quantization technique [76, 77] applied to the VQ-VAE. This 
model can concentrate on the specific frequency bands to assign more bits and 
leave the unnecessary band with fewer bits. The predictive vector quantization 
technique is also investigated in the VQ-VAE and presented as the Predictive 
VQ. We propose the Predictive VQ-VAE and examine whether the method 
can efficiently predict the current data from the previous data. 

 
We conducted the quantization experiments for the WORLD [75] 

spectral envelope parameters from 48 kHz raw speech data. The Sub-band VQ-
VAE and the Predictive VQ-VAE were implemented in four target bitrates to 
quantize the spectral envelope parameters and compared with the same four 
target bitrates of the plain VQ-VAE.  
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Figure 5.1: Overview of the proposed Sub-band VQ-VAE and  
the Predictive VQ-VAE compared to the VQ-VAE  

for the WORLD vocoder spectral envelope quantization. 
 

5.2 Methodology 
 

5.2.1 Vector Quantized Variational AutoEncoder (VQ-VAE) 
 

The Vector Quantized Variational AutoEncoder (VQ-VAE) [44, 45] has 
been proposed as a modification of the VAE [19]. VQ-VAE substitutes 
continuous z-latent variables with discrete ones. VQ techniques inspire the 
model system to cooperate with the autoencoder. The VQ-VAE is 
unsupervised learning constructed with the simple idea of convolutional neural 
networks (CNN).  
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Figure 5.2: The VQ-VAE model. 
 

Figure 5.2 shows the VQ-VAE model. The three layers of CNN 
construct the encoder networks with stride two and two blocks of CNN 
residual techniques to produce continuous z-latent 𝑧 (𝑥) variables from input 𝑥 with shape (H, W, D), where H is the height, W is the width, and D is the 
depth dimensions. The embedding space keeps the number of prototype 
vectors { 𝑒 , i = 1, …, K}. During the VQ forward pass, the 𝑧 (𝑥) should be 
reshaped into sub-N vectors of length 𝐷 . At this point, we must assign 
the finite number of N vectors because the vector must have the same length 
of 𝐷 . The reshaped z-latent is constructed here by using the VQ method. 
Each vector in reshaped z-latent is replaced with its closest vectors in 
embedding space by 𝑞(𝑥) = min (𝑧 (𝑥) − 𝑒 ) to represent the discrete z-latent 
variable with a set of indices 𝑞(𝑥) . The inverse quantization generates a 
reshaped z-latent = 𝑒 ( ) with the shape of (H, W, D) to represent the quantized 
z-latent 𝑧 (𝑥). 
 

The decoder networks are the counterpart of encoder networks created 
by two blocks of CNN residual technique followed by three layers of 
transposed CNN stride two. The output 𝑥  of the decoder networks indicates 
that the input can be reconstructed by using the 𝑧 (𝑥)  passed to the decoder 



58 
 

networks as input. During the backward pass, the gradient of the loss 
concerning updating model parameters is shown in Equation 5.1, and the 
overall loss function is the sum of three-loss terms. The first term is the 
negative log-likelihood of the reconstruction, used to carry the gradient from 
the decoder networks to the encoder networks. The second and the last terms 
are Euclidean distance loss and the commitment loss, respectively, to update 
the prototype vectors in embedding space. 

 𝐿 = − log𝑝 (𝑥|𝑧 (𝑥))  + 𝑠𝑔 𝑧 (𝑥) − 𝑒 ( )   

+ 𝛽 𝑧 (𝑥) −  𝑠𝑔 𝑒 ( ) , (5.1) 
 

where 𝑥 is input, 𝑧 (𝑥) is the z-latent, 𝑒 is the embedding space, 𝑞(𝑥) is the 
set of nearest vectors index, 𝑧 (𝑥)  is the quantized z-latent, and 𝛾  is the 
commitment cost set to 0.25. 
 

5.2.2 The Sub-band Vector Quantized Variational AutoEncoder 
(Sub-band VQ-VAE) 

 
Figure 5.3 presents the Sub-band Vector Quantized Variational 

AutoEncoder (Sub-band VQ-VAE) [76, 77] that has been inspired by sub-band 
coding techniques. From the Nyquist theorem, the sampling frequency must 
be two times the information frequency. That means the raw speech waveform 
with a 48 kHz sampling frequency has the maximum speech information 
frequency at 24 kHz. The WORLD vocoder works with the 48 kHz sampling 
raw speech waveform.  
 
 The SP of WORLD vocoder [75] has extracted every 240 samples from 
48 kHz raw speech waveforms. The SP vector has a length of 1025 with speech 
information from 0 to 24 kHz. In general, most speech information is kept in 
a frequency below 16 kHz. Then, we divide the SP vector into two sub-vectors. 
The first vector with the length of 684 is the lower band frequency vector that 
represents the speech information from 0 to 16 kHz, which corresponds to the 
first 684 values of the SP vector. The second vector with the length of 341 is 
the higher band frequency vector representing the speech information from 16 
kHz to 24 kHz, which corresponds to the value number 685 to 1025 of the SP 
vector. As the cost function, the same cost of Equation 5.1 is used to train 
network parameters. 
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Figure 5.3: The Sub-band Vector Quantized Variational AutoEncoder. 
 

 
5.2.3 The Predictive Vector Quantization Variational 

AutoEncoder (Predictive VQ-VAE) 
 

The Predictive Vector Quantized Variational AutoEncoder (Predictive 
VQ-VAE) [79, 80] introduces the PVQ technique into the VQ-VAE. Figure 
5.4 shows the prediction model. In the encoding process, the input data 𝑥 is 
fed into the encoder network to produce the z-latent 𝑧 (𝑥) . It is reshaped in 
the N sub-vector (reshaped 𝑧 (𝑥) ) corresponding to the designed embedding 
space (K= 2 bits, 𝐷  ). The quantization process creates the discrete 
representation 𝑖 and the quantized z-latent 𝑧 (𝑥)  is the input to the encoder 
predictor network. The predicted z-latent �̃� (𝑥)  is subtracted from the next 𝑧 (𝑥)  and added to the next 𝑧 (𝑥). In the decoding process, the received 
discrete representation 𝑖 reproduces the quantized z-latent 𝑧 (𝑥). The decoder 
predictor network employs the 𝑧 (𝑥) as the input to produce the �̃� (𝑥) to add 
to the next 𝑧 (𝑥), and the VQ-VAE decoder network incorporates 𝑧 (𝑥) to 
reconstruct the output data 𝑥 corresponding to the input data 𝑥. As the cost 
function, the same cost as Equation 5.1 is applied to train the network 
parameters. 
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Figure 5.4: The Predictive Vector Quantized Variational AutoEncoder. 

 
 

5.3 Experiments and Results 
 

5.3.1 WORLD vocoder spectral envelope quantization  
 

In the same manner, as the chapter 4, we investigated the spectral 
envelope quantization performance obtained by the WORLD vocoder. The 
sampling frequency of the input raw speech was 48 kHz, and at five 
milliseconds analysis-window shifts. First, the spectral envelope parameter 
(SP) with the length of 1025 was calculated at the encoder. Next, the SP vector 
was applied to the logarithm with base 10, followed by the min-max 
normalization to scale values between 0 and 1. Then, the processed data were 
quantized by the Sub-band VQ or the predictive VQ. At the decoder, The 
quantized SP vector was recovered by the reversed processes, and the WORLD 
decoder synthesized the five milliseconds output speech waveform frame by 
frame. 
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5.3.2 Raw speech waveform database  

 
As for the raw input speech waveform database, CSTR VCTK corpus 

[90] was used. The data format was 16 bits with 48 kHz as sampling frequency, 
recorded from 109 English native speakers with about 400 sentences with 
various accents.  
 

5.3.3 The Sub-band Vector Quantized Variational AutoEncoder 
for Spectral Envelope Quantization  

 
The Sub-band VQ-VAE is a split version of the VQ-VAE and compared 

with the reference VQ-VAE. First, we explain the reference VQ-VAE. Figure 
5.5 shows the quantization process of the VQ-VAE. The SP vector is the input 
to the encoder network to produce the z-latent matrix. The z-latent matrix is 
reshaped as the reshaped z-latent vectors with the vector length corresponding 
to the vector length of the designed embedding space. The VQ is applied to 
transform the continuous reshaped z-latent vectors into a discrete presentation, 
and the inverse VQ transforms back the quantized continuous z-latent matrix 
as quantized reshaped z-latent vectors. The input to the decoder network is the 
quantized z-latent matrix reshaped from the quantized reshaped z-latent 
vectors, and the quantized SP vector produced. 
 

Each the VQ-VAE encodes lower and higher band SP vectors. We apply 
a standard architecture of the VQ-VAE model for quantizing all sub-band SP 
vectors shown in Table 5.1. The CNN parameter W is a weighting filter with 
shape (height, width, input_channel, output_channel), B is Bias with 
(output_channel), and stride is a step to move the W filter according to the 
input. The encoder networks consist of convolution of three layers with a 
rectified linear unit (RELU) activation function. The layers are Convolution 
Layer 1, Convolution Layer 2, and Convolution Prepare Layer to adapt data 
for the residual technique. Then, they are connected with two blocks of 
residual techniques, which implement as two layers of convolution networks 
with the RELU activation function. The last layer of the encoder is the 
Convolution Prepare VQ Layer without the activation function to produce the 
z-latent. The decoder networks are the counterpart of the encoder networks 
constructed with Convolution Prepare Layer with RELU activation function 
for two blocks of residual techniques followed with two layers of Transposed 
Convolution Layer with RELU activation function, where the last Transposed 
Convolution Layer uses sigmoid as an activation function. The embedding 
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space prototype vectors are set to 512 vectors (9 bits = the number of prototype 
vectors).  
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Figure 5.5: The VQ-VAE quantization process. 
 

 
Table 5.1 

The VQ-VAE Architecture used for Sub-band VQ-VAE. 
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Figure 5.6: The Sub-band VQ-VAE quantization process. 
 

Figure 5.6 shows the Sub-band VQ-VAE quantization process. The 
original SP vector (1, 1205) is divided into two parts. The first part is the VQ-
VAE lower band consisting of the lower band SP vector 𝑥 with the shape (1, 
684) as the input, and the lower part encoder networks produce a z-latent 
matrix 𝑧 (𝑥) with the shape (1, 171, 64). The reshaped z-latent N vectors by 𝐷  is reconstructed from 𝑧 (𝑥). The embedding space uses 9 bits, and the 
length of each prototype vector is 𝐷 . In the VQ process, 9 bits are 
assigned to each N vector. The quantized N vectors are reconstructed by the 
inverse VQ process, and those N vectors need to reshape back into the shape 
(1, 171, 64) to represent a quantized z-latent matrix 𝑧 (𝑥). The output vector 
(1, 684) that looks like the lower band SP vector is reconstructed by using 𝑧 (𝑥) as input to the decoder networks. 

 
The second part of the divided SP vector is the VQ-VAE higher band 

consisting of the higher band SP vector 𝑥 with shape (1, 341) as input to the 
higher part encoder networks. The encoder networks produce a z-latent matrix 𝑧 (𝑥) with shape (1, 86, 64). Same as the VQ-VAE lower band, the 𝑧 (𝑥) can 
be reshaped into N vectors by 𝐷  to represent the reshaped z-latent. The 
embedding space is represented by 9 bits with the length of 𝐷 . In the VQ 
process, 9 bits are assigned to each N vector. The quantized N vectors are 
reconstructed by the inverse VQ process and reshaped back into the shape (1, 
86, 64) to produce a quantized z-latent matrix 𝑧 (𝑥) The decoder uses 𝑧 (𝑥)  
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as the input to produce the output (1, 341), which corresponds to the higher 
band SP vector. The output of the VQ-VAE lower band and the VQ-VAE 
higher band are merged to reconstruct the output SP vector with the original 
shape (1, 1025). 

 
The training of four VQ-VAE models used 0.0001 as the learning rate. 

Adam optimizer was applied to optimize network parameters. The number of 
training epochs was set to 500,000, and each epoch used the random of eight 
SP vectors from the SP vector database as a mini-batch. Figure 5.7 shows the 
VQ-VAE training process. In the training process, the encoder network 
received the input SP vector and produced the z-latent. The VQ process found 
the z-latent that minimized the Euclidian distance between the input and the 
vector patterns in the codebook. It returned the index of the vector pattern in 
the embedding space as the discrete representation of the z-latent. In the 
inverse VQ process, the obtained index picked the corresponding vector 
pattern in the embedding space to represent the quantized z-latent. The decoder 
network produced the quantized SP vector from the quantized z-latent. In the 
end, the loss of Equation 5.1 was calculated, and the Adam optimization was 
applied to update network parameters consisting of the encoder network, 
decoder network, and embedding space. 

 
Figure 5.8 shows the proposed Sub-band VQ-VAE training process. The 

training of four models of the Sub-band VQ-VAE was also performed with the 
following conditions: the learning rate = 0.0001, network parameter 
optimization = Adam, the number of training epochs = 500,000, minibatch = 
the random of eight SP vectors from the SP vector database. In training, each 
encoder network for the lower and higher bands received the input SP vector 
(the lower band and the higher band) and produced the z-latent for the lower 
and higher bands. The VQ process found the z-latent which minimized the 
Euclidian distance with vector patterns in the designed embedding space. It 
returned the index of the vector pattern in the embedding space as the discreet 
representation of the z-latent. In the inverse VQ process, the obtained indices 
(the lower band and the higher band) chose the corresponding vector patterns 
in the embedding space to represent the quantized z-latent for the lower and 
higher band. Each decoder network of the lower and higher bands produced 
each quantized SP vector from the quantized z-latent. In the end, the loss of 
Equation 5.1 was calculated, and the Adam optimizer updated the network 
parameters consisting of the encoder network, decoder network, and 
embedding space of the lower band and higher band. 
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Figure 5.7: The VQ-VAE training process. 

 

 
Figure 5.8: The Sub-band VQ-VAE training process. 
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Table 5.2 
The Implemented four model comparison. 

 

 
 

 
Table 5.2 shows the detailed implementation for the four models of the 

Sub-band VQ-VAE and the VQ-VAE. The comparison of embedding space is 
also shown in the table. The sub-band VQ-VAE uses a larger embedding space 
size than the VQ-VAE. Two independent VQ-VAE models are used to 
quantize the lower band SP vector and the higher band SP vector. 
 

As an evaluation of the performance, we use the Log Spectral Distortion 
(LSD) [85, 86] to measure spectral distortion between the original and 
reconstructed spectral envelopes. The LSD is defined as follows: 

 𝐿𝑆𝐷( ) = 10 × ∑ ∑ 𝑋 − 𝑌 , 
 

(5.2) 
 
where 𝑀 is the number of log-spectral coefficient frames, 𝑁 is the length of 
log-spectral coefficient elements in a frame, 𝑋  is the original log10 spectral 
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coefficients of the WORLD parameters, and 𝑌  is the log10 spectral 
coefficients of the WORLD reconstructed parameters from the quantized data.  
 

Figures 5.9 and 5.10 calculate the average LSD evaluation processes for 
the VQ-VAE and the proposed Sub-band VQ-VAE, respectively. The testing 
set consists of 100 raw speech waveforms from the VCTK corpus that are not 
included in the training process of the VQ-VAE and the proposed Sub-band 
VQ-VAE. The WORLD vocoder extracts the speech parameters from each raw 
speech waveform, only the spectral envelope parameter (SP) is applied to 
quantize, and the synthesis process reconstructs the raw speech waveform 
again based on the quantized SP and other parameters. The LSD is calculated 
to measure the distortion between the SP and the quantized SP for each time 
feeding raw speech waveforms. Finally, the average LSDs from 100 LSD 
values are calculated from 100 testing speech sentences. 

 
The evaluated results are obtained by applying the quantization 

technique to the SP vector of a high-quality WORLD vocoder. As the input to 
the encoder, the SP vector is needed to be normalized into the value between 
0 to 1 by min-max normalization. Furthermore, the reconstructed SP vector 
obtained from the quantization techniques is processed by inverse min-max 
normalization to recover the real values as the WORLD synthesis part 
parameters. In the process of designed experiments, the reshaped z-latent has 
a finite number to control the number of N vectors because each vector needs 
to have the same length 𝐷 .  

 
We evaluated four reshaped z-latent targets; the number of N vectors are 

257, 64, 32, and 8 vectors. From the four targets, the number of reshaped z-
latent N vectors changes the 𝐷  length. When the number of N vectors is 
large, the 𝐷  length is short. On the other hand, when the number of N 
vectors is small, the 𝐷  length is long. The number of K vectors for 
embedding space is set to 512 (9 bits). The four reshaped z-latent targets have 
the number of N vectors of 257, 64, 32, and 8, where each vector is assigned 
with 9 bits. The four target bitrates were 2313, 576, 288, and 72 bits/SP vector, 
respectively.  
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Figure 5.9: The VQ-VAE average LSD evaluation. 
 

 
 

Figure 5.10: The proposed Sub-band VQ-VAE average LSD evaluation. 
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Figure 5.11: The comparison of LSD (in dB) in four target bitrates. 

 
 
Figure 5.11 shows the comparison of LSD with four target bitrates has 

shown in. In the low bitrates, the LSD is high, and it decreases when the bitrate 
increases. The results show that the proposed Sub-band VQ-VAE can decrease 
the LSD more than the VQ-VAE. 

 
5.3.4 The Predictive Vector Quantized Variational AutoEncoder for 

Spectral Envelope Quantization  
 

The VQ-VAE and the Predictive VQ-VAE were designed for 
quantization of the spectral envelope parameters extracted from the high-
quality 48 kHz WORLD vocoder. The WORLD vocoder extracted speech 
parameters, the fundamental frequency (F0), the spectral envelope parameter 
(SP), and the aperiodic parameter (AP), at every 5 ms from the raw 48 kHz 
sampling speech waveform. The reconstruction process appropriated the F0, 
SP, and AP speech parameters to provide the 5 ms output of 48 kHz speech 
waveform by synthesis. SP parameter was the essential speech parameter that 
contains phonemic information. 
 

The VQ-VAE architecture for the comparison of the Predictive VQ-
VAE is shown in Table 5.3. The encoder network was implemented as the two 
stride convolutional layers connected with two residual networks and followed 
the one convolutional layer. The decoding network was the counterpart of the 
encoder network, utilized the transposed convolutional network. The decoder 
network was implemented as the one transposed convolution layer combined 
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with the two residual networks and supported the two transposed convolutional 
layers. 

 
Table 5.4 shows the Predictive VQ-VAE architecture. The model 

consists of four networks, the encoder network, the encoder predictor network, 
the decoder network, and the decoder predictor network. The encoder network 
was implemented as two stride convolutional layers with the two residual 
networks following the one convolutional network. The encoder predictor 
network was also implemented equivalent to the original encoder network, but 
the weight filter shapes were changed. The decoder network was implemented 
as one transposed convolutional layer attached to the two residual networks, 
which transposed the convolutional layers. The decoder predictor network was 
also the same implementation of the decoder network, but the weight filter 
shapes were different. 
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Table 5.3 
The VQ-VAE architecture for the comparison of  

the Predictive VQ-VAE. 
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Table 5.4 
The Predictive VQ-VAE architecture. 
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 Figure 5.12 shows the quantization process of the VQ-VAE. The SP 
vector is the input of the encoder network to produce the z-latent matrix. The 
reshaping method was applied to the z-latent matrix for the reshaped z-latent 
vectors with the vector length corresponding to the vector length of the 
designed embedding space. The VQ was applied to transform the continuously 
reshaped z-latent vectors into a discrete presentation, and the inverse VQ was 
transformed back to the quantized continuous z-latent matrix as quantized 
reshaped z-latent vectors. The input of the decoder network was the quantized 
z-latent matrix reshaped from the quantized reshaped z-latent vectors and 
reproduces the quantized SP vector. 

 
In the training of VQ-VAE models, the SP vector database was applied 

to the logarithmic base ten and min-max normalization to transform the values 
into a scale between 0 to 1. The learning threshold was set to 0.0002. The 
training number was 100,000 epochs, and each epoch processed the 8 SP 
vectors as mini-batch. Adam optimization was applied to optimize the 
networks. Figure 5.13 shows the VQ-VAE training process. In training, the 
encoder network received the input SP vector and produces the z-latent. The 
VQ process utilized the z-latent to find the minimum Euclidian distance. It 
returns the index of the vector pattern in the embedding space as the discreet 
representation of the z-latent. In the inverse VQ process, the obtained index is 
utilized to choose the corresponded vector pattern in the embedding space to 
represent the quantized z-latent. The decoder network produces the quantized 
SP vector from the quantized z-latent. In the end, the loss of Equation 5.1 was 
calculated, and the Adam optimizer updated network parameters consisting of 
the encoder network, decoder network, and embedding space. 
 

Figure 5.14 shows the quantization process of the Predictive VQ-VAE. 
The SP Vector was fed into the encoder network in the encoding process to 
produce the z-latent matrix. It was reshaped in N sub-vectors corresponding to 
the designed embedding space (K= 2  𝑏𝑖𝑡𝑠, 𝐷  ). The quantization 
process created the discrete representation, and the encoder predictor network 
received the quantized z-latent as the input. The predicted z-latent matrix was 
processed to subtract from the next z-latent matrix and add to the next 
quantized z-latent. In the decoding process, the received discrete 
representation reproduced the quantized z-latent. The decoder predictor 
network employed the quantized z-latent as the input to produce the predicted 
z-latent matrix from the decoder predictor network to add with the next 
quantized z-latent. The decoder network utilized the current quantized z-latent 
to reconstruct the quantized SP vector indicated to the SP vector.  
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Figure 5.15 shows the Predictive VQ-VAE training process. For the 
training of Predictive VQ-VAE models, like the training of VQ-VAE models, 
the SP vector database was applied the logarithmic base 10 and min-max 
normalization to transform the values into a scale between 0 to 1. The learning 
threshold was set to 0.0002. The training number was 100,000 epochs, and 
each epoch processed the 8 SP vectors as mini-batch. Adam optimization was 
applied to optimize the networks. In the training process, the SP vector is 
applied to the Predictive VQ-VAE process to obtain the quantized SP vector, 
z-latent, quantized z-latent. In the end, the VQ-VAE loss based on Equation 
5.1 was calculated and the Adam optimizer updated the network parameters 
consisted of the encoder network, decoder network, embedding space, encoder 
predictor network, and the decoder predictor network. 
 

In the experiment, the number of vector patterns K of the embedding 
space was fixed to 8 bits or 256 vector patterns. The four VQ-VAE models 
were designed for spectral envelope parameter quantization, presented in 
Table 5.5. The shape of the input SP parameter was (H=1, W=1025, D=1), 
where H was height, W was width, and D was depth dimension. The encoder 
network produced the z-latent 𝑧 (𝑥) with the shape (H=1, W=257, D=64). The 
reshaped 𝑧 (𝑥)  was the N sub-vectors by the length of 𝐷  (corresponded 
to the length of embedding space). The reshaped 𝑧 (𝑥)  had limited shape 
because of the limitation of the reshaping method. In this experiment,  the four 
targets (𝑁,𝐷 ) = (8, 2056), (16, 1028), (32, 514), and (64, 257) were 
selected, and the final bits/SP vectors were the 64, 128, 256, and 512 for the 
first, second, third, and fourth VQ-VAE models, respectively. 
 

The Predictive VQ-VAE also created four bitrate models to quantize the 
spectral envelope parameters, as shown in Table 5.6. The shape of the input 
SP vector was (H=1, W=1025, D=1). The encoder network created the z-latent 𝑧 (𝑥), and the encoder predictor and decoder predictor networks created the �̃� (𝑥) with the same shape (H=1, W=257, D=64). As for the reshaped 𝑧 (𝑥) , 
the same four targets as the four VQ-VAE models, (𝑁,𝐷 ) = (8, 2056), 
(16, 1028), (32, 514), and (64, 257) were selected, and the final bits/SP vector 
were the 64, 128, 256, and 512 bits/SP vector for the first, second, third, and 
fourth Predictive VQ-VAE models, respectively. 
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Table 5.5 
The four VQ-VAE implementation models  

for the comparison with Predictive VQ-VAE. 
 

 
 
 

Table 5.6 
The four Predictive VQ-VAE implementation models. 
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Figure 5.12: The VQ-VAE quantization process 
for the comparison with the Predictive VQ-VAE. 

 
 

 
 

Figure 5.13: The VQ-VAE training process 
for the comparison with the Predictive VQ-VAE. 

. 
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Figure 5.14: The Predictive VQ-VAE quantization process. 
 

 

 
 

Figure 5.15: The Predictive VQ-VAE training process. 
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The results were evaluated by using 100 test speech waveforms. The 
four VQ-VAE models and the four Predictive VQ-VAE models were applied 
to the WORLD vocoder to quantize only the SP parameter. The vocoder 
extracted speech parameters from input five milliseconds of raw speech 
waveform and calculated F0, SP, and AP parameters. The SP parameter was 
applied to the logarithmic base ten and min-max normalization to transform 
the values into the scale between 0 to 1, and the quantization technique was 
implemented to quantize the normalized SP vector. The synthesis process of 
the WORLD vocoder received the F0, quantized SP, and AP to reconstruct the 
output 5 ms speech waveform. The Log spectral distortion (LSD) was used to 
measure the distortion shown in Equation 5.2. 

 
The experimental results utilized the Log Spectral Distortion (LSD) [85, 

86] in Equation 5.2 as the spectral envelope distortion indicator. Figures 5.16 
and 5.17 show the process of calculating the average LSDs for the VQ-VAE 
and the proposed Predictive VQ-VAE, respectively. The testing set consisted 
of 100 raw speech waveforms from the VCTK corpus that were not included 
in the training process of the VQ-VAE and the proposed Predictive VQ-VAE. 
The WORLD vocoder extracted the speech parameters from each raw speech 
waveform, only the spectral envelope parameter (SP) was quantized, and the 
synthesis process reconstructed the raw speech waveform again based on the 
quantized SP and other parameters. The LSD between SP and quantized SP 
for each time that feeding raw speech waveform was calculated. Finally, the 
average LSD is obtained from 100 tested LSD values. 

 
Figure 5.18 shows the LSD comparison of the four VQ-VAE models 

and the four Predictive VQ-VAE models with four targets of bits/SP vector. 
Figure 5.19 compares the spectrograms of the VQ-VAE and the Predictive 
VQ-VAE SP vectors. The average LSD results decreased when the bits/SP 
vector increased. The Predictive VQ-VAE decreased the average LSD at the 
2,056 bits/SP vector at around 5.7 dB, at the 517 bits/ SP vector at around 2.2 
dB, at the 257 bits/ SP vector at around 1.95 dB, and at the 64 bits/ SP vector 
around 0.4 dB, compared to the four VQ-VAE models. 
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Figure 5.16: The VQ-VAE average LSD evaluation. 
 

 
 

Figure 5.17: The proposed Predictive VQ-VAE average LSD evaluation. 
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Figure 5.18: The comparison of average LSD results  
in four target bitrates. 
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Figure 5.19: The comparison of quantized SP vectors in four target 
bitrates; (a) is the VQ-VAE and (b) is the Predictive VQ-VAE. 
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5.4 Discussion 
 

5.4.1 The Sub-band Vector Quantized Variational AutoEncoder 
for Spectral Envelope Quantization  

 
The sub-band coding technique was investigated to work with VQ-VAE. 

The VQ-VAE is an end-to-end deep learning method based on the VQ 
technique. We quantized the spectral envelope parameters of the WORLD 
vocoder to evaluate the results. The SP vector was divided into two sub-band 
frequencies. The lower band frequency is more significant than the higher one 
because most of the speech information is kept inside it, and the higher band 
frequency has less speech information. 
 

The quantization of VQ-VAE using the full length of the SP vector could 
not concentrate on a specific frequency band. To solve this problem, the Sub-
band VQ-VAE was proposed to design the model for sub-band frequency 
quantization. This model could assign more bits to the lower frequency band 
and fewer bits to the unnecessary higher frequency band. The experimental 
performance results showed that Sub-band VQ-VAE was successful with the 
lower LSD distortion in four different bitrates around 0.93 dB on average. 
However, because the SP vector was split into two sub-vectors in two 
independent embedding spaces, the VQ-VAE was applied to each sub-vector 
for quantization. The sub-band VQ-VAE needs around 2.17 times more 
embedding space than the single-band VQ-VAE. 
 

5.4.2 The Predictive Vector Quantized Variational AutoEncoder for 
Spectral Envelope Quantization  

 
In this section, the Predictive coding technique was investigated to work 

with VQ-VAE. The VQ-VAE could not produce the output from the previous 
information of the input. Therefore, we introduced the predictive coding 
technique, the Predictive VQ-VAE, in the VQ-VAE for utilizing the 
information of the previous data to produce the current output data. 
 

The experimental results the performance showed that Predictive VQ-
VAE was successful with the lower LSD distortion in four different bit rates, 
at the 2,056 bits/SP vector around 5.7 dB, at the 517 bits/ SP vector around 2.2 
dB, at the 257 bits/ SP vector around 1.95 dB, and at the 64 bits/ SP vector 
around 0.4 dB, compared to the corresponding VQ-VAE models. However, 
the model complexity increased a lot because the Predictive VQ-VAE required 
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the encoder predictor network and the decoder predictor network which made 
the model has time-consuming more than the VQ-VAE. 
 
5.5 Conclusion 
 
 In conclusion, this chapter provides the following contributions: 
 
 The sub-band VQ-VAE was proposed to quantize the spectral envelope 

parameters of the high-quality 48kHz WORLD vocoder. This model can 
focus on a specific sub-band frequency by assigning more quantization 
bits and leaving unnecessary sub-band frequencies with fewer bits. 

 
 The Sub-band VQ-VAE estimated the performance for the quantization 

of the spectral envelope parameter of a high-quality WORLD vocoder 
that operates at 48kHz raw speech waveform. The LSD results showed 
that the average results from four operation bitrates of the sub-band VQ-
VAE had lower LSD values than the VQ-VAE, around 0.93 dB. 

 
 Since the Sub-band VQ-VAE required the embedding space more 

substantial than the VQ-VAE, around 2.17 times, the effective 
representation of the codebooks is a future problem. 
 

 The Predictive VQ-VAE was proposed to quantize the spectral envelope 
parameters of the high-quality 48kHz WORLD vocoder and inspired by 
the predictive vector quantization, and the quantization technique can 
utilize the previous data to produce the current data. 
 

 The Predictive VQ-VAE showed good performance for the quantization 
of the spectral envelope parameter of a high-quality WORLD vocoder 
that operates for 48kHz speech waveforms. It was shown that the 
Predictive VQ-VAE had a lower distortion in terms of Log Spectral 
Distortion for four targets bitrates associated with the VQ-VAE, at the 
2,056 bits/SP vector around 5.7 dB, at the 517 bits/ SP vector around 2.2 
dB, at the 257 bits/ SP vector around 1.95 dB, and at the 64 bits/ SP 
vector around 0.4 dB, compared to the four VQ-VAE models. The LSD 
results showed that the average results from four operation bitrates of 
the Predictive VQ-VAE had lower LSD values than the VQ-VAE, 
around 2.58 points in dB. The future problem is the model complexity, 
which increases a lot because the Predictive VQ-VAE requires both the 
encoder and the decoder predictor networks making the model time-
consuming more than the VQ-VAE. 



85 
 

Chapter 6 
 
The effect of deep learning network 
architecture and training techniques for 
speech spectral envelope quantization 
 
6.1 Overview 
 
 The last study in the dissertation is the advanced deep learning training 
technique in VQ-VAE [44, 45], the combination between VQ-VAE and the 
Generative Adversarial Network [68] designed to work together in the spectral 
envelope quantization in four different target bitrates compared to the 
conventional VQ. The studies consist of the effect of the adversarial loss 
update on the whole networks of VQ-VAE and only the embedding space of 
quantization in the VQ-VAE. 
 

We proposed the Vector Quantized Variational AutoEncoder learned by 
Generative Adversarial Networks and introduced an objective distortion major 
and training procedure of the GAN technique to replace the conventional 
distortion major of VQ-VAE. The experiment constructed four models for the 
following methods: 

(1) the four VQ-VAE models, (references) 
(2) the four VAEGAN [73] implemented in VQ-VAE models,  
(3) the four VQ-VAE-EMGAN models, and  
(4) the four VQ-VAE-EMDEC models.  
 

 Those models were designed and trained for the quantization of the 
spectral envelopes of the WORLD vocoder [75]. The spectral envelopes were 
extracted from the 16 kHz raw speech waveforms from the LibriSpeech corpus 
[78], varied from the 128, 256, 512, and 1024 bits/spectral envelope frame. 
The quantization performance was evaluated by Log Spectral Distortion 
(LSD). The Perceptual (PESQ) standardized as ITU-T recommendation [87] 
is also used to measure the quality of the reconstructed 16 kHz speech 
waveforms of the WORLD vocoder with or without spectral envelope 
quantization techniques. In the experimental results, the proposed GAN 
technique utilized to compare unquantized z-latent and quantized z-latent for 
embedding space updating can approximate the embedding space better than 
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the Mean Square Error of conventional VQ. The proposed model increases the 
average PESQ value by about 0.17 with a reduced average LSD of 0.5 dB with 
significant results compared to the VQ-VAE. 
 
6.2 Methodology   

6.2.1 Vector Quantized Variational AutoEncoder (VQ-VAE) 

  The Vector Quantized-Variational AutoEncoder (VQ-VAE) [44, 45] has 
been proposed as a VQ method based on deep learning, inspired by the 
conventional vector quantization, cooperated with the AutoEncoder (AE). 
The encoder network is constructed with the Convolutional Neural Network 
(CNN) to project the input data into the three-dimensional z-latent. The z-
latent is reshaped into sub-vectors and applied with the VQ technique to 
quantize with the designed embedding space. The quantized, reshaped z-
latent is then reshaped back to the original shape to represent the quantized z-
latent. The decoder network transposes Convolutional Neural Network 
(transposed CNN) as the encoder network's counterpart. The quantized z-
latent is the input of the decoder network to produce the output data.  
 
  The loss function is defined to update network parameters consisting of 
three terms. The VQ-VAE loss function is shown in Equation (6.1). The first 
term is the negative log-likelihood to optimize the encoder and decoder 
networks. The second term is the vector quantization error to optimize the 
embedding space. The commitment loss is the third term to force the encoder 
network to learn at the same speed as the embedding space.  
 
 𝐿 = −log 𝑥 𝑧 (𝑥) + ‖𝑠𝑔 𝑧 (𝑥) − 𝑒‖  +𝛽‖𝑧 (𝑥) − 𝑠𝑔[𝑒]‖ , 

 
(6.1) 

 
where 𝑥  is input data, 𝑧 (𝑥)  is the quantized z-latent,  𝑧 (𝑥)  is the z-latent 
output of the encoder network, e is embedding space, 𝛽  is a particular 
parameter that is set to 0.25, and 𝑠𝑔[. ] is the stop gradient operator to freeze 
the parameter to be a constant and not changed in the backpropagation process. 

6.2.2 Generative Adversarial Networks (GAN) 

  The Generative Adversarial Networks (GAN) [68] is an unsupervised 
deep learning technique to generate high-quality output. The GAN consists of 
the generator network to produce the generated data from random noise and 
the discriminator network to distinguish the real and generated data from the 
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generator network. The generator network tries to generate data similar to the 
real data, and the discriminator networks distinguish between real and 
generated data. This process is a game of two networks, and they try against 
each other by adapting the generator loss shown in Equation (6.2) to update 
parameters in the generator network and the discriminator loss in Equation 
(6.3) for the discriminator network.  
 
 min 𝐿 (𝐺) = E ~ log (1 − 𝐷(𝐺(𝑧))),  

(6.2) 
 max 𝐿 (𝐷) = E ~ log 𝐷(𝑥) + E ~ log (1 − 𝐷(𝐺(𝑧))),  

(6.3) 
 
where 𝐺(. ) is the generator network, 𝐷(. ) is the discriminator network,  𝑧 is 
random noise, 𝑃  is the data distribution of random noise, 𝑥 is the real data, 
and 𝑃  is the distribution of the real data. 

6.2.3 Deep learning parameter optimization 

  The Stochastic Gradient Decent (SGD) method [94, 95] is an ordinary 
optimizer to train deep learning parameters. However, when the number of the 
network parameters increases, the global minimum is hard to find, and the 
convergence speed becomes too slow. The Adam optimization [98, 99] is one 
of the solutions. The idea of gradient descent and momentum algorithm [96] 
and the Root Mean Square Propagation (RMSprop) [97] are combined to 
solve the convergence speed and better find the global minimum. 
   
  6.2.3.1 The gradient descent with the momentum algorithm 
 
  The gradient descent with the momentum algorithm [96] is based on a 
technique of exponentially weighted average and makes the convergence 
speed to the global minimum faster than the traditional SGD. Equation 6.4 
shows deep learning weight parameter learning for the gradient descent with 
the momentum algorithm. 
 𝑤 =  𝑤 − 𝛼 𝑚  ;  𝑚 =  𝛽𝑚 + (1 − 𝛽) × ,  

(6.4) 
 
where, 𝑚  is the current time momentum of gradients, 𝑚  is the previous 
time momentum of gradients, 𝑤  is the current time weights, 𝑤  is the next 
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time weights, 𝛼  is the current time learning rate,  is the derivative of the 
loss function with the weights at the current time, and the 𝛽 is the moving 
average parameter. 
 
 6.2.3.2 Root Mean Square Propagation  
 
 The Root Mean Square propagation (RMSprop) optimizer [97] is based 
on a technique of exponential moving average over gradients. It is a very 
robust optimizer to find the global minimum, and the convergence speed is 
faster than the gradient descent with the momentum algorithm. Equation 6.5 
shows the deep learning weight parameter learning for the RMSprop 
algorithm. 
 𝑤 =  𝑤 − ( ) / ×  ;  𝑣 =  𝛽𝑣 + (1 − 𝛽) × ,  

(6.5) 
 
where, 𝑤 ,𝑤 are the current and the next time weights, 𝛼  is the current time 
learning rate,  is the derivative of  the loss function with the weights at the 
current time,  𝑣 ,  𝑣  are the moving average of squared gradients at the 
current and the past time, 𝛽 is the moving average parameter, and 𝜀 is constant. 
 

6.2.3.3 Adam optimization 

  The Adam optimization [98, 99] is a variation of optimizers. The idea of 
gradient descent with momentum algorithm and the RMSprop are combined 
to improve the convergence speed and better find the global minimum. 
Equations 6.6 and 6.7 show  𝑚  of the gradient descent with the momentum 
algorithm and  𝑣  of RMSprop for Adam optimization. Equation 6.8 shows the 
deep learning weight parameter learning for the Adam algorithm by computing 
bias corrected  𝑚  and  𝑣 . 
  𝑚 =  𝛽 𝑚 + (1 − 𝛽 ) × ,  

(6.6)  𝑣 =  𝛽 𝑣 + (1 − 𝛽 ) × ,  
(6.7) 

 𝑤 =  𝑤 −  𝑚 ×   ;  𝑚 =  𝑎𝑛𝑑  𝑣 =   ,  
(6.8) 
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where, 𝛼  is the current time learning rate,  𝜀 is constant, 𝑚 , 𝑚  are the  
current and previous time momentum of gradients,  𝑣 ,  𝑣  are the moving 
average of squared gradients at the current and the past time,  is the 
derivative of loss function with the weights at the current time, and  𝛽  and 𝛽  
are decay rates. 
 

6.2.4 Variational AutoEncoder Generative Adversarial Networks 
(VAEGAN) 

   
The combination of the VAE with GA has been studied in [48], which 

is called the Variational AutoEncoder Generative Adversarial Networks 
(VAEGAN). The model consists of the encoder network, the decoder network, 
and the discriminator network. The encoder network transforms the input data 
into z-latents. The random noise is a normal distribution, constructed as the 
same dimension as the z-latent to compute the KL divergence loss, and the 
encoder network produces the z-latent as random noise. The decoder network 
adopts the z-latent as the input and reconstructs the output related to the input 
data. As the results in [18], a standard AE produces a poor quality of the 
reconstructed output and blurred images. The discriminator of the GAN 
technique operates as a reconstruction performance-enhancing method. The 
discriminator obtains the input data and reconstructs output data to improve 
reconstruction performance. It controls the adversarial loss to update the 
decoder network parameters by backpropagation. 

 
6.2.5 The VAEGAN implemented in the Vector Quantized 

Variational AutoEncoder (VAEGAN implemented in VQ-
VAE) 

 
  Figure 6.1 shows the procedure of the proposed VAEGAN implemented 
in the Vector Quantized Variational AutoEncoder (VAEGAN implemented in 
VQ-VAE). The input 𝑥  (SP vector) is fed into the encoder network to produce 
the unquantized z-latent 𝑧 (𝑥 ) . It is reshaped and quantized with the 
embedding space 𝑒 by choosing the nearest vector pattern. The index in the 
codebook of the embedding space 𝑒 is transmitted to the decoder. The decoder 
reproduces the quantized z-latent 𝑧 (𝑥 )  and generates the output 𝑥  
(Quantized SP vector). The difference from the other techniques is that the 
VAEGAN implemented in the Vector Quantized Variational AutoEncoder 
draws the sample from a normal distribution 𝑧   with the same shape with 𝑧 (𝑥 ) and 𝑧 (𝑥 ), then feed into the decoder network to produce the 𝑥  for 
calculating the KL divergence loss in Equation 6.11: 
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 𝐿 =  𝑧 (𝑥 ) × log 𝑧 (𝑥 ) − log 𝑧 .  
(6.11) 
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Figure 6.1: The procedure of VAEGAN implemented in VQ-VAE 

algorithm. 
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  The second loss term 𝐿 in Equation 6.1 is the calculation of the loss by 
the Adam optimizer in Equation 6.8. The first loss term 𝐿 is computed from 
the input 𝑥  (SP vector), the output 𝑥  (Quantized SP vector), unquantized z-
latent 𝑧 (𝑥 )  and quantized z-latent 𝑧 (𝑥 ) . The discriminator network 
organizes to discriminate between the unquantized SP vector 𝑥   and the 
quantized SP vector 𝑥 . The adversarial loss can calculate from Equation 6.12. 
 𝐿 = log 𝐷𝑖𝑠(𝑥 ) + log 1 − 𝐷𝑖𝑠(𝑥 ) + log 1 − 𝐷𝑖𝑠 𝑥 ,  

(6.12) 
 
where log(.) is the logarithmic function. 𝐷𝑖𝑠(. ) is the discriminator network. 𝑥  is the unquantized SP vector at time 𝑡. 𝑥  is the quantized SP vector. The 𝑥  is the output from the decoder network that utilizes random noise 𝑧  as 
input. 
 
  Equation 6.13 shows the loss term to update the encoder network 
parameters and embedding space parameters by Adam optimizer in Equation 
6.8 presented in Equation 6.13. The decoder network parameters are updated 
by Adam optimizer in Equation 6.8 by using the loss term in Equation 6.14, 
where 𝛾  is the weight set to 10. The discriminator network parameters are 
updated by Equation 6.15 based on Adam optimizer Equation 6.8.  
 𝐿 = 𝐿 + 𝐿,  

(6.13) 
 𝐿 = (𝛾𝐿) −  𝐿 , 
 

 
(6.14) 
 𝐿 = 𝐿 , (6.15) 

 
  In the training process, the mini-batch with 32 samples passes through 
the VAEGAN implemented in VQ-VAE network parameters in every iteration. 
The loss terms update the network parameters by Adam optimizer. 
 
  The loss term 𝐿  in Equation 6.13 is utilized to update the encoder 
network parameters by the Adam optimizer presented in Equations 6.16, 6.17, 
and 6.18 for computing the momentum of gradients 𝑚 , the moving average 
of squared gradients 𝑣  , and the next estimated encoder network weight 
parameters 𝜃 , respectively. 
  𝑚 =  𝛽  𝑚 + (1 − 𝛽 ) × ,  
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(6.16)  𝑣 =  𝛽 𝑣 + (1 − 𝛽 ) × ,  
(6.17) 

  𝜃 =  𝜃 −  𝑚 ×   ;  𝑚 =  𝑎𝑛𝑑  𝑣 =   
, 

 
 

(6.18) 
  

where, 𝛼   is the current time learning rate, 𝜀  is constant,  𝑚 ,  𝑚  are the 
current and the previous  time momentum of gradients of the encoder network,  𝑣 ,𝑣 are the current and the past moving averages of squared gradients of 

the encoder network,   is the derivative of the encoder network and 
embedding space loss function with the weights at the current time, and the 𝛽  
and 𝛽  are decay rates. 
 
  The loss term  𝐿   in Equation 6.13 also is applied to update the 
embedding space parameters by Adam optimizer presented in Equations 6.19, 
6.20, and 6.21 for computing the momentum of gradients  𝑚 , the moving 
average of squared gradients  𝑣  , and the next estimated embedding space 
weight parameters 𝜑 , respectively. 
  𝑚 =  𝛽 𝑚 + (1 − 𝛽 ) × ,  

(6.19)  𝑣 =  𝛽 𝑣 + (1 − 𝛽 ) × ,  
(6.20) 𝜑 =  𝜑 −  𝑚 ×   ;  𝑚 =   𝑎𝑛𝑑  𝑣 =   

, 
 
 

(6.21) 
 
where, 𝛼  is the current time learning rate, 𝜀 is constant,  𝑚 ,  𝑚  are the 
current and the past time momentum of gradients of embedding space,  𝑣 ,  𝑣  are the current and the past moving averages of squared gradients 

of the embedding space,  is the derivative of the encoder network and 
embedding space loss functions with the weights at the current time, and the 𝛽  and 𝛽  are decay rates. 
 
  The loss term 𝐿   in Equation 6.14 is utilized to update the decoder 
network parameters by Adam optimizer presented in Equations 6.22, 6.23, 
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6.24 for computing the momentum of gradients  𝑚∅ , the moving average of 
squared gradients  𝑣∅ , and the next guess decoder network weight parameters ∅ , respectively. 
  𝑚∅ =  𝛽 𝑚∅ + (1 − 𝛽 ) × ∅ ,  

(6.22)  𝑣∅ =  𝛽 𝑣∅ + (1 − 𝛽 ) × ∅ ,  
(6.23) 

 ∅ =  ∅ −  𝑚∅ ×  ∅  ;  𝑚∅ =  ∅  𝑎𝑛𝑑  𝑣∅ =   ∅ ,  
(6.24) 

where, 𝛼  is the current time learning rate, the 𝜀 is constant, the  𝑚∅ ,𝑚∅  
are the current and previous time momentum of gradients of the decoder 
network,  𝑣∅ , 𝑣∅   are the current and the past time moving averages of 
squared gradients of the decoder network, ∅  is the derivative of the decoder 
network loss function with the weights at the current time, and the 𝛽 and 𝛽  
are decay rates. 
 
  The loss term  𝐿   in Equation 6.15 is utilized to update the 
discriminator network parameters by Adam optimizer presented in Equations 
6.25, 6.26, 6.27 for computing the momentum of gradients 𝑚 , the moving 
average of squared gradients  𝑣  , and the next estimated discriminator 
network weight parameters 𝜌 , respectively. 
 𝑚 =  𝛽 𝑚 + (1 − 𝛽 ) × ,  

(6.25)  𝑣 =  𝛽  𝑣 + (1 − 𝛽 ) × ,  
(6.26) 

 𝜌 =  𝜌 −𝑚 ×   ;𝑚 =  𝑎𝑛𝑑  𝑣 =   
,  

(6.27) 

where, 𝛼   is the current time learning rate, 𝜀  is constant, 𝑚 ,𝑚  are the 
current and previous time momentum of gradients of the discriminator network,  𝑣 ,  𝑣   are the current and the past time moving average of squared 
gradients of the discriminator network,  is the derivative of discriminator 
network loss function with the weights at the current time, and 𝛽 and 𝛽 are 
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decay rates. 
 

6.2.6 The Vector Quantized Variational AutoEncoder with 
Embedding space Learned by Generative Adversarial 
Networks (VQ-VAE-EMGAN) 

  The conventional VQ-VAE consists of an encoder network, a decoder 
network, and an embedding space. The encoder network receives the input data 
to produce the z-latent and reshapes the z-latent into sub-vectors fitted to the 
vector quantization task in embedding space. The vector quantization 
organizes the discrete z-latent. The quantized z-latent is constructed based on 
the discrete version z-latent to pick the corresponding vector patterns in the 
embedding space.  The z-latent is used as the decoder network's input to 
reconstruct the output data. The loss function criteria of three terms in Equation 
6.1 are applied to update network parameters. The second term, called VQ loss, 
is applied to update embedding space parameters based on the mean square 
error between unquantized z-latent and quantized z-latent. The quality of 
quantized z-latent depends on the minimization of mean square errors. The 
more similarity between unquantized z-latent and quantized z-latent provides 
a better reconstruction performance of the output data. The adversarial loss of 
the GAN technique is the progressive of deep learning loss criteria. The 
advantage of using the adversarial loss is that the model can generate realistic 
data or high-definition data compared to the AE-generated blurry data [73].  
 
  We propose the Vector Quantized Variational AutoEncoder with 
Embedding space learned by Generative Adversarial Networks (VQ-VAE-
EMGAN) to replace the VQ loss based on the mean square errors with the 
adversarial loss based on the GAN technique.  
 
  Figure 6.2 shows the procedure of the VQ-VAE-EMGAN algorithm. 
The input 𝑥   (SP vector) is fed into the encoder network to produce the 
unquantized z-latent 𝑧 (𝑥 ). It is reshaped and quantized with the embedding 
space 𝑒. The index in the codebook of the embedding space 𝑒 is transmitted, 
and the decoder reproduces the quantized z-latent 𝑧 (𝑥 )  by choosing the 
corresponded vector pattern in the embedding space 𝑒  as the input to the 
decoder network to reproduce the output 𝑥  (Quantized SP vector). The loss 𝐿  in Equation 6.1 is applied to calculate the loss to update the encoder 
network parameters and decoder network parameters with the Adam optimizer 
in Equation 6.8. The first loss term 𝐿 (at line 11, Figure 6.2) is computed from 
the input 𝑥  (SP vector), the output 𝑥  (Quantized SP vector), unquantized z-
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latent 𝑧 (𝑥 )  and quantized z-latent 𝑧 (𝑥 ) . The discriminator network 
organizes to discriminate between the unquantized z-latent 𝑧 (𝑥 )  and the 
quantized z-latent 𝑧 (𝑥 ) . The generator loss 𝐿   (at line 12, Figure 6.2) is 
computed by Equation 6.28, and the discriminator loss 𝐿  (at line 13, Figure 
6.2) is computed by Equation 6.29: 
 𝐿 =  log (1 − 𝐷𝑖𝑠(𝑧 (𝑥 ))),  

(6.28) 
 𝐿 = log(𝑧 (𝑥 )) + log (1 − 𝐷𝑖𝑠(𝑧 (𝑥 ))),  

(6.29) 
 
where log (. )  is the logarithmic function. The 𝐷𝑖𝑠(. )  is the discriminator 
network. The 𝑧 (𝑥 ) is the unquantized z-latent. The 𝑧 (𝑥 ) is the quantized 
z-latent. 
 
 The adversarial loss 𝐿  from the discriminator is calculated and the Adam 
optimizer in Equation 6.8 updates the embedding space parameters 𝑒 in the 
generator network. The adversarial loss 𝐿  from the discriminator is applied 
to update discriminator network parameters by Adam optimizer in Equation 
6.8. 
 
  The mini-batch with 32 samples passed through the VQ-VAE-EMGAN 
network parameters in the training process in every iteration. The loss terms 
are updated the network parameters by using an Adam optimizer similar to the 
VAEGAN implemented in VQ-VAE but follows the procedure in Figure 6.2 
instead. 
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Figure 6.2: The procedure of the VQ-VAE-EMGAN algorithm. 
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6.2.7 The Vector Quantized Variational AutoEncoder with 
Embedding space and Decoder Network Learned by 
Generative Adversarial Networks (VQ-VAE-EMDEC) 

 
  Figure 6.3 shows the procedure of the proposed Vector Quantized 
Variational AutoEncoder with Embedding space and Decoder Network 
Learned by Generative Adversarial Networks (VQ-VAE-EMDEC). The input 𝑥  (SP vector) is fed into the encoder network to produce the unquantized z-
latent 𝑧 (𝑥 ). It is reshaped and quantized with the embedding space 𝑒. The 
index in the codebook of the embedding space 𝑒 is transmitted and reproduce 
the quantized z-latent 𝑧 (𝑥 ) by choosing the corresponding vector pattern in 
the embedding space 𝑒 as the input to the decoder network to reproduce the 
output 𝑥  (Quantized SP vector). The VQ-VAE-EMDEC technique is the same 
as the VAEGAN implemented in VQ-VAE. It draws the sample from the 
normal distribution 𝑧  with the same shape with 𝑧 (𝑥 ) and 𝑧 (𝑥 ), then the 
z-latent is fed into the decoder network to produce the 𝑥  for calculating the 
KL divergence loss in Equation 6.30: 
 𝐿 =  𝑧 (𝑥 ) × log 𝑧 (𝑥 ) − log 𝑧 .  

(6.30) 
 
  The second loss term 𝐿  (at line 14, Figure 6.3) is the form of Equation 
6.1, and it is calculated with the Adam optimizer in Equation 6.8. The loss term 𝐿  is computed from the input 𝑥   (SP vector), the output 𝑥   (Quantized SP 
vector), unquantized z-latent 𝑧 (𝑥 )  and quantized z-latent 𝑧 (𝑥 ) . The 
discriminator network is organized to discriminate between the unquantized 
SP vector 𝑥  and the quantized SP vector 𝑥 . The adversarial loss is defined as 
Equation 6.31: 𝐿 = log 𝐷𝑖𝑠(𝑥 ) + log 1 − 𝐷𝑖𝑠(𝑥 ) + log 1 − 𝐷𝑖𝑠 𝑥  ,  

(6.31) 
 
where log(.) is the logarithmic function. 𝐷𝑖𝑠(. ) is the discriminator network. 𝑥  is the unquantized SP vector. 𝑥  is the quantized SP vector. 𝑥  is the output 
from the decoder network by using random noise 𝑧  as input. 
 
  The loss terms 𝐿   (at line 16, Figure 6.3) are used to update the encoder 
network parameters by Adam optimizer presented in Equation 6.32. 𝐿   
(at line 17, Figure 6.3) is the loss to update the decoder network parameters 
and embedding space parameters as in Equation 6.33, where 𝛾 is a weight set 
to 10. 𝐿    (at line 18, Figure 6.3) is the loss to update the discriminator 
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network parameters by Equation 6.34.  
 𝐿 = 𝐿 + 𝐿,  

(6.32) 𝐿 = (𝛾𝐿) −  𝐿 ,  
(6.33) 𝐿 = 𝐿 ,  
(6.34) 

 
  In the training process, the mini-batch with 32 samples passed through 
the VQ-VAE-EMDEC network parameters in every iteration. The loss terms 
updated the network parameter by similar Adam optimizer to the VAEGAN 
implemented in VQ-VAE but followed the procedure in Figure 6.3 instead. 
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Figure 6.3: The procedure of VQ-VAE-EMDEC algorithm. 
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6.3 Experiments and Results 
 
  The experiment on the quantizer design was conducted. The four 
methods were compared: (1) the VQ-VAE (reference), (2) the VAEGAN 
implemented in VQ-VAE, (3) the VQ-VAE-EMGAN, and (4) the VQ-VAE-
EMDEC.  
 
  The (1) VQ-VAE is the reference method in which no GAN techniques 
are included. The proposed methods (2), (3), and (4) are trained by deep 
learning with various adversarial techniques. The main structures of the 
encoder, the quantization codebook, and the decoder are unchanged for the 
four methods. Since the GAN changes loss functions, all the parameters are 
trained, respectively.  
 
    The data for this experiment was the WORLD vocoder's spectral 
envelope parameters from 16 kHz sampling speech waveforms. Each model 
of them has four models with different target bitrates. 

6.3.1 The raw speech waveform database 

  The experiments were conducted with the LibriSpeech ASR corpus [78] 
of 16 kHz sampling English speech. The clean speech in the development set 
was selected as the training set. The dev-clean database consists of 8.97 hours 
with 40 speakers (2,719 waveforms), and the test-clean one, 8.56 hours with 
39 speakers (2,620 waveforms). In the model training process, we utilized the 
full dev-clean dataset, and in the evaluation process, we randomly selected 100 
waveforms from the test-clean dataset to evaluate the quantization 
performance. The WORLD vocoder [75] extracted the spectral envelope 
parameters from every five milliseconds of raw speech waveforms, and 
preprocesses were applied for training models.  

6.3.2 The spectral envelope parameter quantization  

  Figure 6.4 shows the procedure of spectral envelope parameter 
quantization. The WORLD vocoder framework was applied to evaluate 
spectral envelope quantization performance of 16 kHz raw speech waveforms. 
The speech analysis part extracted speech parameters from every five 
milliseconds of speech waveforms, the constant value of fundamental 
frequency (F0) with the shape of height, width, depth as (H=1, W=1, D=1), the 
vector of spectral envelopes parameter (SP) as (H=1, W=513, D=1), and the 
vector of the aperiodic parameter (AP) as (H=1, W=513, D=1). The output of 
5 milliseconds was reconstructed from the speech synthesis with those speech 
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parameters. In this paper, since we focused on the performance of the SP 
parameter quantization, the F0 and AP parameters were unquantized and 
directly used in synthesizing speech at the decoder. For the SP parameters, the 
logarithmic base ten and the min-max normalization were applied to normalize 
the scaling of the values between 0 to 1. The normalized SP parameter was 
defined as  𝑆𝑃  in Equation 6.35. 
 𝑆𝑃 = ( ) ,  

(6.35) 
 
where  𝑆𝑃  is the original spectral envelope parameter, log (. )  is the 
logarithmic base ten,𝑀𝑖𝑛   is the minimum value of 𝑆𝑃 , 𝑀𝑎𝑥   is the 
maximum value of 𝑆𝑃 , and the 𝑆𝑃   is the normalized spectral envelope 
parameter. 
 
  The quantized normalized SP parameter 𝑆𝑃  was obtained from the 
VQ method and applied the inverse min-max normalization in Equation 6.36 
followed by the inverse logarithmic base ten in Equation 6.37 to return the 
original values for representing the quantized SP parameter 𝑆𝑃  The speech 
parameters consisted of F0, 𝑆𝑃  and  AP were the input of the synthesis process 
to reconstruct the five milliseconds output speech waveform. 
 𝑆𝑃  ( ) = [𝑆𝑃 × (𝑀𝑎𝑥 −𝑀𝑖𝑛 )] + 𝑀𝑖𝑛 , (6.36) 𝑆𝑃 = 10  ( ) , (6.37) 
 
where 𝑆𝑃   is the quantized normalized 𝑆𝑃  parameter, 𝑀𝑖𝑛   is the 
minimum value of 𝑆𝑃,  𝑀𝑎𝑥  is the maximum value of 𝑆𝑃, 𝑆𝑃 ( )  is the 
quantized logarithm base ten domain of 𝑆𝑃  parameter, and 𝑆𝑃   is the 
quantized 𝑆𝑃 parameter. 
 
  The VQ-VAE, the VAEGAN implemented in VQ-VAE, the VQ-VAE-
EMGAN, and the VQ-VAE-EMDEC were designed to quantize the spectral 
envelope parameter of the WORLD vocoder with the fixed embedding space 
of 256 vector patterns (8 bits quantizer).  
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Figure 6.4: The block diagram of the WORLD spectral envelope 
parameter quantization. 

 
  Table 6.1 shows the common deep learning architecture of the encoder 
and decoder networks for the VQ-VAE, the VAEGAN implemented in VQ-
VAE, the VQ-VAE-EMGAN, and the VQ-VAE-EMDEC methods. The 
encoder consists of two CNN input layers with stride 2, two residual networks, 
and the prepared VQ layer to force the output channel to be the same as the 
length of vector patterns in the embedding space. The decoder is the inverse 
version of the encoder network consisting of the CNN input layer connected 
with two residual networks and two transposed CNN layers. The decoder 
transforms the received z-latent data into the fitted size of the next 
convolutional layers to calculate the summation into a single constant.  
 



104 
 

Table 6.1 
The encoder network and decoder network architectures of four 

implemented techniques. 
 

Encoder network 
Layer Architecture 

Input_1 4×4 128 Conv, stride 2, ReLU 
Input_2 
Residual1_1 
Residual1_2 
Residual2_1 
Residual2_2 
Pre_VQ 

4×4 256 Conv, stride 2, ReLU 
3×3 128 Conv, stride 1, ReLU 
1×1 256 Conv, stride 1, ReLU 
3×3 128 Conv, stride 1, ReLU 
1×1 256 Conv, stride 1, ReLU 

1×1 32 Conv, stride 1     
Decoder network 

Layer Architecture 
Input_1 
Residual1_1 
Residual1_2 
Residual2_1 
Residual2_2 
Output_1 
Output_2 

3×3 256 Conv, stride 1, ReLU 
3×3 128 Conv, stride 1, ReLU 
1×1 256 Conv, stride 1, ReLU 
3×3 128 Conv, stride 1, ReLU 
1×1 256 Conv, stride 1, ReLU 
  4×4 128 Conv, stride 2, ReLU 
  4×4 1 Conv, stride 2, Sigmoid 
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  Figure 6.5 shows the quantization process of the VQ-VAE. The SP 
vector was the input of the encoder network to produce the z-latent matrix. 
First, the reshaping method was applied to the z-latent matrix for the reshaped 
z-latent vectors with the vector length corresponding to the vector length of 
the designed embedding space. Then, the VQ was applied to transform the 
continuous reshaped z-latent vectors into a discrete presentation, and the 
inverse VQ was transformed back to the quantized z-latent matrix as quantized 
reshaped z-latent vectors. The input of the decoder network was the quantized 
z-latent matrix that was reshaped from the quantized reshaped z-latent vectors 
and reproduced the quantized SP vector. 
 
 

 
 

Figure 6.5: The VQ-VAE diagram. 
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  Figure 6.6 shows the VQ-VAE training process. In training, the encoder 
network receives the input SP vector and produces the z-latent, which 
minimizes Euclidean distance, and the index is sent to the decoder. The 
decoder network receives the index and reconstructs the quantized z-latents by 
picking the corresponding vector pattern in the embedding space. In the end, 
Equation 6.1 calculates the VQ-VAE loss, and the Adam optimizer updates 
network parameters consisting of the encoder network, decoder network, and 
embedding space (codebook). The training of VQ-VAE models uses the 
learning rate parameter: 0.0001, the optimizer: Adam, the number of training 
epochs: 10, and minibatch: the random of thirty-two SP vectors from the SP 
vector database.  
 

 

 
 

Figure 6.6: The VQ-VAE training process. 
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  Figure 6.7 shows the quantization process of the VAEGAN implemented 
VQVAE, the VQ-VAE-EMGAN, and the VQ-VAE-EMDEC. The SP vector 
was the input of the encoder network to produce the z-latent matrix. The 
reshaping method was applied to the z-latent matrix for the reshaped z-latent 
vectors with the vector length corresponding to the vector length of the 
designed embedding space. Next, the VQ was applied to transform the 
continuous reshaped z-latent vectors into a discrete presentation, and the 
inverse VQ was transformed back to the quantized z-latent matrix as quantized 
reshaped z-latent vectors. The input of the decoder network was the quantized 
z-latent matrix that was reshaped from the quantized reshaped z-latent vectors 
and reproduced the quantized SP vector. 
 
 

 
 

Figure 6.7: The quantization diagram of the VAEGAN implemented 
VQVAE, the VQ-VAE-EMGAN, and the VQ-VAE-EMDEC. 
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  Figure 6.8 shows the training process of the VAEGAN implemented in 
VQ-VAE. The input SP vector is fed into the encoder network to produce the 
unquantized z-latent. It is reshaped and quantized with the embedding space. 
The index of the codebook of the embedding space is transmitted and 
reproduces the quantized z-latent by choosing the corresponding vector pattern 
in the embedding space as the input to the decoder network to reproduce the 
quantized SP vector). The difference from the other techniques is that the 
VAEGAN implemented in the VQ-VAE draws the sample from a normal 
distribution with the same shape as the z-latent and then feeds into the decoder 
network to produce the SP vector from the normal distribution for calculating 
the KL divergence loss in Equation 6.11. The second loss term 𝐿 (at line 14, 
Figure 6.1), defined by Equation 6.1, calculates the loss with the Adam 
optimizer in Equation 6.8. The discriminator network is organized to 
discriminate between the unquantized and the quantized SP vectors. Equation 
6.12 can calculate the adversarial loss. The loss term updates the encoder 
network parameters and embedding space parameters with the Adam optimizer 
in Equation 6.8 presented in Equation 6.13. The decoder network parameters 
are updated with the Adam optimizer Equation 6.8 from the loss term in 
Equation 6.14, where the 𝛾 is the weight set to 10. The discriminator network 
parameters are updated by Equation 6.15 with the Adam optimizer in Equation 
6.8. The training of The VAEGAN implemented in VQ-VAE models uses the 
following parameters: the learning rate: 0.0001, the optimizer: Adam, the 
number of training epochs: 10, and minibatch: the random of thirty-two SP 
vectors from the SP vector database.  

 

 
 

Figure 6.8: The training process of the VAEGAN implemented 
 in VQ-VAE.  



109 
 

 Figure 6.9 shows the training process of the VQ-VAE-EMGAN. The input 
SP vector is fed into the encoder network to produce the unquantized z-latent. 
It is reshaped and quantized with the embedding space. The index of the 
codebook of the embedding space is transmitted and reproduces the quantized 
z-latent by choosing the corresponding vector pattern in the embedding space 
as the input to the decoder network to reproduce the quantized SP vector. The 
first loss term (at line 11, Figure 6.2) in Equation 6.1 is applied to calculate the 
loss to update the encoder network parameters and decoder network 
parameters with the Adam optimizer in Equation 6.8. The discriminator 
network is organized to discriminate between the unquantized and the 
quantized z-latents. The generator loss is computed by Equation 6.28, and the 
discriminator loss is computed by Equation 6.29. The adversarial loss from the 
discriminator is used at the Adam optimizer in Equation 6.8 to update the 
embedding space parameters assumed as the generator network. The 
adversarial loss from the discriminator is utilized to update discriminator 
network parameters with the Adam optimizer in Equation 6.8. 
 
 
 

 
 

Figure 6.9: The VQ-VAE-EMGAN training process. 
 
  



110 
 

  Figure 6.10 shows the training process of the VQ-VAE-EMDEC. The 
input SP vector is fed into the encoder network to produce the unquantized z-
latent. It is reshaped and quantized with the embedding space. The index in the 
codebook of the embedding space is transmitted and reproduces the quantized 
z-latent by choosing the corresponding vector pattern in the embedding space 
as the input to the decoder network to reproduce the quantized SP vector. The 
VQ-VAE-EMDEC technique is the same as the VAEGAN implemented in the 
VQ-VAE, which draws the sample from a normal distribution with the same 
shape as the z-latent and then feeds into the decoder network to produce the 
SP vector from the normal distribution for calculating the KL divergence loss 
in Equation 6.30. The second loss term 𝐿 (at line 14, Figure 6.3), defined by 
Equation 6.1, calculates the loss with the Adam optimizer in Equation 6.8. The 
discriminator network is organized to discriminate between the unquantized 
and the quantized SP vectors. Equation 6.31 can calculate the adversarial loss. 
The loss term updates the encoder network parameters with the Adam 
optimizer presented in Equation 6.32. The decoder network parameters and 
embedding space parameters updated by Adam optimizer from the loss term 
in Equation 6.33, 𝛾 is a weight set to 10. The discriminator network parameters 
are updated by Equation 6.34 with the Adam optimizer in Equation 6.8. 
 
 

 
 

Figure 6.10: The VQ-VAE-EMDEC training process. 
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6.3.3 Implementation of the VQ-VAE, VAEGAN implemented in 
VQ- VAE, the VQ-VAE-EMGAN, and the VQ-VAE-EMDEC  

  For the based adversarial technique models, VAEGAN implemented in 
VQ-VAE, VQ-VAE-EMGAN, and the VQ-VAE-EMDEC, the discriminator 
network organizes another network architecture shown in Table 6.2. For the 
input layer of the discriminator network, the fully-connected input layer of the 
proposed VQ-VAE-EMGAN is different from VAEGAN implemented in VQ-
VAE, and the VQ-VAE-EMDEC, the number of neurons which is determined 
by the received z-latent shape of input data of the models. The input layer 
transforms the input data into the fitted size of the following convolutional 
layers to calculate the sum into a single constant for adversarial loss calculation.  
 

Table 6.2  
The discriminator network architecture of the VAEGAN implemented in 

VQVAE, the VQ-VAE-EMGAN, and the VQ-VAE-EMDEC. 
 

Discriminator network 
Layer Architecture 

 
 
 
 
 

Input_1 

512 FC, LeakyReLU, Dropout  
(VAEGAN implemented in VQ-VAE) 

128 FC, LeakyReLU, Dropout 
 (VQ-VAE-EMGAN) 

512 FC, LeakyReLU, Dropout  
(VQ-VAE-EMDEC) 

 
Hidden_1 
 
Hidden_2 
 
Hidden_3 
 
Output 

2×2 8 Conv, LeakyReLU, Dropout, 
BatchNorm 

2×2 16 Conv, LeakyReLU, Dropout, 
BatchNorm 

2×2 32 Conv, LeakyReLU, Dropout, 
BatchNorm 

2×2 64 Conv, Sigmoid 
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  The switching of the discriminator adversarial loss is different among 
the three methods for optimizing specific network parameters. The proposed 
VAEGAN implemented in VQ-VAE utilizes the adversarial loss to update the 
decoder network parameters. The proposed VQ-VAE-EMGAN focuses to 
update the embedding space network parameters by the adversarial loss. The 
proposed VQ-VAE-EMDEC is different from the two proposed methods. The 
adversarial loss is utilized to update both decoder network parameters and the 
embedding space parameters. 
 

In the experiments, the four bitrate models of each the VQ-VAE, the 
VAEGAN implemented in VQ-VAE, the VQ-VAE-EMGAN, and the VQ-
VAE-EMDEC were constructed with the same four bitrates for the 
performance comparison, as presented in Table 6.3. The operational bitrates 
were 128, 256, 512, and 1024 bit/SP vector for the first, second, third, and 
fourth models of the VQ-VAE, the VAEGAN implemented in VQ-VAE, the 
VQ-VAE-EMGAN, and the VQ-VAE-EMDEC. All sixteen models utilized 
0.0001 as the learning rate in the training process. The mini-batch size was 32 
spectral envelope frames. The number of epochs was two of raw speech 
waveform in the training dataset. The Adam optimization was applied to 
update all the network parameters. 
 
 

Table 6.3  
The four implementation models for the VQ-VAE, the VAEGAN 

implemented in VQ-VAE, the VQ-VAE-EMGAN, 
 and the VQ-VAE-EMDEC. 

 

Model z-latent (H,  W,  D) 

Reshaped 
z-latent 

(N, D ) 

Embedding 
Space (K,  D ) 

BitsSP vector  
1 

(1, 128, 32) 

(128, 32) (256, 32) 1024 
2 (64, 64) (256, 64) 512 
3 (32, 128) (256, 128) 256 
4 (16, 256) (256, 256) 128 
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6.3.4 The results of the performance comparison 

Experimental results utilized the Log Spectral Distortion (LSD) [85, 86] 
defined in Equation 6.24 as the spectral envelope distortion indicator. The L2 
error was applied to measure the quality of the z-latent error between z-latent 
and quantized z-latent, as defined in Equation 6.25. The PESQ [87] was 
utilized to evaluate the quality between the original raw speech waveform and 
the reconstructed speech waveform.  

 
Figures 6.11, 6.12, 6.13, and 6.14 shows the calculation process of the 

average LSD, the z-latent L2 error, and the PESQ score for the VQ-VAE, the 
proposed VAEGAN implemented in VQ-VAE, the VQ-VAE-EMGAN, and 
the VQ-VAE-EMDEC, respectively. The testing dataset consisted of 100 raw 
speech waveforms from the LibriSpeech corpus that were not included in the 
training process of the proposed VAEGAN implemented in VQ-VAE, VQ-
VAE-EMGAN, and the VQ-VAE-EMDEC. The WORLD vocoder extracted 
the speech parameters from each raw speech waveform, only the spectral 
envelope parameter (SP) was quantized, and the synthesis process 
reconstructed the raw speech waveform again based on the quantized SP and 
other parameters. The LSD was applied to measure the distortion between SP 
and quantized SP. The L2 error was applied to measure the quality of the z-
latent error between z-latent and quantized z-latent. Finally, the 100 LSD 
values, z-latent L2 errors, and PESQ scores were calculated for each waveform 
and the average of LSD, z-latent L2, and PESQ scores were obtained. 
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Figure 6.11: The VQ-VAE average of LSD, z-latent L2 error, and the 
PESQ score evaluation. 

 
 

 

 
 

Figure 6.12: The proposed VAEGAN implemented in VQ-VAE average 
of LSD, z-latent L2 error, and the PESQ score evaluation. 
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Figure 6.13: The proposed VQ-VAE-EMGAN average of LSD, z-latent 
L2 error, and the PESQ score evaluation. 

 
 

 
 

Figure 6.14: The proposed VQ-VAE-EMDEC average of LSD, z-latent 
L2 error, and the PESQ score evaluation. 
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 All sixteen models were trained with the training set raw speech waveforms 
by extracted spectral envelopes from the WORLD vocoder and trained in the 
fixed environment. The spectral envelope quantization performance results 
were evaluated by the Log Spectral Distortion (LSD) in Equation 6.38 to 
measure the differences between the unquantized spectral envelope frame (𝑆𝑃 
vector) and quantized spectral envelope frame (𝑆𝑃  vector) in Figure 6.4, and 
the L2 loss in Equation 6.39 for the four models of VQ-VAE, VAEGAN 
implemented in VQ-VAE, VQ-VAE-EMGAN, and VQ-VAE-EMDEC. The 
LSD in dB and the L2 are defined as followings: 
 𝐿𝑆𝐷 = 10 × ∑ ∑ (𝑋 − 𝑌 ) ,  

(6.38) 
 
where 𝑀 is the number of log-spectral coefficients frames, 𝑁 is the length of 
log-spectral coefficients, Xij is the logarithm base ten spectral coefficients of 
unquantized spectral envelope, and Yij is the logarithm base ten log-spectral 
coefficients of the quantized spectral envelope. 
 𝐿2 = ∑ ∑ (𝑧 (𝑥) − 𝑧 (𝑥) ) , (6.39) 
 
where 𝑚 is the number of frames, 𝑁 is the length of a frame vector, 𝑧 (𝑥) is 
the unquantized z-latent, and 𝑧 (𝑥) is the quantized z-latent. 
 
  The Perceptual Evaluation of Speech Quality (PESQ) standard as ITU-
T recommendation [87] was applied to measure the quality of the reconstructed 
16 kHz waveform of WORLD vocoder for the VQ-VAE and proposed three 
methods for spectral envelope quantization with the regular WORLD vocoder 
without any spectral envelope quantization. 
 
  Table 6.4 and Figures 6.15, 6.16, 6.17, and 6.18 show the model 
comparison results for the methods in terms of the average LSD, average L2, 
and average PESQ results. In Table 6.4, the z-latent is represented with the 
shape of height, width, and depth as (H, W, D), and the reshaped z-latent shape 
as the number of vectors to be quantized with the length of the vector (N, 𝐷 ). The embedding space size is the number of vectors with the length 
of the vector (K, 𝐷 ). The bitrates of each input SP vector are represented 
as Bits/SP vector. In the figures, the models with adversarial training on the 
embedding space, VQ-VAE-EMGAN and VQ-VAE-EMDEC decreased the 
LSD and L2 compared with the reference VQ-VAE method. They also 
increased the PESQ scores compared with the VQ-VAE.  
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Table 6.4  
The comparison results. 

 
VQ-VAE 

Model z-latent (𝐻,𝑊,𝐷) 

Reshaped 
z-latent 

(𝑁,𝐷 ) 

Embedding 
Space (𝐾,𝐷 ) 

z-latent 
error 
(L2) 

𝐵𝑖𝑡𝑠𝑆𝑃  LSD PESQ 

1 

(1, 128, 32) 

(128, 32) (256, 32) 0.21 1024 3.28 2.53 
2 (64, 64) (256, 64) 0.30 512 3.89 2.35 
3 (32, 128) (256, 128) 0.39 256 4.92 2.11 
4 (16, 256) (256, 256) 0.67 128 7.92 1.55 

VAEGAN implemented in VQ-VAE  

Model z-latent (𝐻,𝑊,𝐷) 

Reshaped 
z-latent 

(𝑁,𝐷 ) 

Embedding 
Space (𝐾,𝐷 ) 

z-latent 
error 
(L2) 

𝐵𝑖𝑡𝑠𝑆𝑃  LSD PESQ 

1 

(1, 128, 32) 

(128, 32) (256, 32) 0.17 1024 2.39 3.28 
2 (64, 64) (256, 64) 0.33 512 4.77 2.22 
3 (32, 128) (256, 128) 0.44 256 6.09 1.61 
4 (16, 256) (256, 256) 0.71 128 9.28 1.15 

VQ-VAE-EMGAN 

Model z-latent (𝐻,𝑊,𝐷) 

Reshaped 
z-latent 

(𝑁,𝐷 ) 

Embedding 
Space (𝐾,𝐷 ) 

z-latent 
error 
(L2) 

𝐵𝑖𝑡𝑠𝑆𝑃  LSD PESQ 

1 

(1, 128, 32) 

(128, 32) (256, 32) 0.11 1024 2.85 2.78 
2 (64, 64) (256, 64) 0.28 512 3.67 2.46 
3 (32, 128) (256, 128) 0.37 256 5.04 2.29 
4 (16, 256) (256, 256) 0.56 128 6.57 1.70 

VQ-VAE-EMDEC 

Model z-latent (𝐻,𝑊,𝐷) 

Reshaped 
z-latent 

(𝑁,𝐷 ) 

Embedding 
Space (𝐾,𝐷 ) 

z-latent 
error 
(L2) 

𝐵𝑖𝑡𝑠𝑆𝑃  LSD PESQ 

1 

(1, 128, 32) 

(128, 32) (256, 32) 0.13 1024 2.21 3.19 
2 (64, 64) (256, 64) 0.16 512 2.60 3.01 
3 (32, 128) (256, 128) 0.34 256 4.68 2.12 
4 (16, 256) (256, 256) 0.51 128 6.60 1.51 
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Figure 6.15: The varied bit/SP vector comparison results of z-latent L2 
error. 

 

 
 

Figure 6.16: The varied bit/SP vector comparison results of LSD. 
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Figure 6.17: The varied bit/SP vector comparison results of PESQ. 
 

  
 

Figure 6.18: The loss term comparison results. 
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  Figure 6.19 compares the examples of z-latents between unquantized 
and quantized methods at the operation bitrate of 1024 Bits/SP. The 
unquantized z-latents are different for each method due to the different encoder 
and decoder training. From the figure, the proposed techniques, the VQ-VAE-
EMGAN and VQ-VAE-EMDEC give a clearer quantized z-latent compared to 
the VQ-VAE and the VAEGAN implemented in VQ-VAE. However, the 
results showed that the model such as the VAEGAN implemented in VQ-VAE 
using the adversarial loss updating only the decoder network could not operate 
well at the lower bitrate operation.  
  

 
Figure 6.19: The sampled z-latent comparison between unquantized and 

quantized methods at the operation bitrate of 1024 Bits/SP. 
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  Figures 6.20, 6.21, 6.22, and 6.23 compare the sampled WORLD 
vocoder phoneme spectral envelope frames for four bits operations.  
 

 

 
 

Figure 6.20: The sampled WORLD vocoder phoneme spectral envelope 
frames comparison 1024 bits/SP. 
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Figure 6.21: The sampled WORLD vocoder phoneme spectral envelope 

frames comparison 512 bits/SP. 
 

 
Figure 6.22: The sampled WORLD vocoder phoneme spectral envelope 

frames comparison 256 bits/SP. 
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Figure 6.23: The sampled WORLD vocoder phoneme spectral envelope 
frames comparison 128 bits/SP. 
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 Figures 6.24, 6.25, 6.26, and 6.27 show the sampled WORLD vocoder 
spectral envelope (spectrogram) with four bitrate operations. 

 
 
 

 
Unquantized SP 

 
                            VQ-VAE 128 bits/SP                    VAEGAN implemented VQ-VAE 128 bits/SP 

 
                   VQ-VAE-EMGAN 128 bits/SP                       VQ-VAE-EMDEC 128 bits/SP 

 
 

Figure 6.24: The sampled WORLD vocoder spectral envelope 
(spectrogram) at 128 bits/SP.  
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Unquantized SP 

 
                            VQ-VAE 256 bits/SP                    VAEGAN implemented VQ-VAE 256 bits/SP 

 
                   VQ-VAE-EMGAN 256 bits/SP                       VQ-VAE-EMDEC 256 bits/SP 

 
Figure 6.25: The sampled WORLD vocoder spectral envelope 

(spectrogram) at 256 bits/SP. 
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Unquantized SP 

 
                            VQ-VAE 512 bits/SP                    VAEGAN implemented VQ-VAE 512 bits/SP 

 
                   VQ-VAE-EMGAN 512 bits/SP                       VQ-VAE-EMDEC 512 bits/SP 

 
Figure 6.26: The sampled WORLD vocoder spectral envelope 

(spectrogram) at 512 bits/SP. 
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Unquantized SP 

 
                            VQ-VAE 1024 bits/SP                   VAEGAN implemented VQ-VAE 1024 bits/SP 

 
                   VQ-VAE-EMGAN 1024 bits/SP                      VQ-VAE-EMDEC 1024 bits/SP 

 
Figure 6.27: The sampled WORLD vocoder spectral envelope 

(spectrogram) at 1024 bits/SP. 
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  The proposed VAEGAN implemented in VQ-VAE results obtained the 
best average PESQ score in the highest bits operation. The model operating at 
the lower bits/SP vector (512, 256, 128 bits/SP vector) did not perform well 
because this model discarded the adversarial loss to update the embedding. The 
average z-latent L2 loss was very high compared to the VQ-VAE and other 
proposed methods. 
 
  The proposed VQ-VAE-EMGAN was designed to optimize the 
embedding space to get the lowest z-latent distortion (z-latent L2 error) by 
adversarial loss. However, the decoder network parameters were discarded to 
apply the adversarial loss to update, and the average LSD results and the 
average PESQ were not the best in the experiment. 
 
  The proposed VQ-VAE-EMDEC was the combined idea of mixing the 
first proposed method and the second proposed method. Instead, to update a 
single network parameter, the VQ-VAE-EMDEC utilized the adversarial loss 
to update both embedding space parameters and the decoder network 
parameters. The results from the experiment indicated that the average z-latent 
L2 error, the average LSD, and the average PESQ score were improved from 
the second proposed method (VQ-VAE-EMGAN) at the first two bitrates 
(1024 and 512 bits/SP vector), but in the lower two bitrates (256, 128 bits/SP 
vector) results were worse than the proposed VQ-VAE-EMGAN.  
 

6.3.5 The effects of the model parameter initialization  

  The model parameter initialization behaviors were also investigated in 
this study. The VQ-VAE-EMGAN model 1 was chosen to evaluate the effect 
of model parameter initializations. The first model parameter initialization 
behaviors experiment was the model initialization method. Four 
initialization methods were applied as the initialization model parameters: a 
normal distribution, Xavier (uniform distribution), and Xavier (normal 
distribution). The drawn values from distribution are presented in Equations 
6.40, 6.41, 6.42, and 6.43, respectively. 
 𝑤 = 𝑁(𝜇,𝜎 ) ; 𝜇 = 0.0 𝑎𝑛𝑑 𝜎 = 1.0, (6.40) 𝑤 = 𝑈(𝑎, 𝑏) ;𝑎 = 0.0 𝑎𝑛𝑑 𝑏 = 1.0, (6.41) 𝑤 _ = 𝑈(−𝑎,𝑎);𝑎 = 𝑔𝑎𝑖𝑛 ×  𝑎𝑛𝑑 , (6.42) 𝑤 _ = 𝑁(𝜇 = 0,𝜎 );  𝜎 =  𝑔𝑎𝑖𝑛 × , (6.43) 
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where 𝑁(𝜇,𝜎 )  is the normal distribution. 𝜇  is the mean,  𝜎  is the standard 
deviation. 𝑈(𝑎, 𝑏) is the uniform distribution. 𝑎 is the lower bound and b is the 
upper bound of the distribution. 𝑔𝑎𝑖𝑛  is the weight control parameter. The 𝑓𝑎𝑛  is the number of nodes in the previous layer. The 𝑓𝑎𝑛  is the number 
of nodes in the next layer.  
 
  Table 6.5 shows the effect of first model parameter initialization 
behaviors. The model parameters drawn from the normal distribution obtained 
the best results of LSD, z-latent error L2, and PESQ.  
 
  The second experiment of the model parameter initialization was the 
VQ-VAE-EMGAN model 1 model parameters initialized with normal 
distribution. In this experiment, we repeated the initialization process ten times 
to investigate the effect of initial values. The results are shown in Table 6.6 
that each time of parameter initialization also effect to the model performance, 
but the results of each attempt were not significantly different after finishing 
the model training. 
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Table 6.5 
The VQ-VAE-EMGAN model 1 initialization method comparison results 

 

Initialization method 𝑩𝒊𝒕𝒔𝑺𝑷  
z-latent 

error (L2) 
LSD PESQ 

Norm. 

1024 

0.13 2.21 3.19 

Uniform 1.72 × 10  69.96 1.11 

Xavier Norm. 0.15 2.88 2.80 

Xavier 

Uniform 
0.49 6.42 2.27 

 

Table 6.6 
The VQ-VAE-EMGAN model 1 repeat model parameter initialization 

comparison results. 
 

Attempt 𝑩𝒊𝒕𝒔𝑺𝑷  
z-latent 

error (L2) 
LSD PESQ 

1 

1024 

0.09 1.82 3.75 

2 0.12 2.13 3.42 

3 0.11 1.99 3.18 

4 0.15 2.55 3.38 

5 0.14 2.35 3.42 

6 0.15 2.56 3.15 

7 0.22 3.27 2.90 

8 0.18 2.91 3.09 

9 0.13 2.35 2.57 

10 0.14 2.25 3.53 

Average 0.14 2.42 3.24 
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6.4 Discussion 
 
  In the conventional VQ-VAE, the existing research adopted powerful 
autoregressive deep learning [91, 92] as a decoder network of VQ-VAE for 
superior reconstruction performance for image and audio data. However, this 
method required massive computational complexity. In [93], the Multi-Layer 
Perceptron (MLP) architecture in the network was designed to complete the z-
latent dimensionality reduction and flexibility. It can manage the size without 
using CNN as an encoder coding layer to expand the input data into huge 
dimensions. The reconstructed output was better than the conventional VQ-
VAE in terms of Log Spectral Distortion to quantize the spectral envelope 
parameter of the WORLD vocoder. In [57], another method to enhance the 
reconstruction performance was presented. The training technique was based 
on the Expectation-Maximization (EM) algorithm and achieved better 
reconstruction performance than the traditional training technique of VQ-VAE 
on typical encoder and decoder networks. The EM algorithm was applied to 
the loss criteria to update the embedding space to improve the output 
reconstruction performance of VQ-VAE. 
  
  The minimization of the KL divergence is introduced in the VQ-VAE in 
low-dimensional representation (z-latent) that is not directly observed but 
inferred through a mathematical model and stored helpful information from 
the input data. The GANs do not work with any explicit density estimation like 
VAE or VQ-VAE, which learn the likelihood distribution through loss function. 
The GAN finds Nash equilibrium between the generator and discriminator 
networks using universal function approximators such as neural networks, 
which explicitly learn the likelihood distribution. A generator learns to capture 
the data distribution, and a discriminator estimates the probability that a 
sample came from the data distribution rather than the model distribution.  
 
  Reference [18] shows the GAN performance in VAE. The decoder is 
assumed to be the generator cooperating with the discriminator to find the 
Nash equilibrium by discriminating whether the reconstructed output is 
different from the input. This method, called VAEGAN, is our basic idea for 
developing models. In the experiments, VQ-VAE and GAN adversarial 
training techniques were investigated in several assumed generator parts in 
VQ-VAE for spectral envelope parameter quantization. The first proposed 
model was VAEGAN implemented in VQ-VAE. The discriminator network 
received the raw SP vector and quantized SP vector to distinguish the 
difference and return adversarial loss to update the decoder network 
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parameters in the training process. The second proposed VQ-VAE-EMGAN 
replaced the adversarial discriminator loss with the mean square error in the 
VQ loss term to update the embedding space parameters in VQ-VAE. The 
discriminator that distinguishes between the z-latent and the quantized z-latent 
is the same or not by Nash equilibrium without sampling the data from the 
Gaussian distribution like VAEGAN implemented in VQ-VAE. The proposed 
VQ-VAE-EMDEC model's third model combines the VAEGAN implemented 
in VQ-VAE and the VQ-VAE-EMGAN together. The discriminator network 
distinguished between the raw and the quantized SP vectors. It returned the 
adversarial loss to update the decoder network parameters and the embedding 
space parameters. 
 
  In Table 6.4, the experiments evaluated sixteen models based on deep 
learning on varied bitrates from four different vector quantization methods: 
VQ-VAE, VAEGAN implemented in VQ-VAE, VQ-VAE-EMGAN, and VQ-
VAE-EMDEC. The VQ-VAE-EMGAN and VQ-VAE-EMDEC models, which 
include adversarial training on the embedding space, gave better performance 
by reducing the LSD and L2 and increasing the PESQ score compared to the 
VQ-VAE. In Figure 6.19, the proposed techniques, the VQ-VAE-EMGAN and 
VQ-VAE-EMDEC, showed clearer quantized z-latents compared to the VQ-
VAE and the VAEGAN implemented in VQ-VAE. On the other hand, the 
VAEGAN implemented in VQ-VAE model which had the adversarial loss 
updating only at the decoder network could not operate well at the lower bitrate 
operation. But at the highest bitrates operation, it increased the performance, 
as well as the VQ-VAE and VQ-VAE-EMGAN and VQ-VAE-EMDEC.  
 
  The results in Table 6.5 represented the effect of each initialization 
method in terms of the model parameter initialization effect. The model 
parameters drawn from the normal distribution obtained the best results in 
terms of performance because the drawn samples had values nearly zeros, 
based on the mean of normal distribution. On the other hand, the drawn sample 
values from uniform distribution were too big based on uniform distribution, 
making it difficult for model weight parameters to converge the loss function. 
The other investigation presented in Table 6.6 attempted to train the model 
parameter with normal distribution initialized ten times. The results indicated 
that each time of parameter initialization also affects the model performance, 
but the results of each attempt were not significantly different after the finished 
model training. 
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6.5 Conclusion 
 
 In conclusion, this chapter provides the following contributions: 
 
 We proposed the three models: VAEGAN implemented in VQ-VAE, 

VQ-VAE-EMGAN, and VQ-VAE-EMDEC as the improved version of 
VQ-VAE. They combined deep learning adversarial training techniques 
to increase the VQ-VAE reconstruction performance of the spectral 
envelope quantization by the well-known GAN technique. 
 

 In the experiment, we designed sixteen spectral envelope parameter 
quantizers applied to the WORLD vocoder to extract the spectral 
envelope parameter at 16 kHz sampling frequency speech. The 
quantization performance in four target bitrate operations varied from 
low to high bitrates was evaluated. The results showed that the proposed 
VQ-VAE-EMDEC could reduce the average LSD by around 0.98 points 
in dB, the average L2 z-latent error by around 0.11, and in terms of 
reconstructed speech waveform, the proposed method also improved the 
PESQ by around 0.32, compared to the VQ-VAE. 
 

 The model initialization methods affected the model performance after 
the finished training process, and every single initialized model 
parameter also affected a fewer to performance of the model after the 
finished training.  
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Chapter 7 
 
Conclusion and Future Work 
 
7.1 Conclusion 
 

Through this thesis, we examined the spectral envelope quantization 
based on deep learning to clear the deep learning performance compared to the 
conventional quantization techniques. In addition, we implemented five 
contribution models, which investigate deep learning techniques for spectral 
envelope quantization. All implementations utilized the WORLD vocoder 
with high performance to estimate the spectral envelope parameters of the 
speech data. The datasets used in this dissertation were the VCTK corpus at a 
sampling rate of 48 kHz and the LibriSpeech corpus at a sampling rate of 16 
kHz for investigating the deep learning performance of speech spectral 
envelope quantization.  

 
The first study of the dissertation was presented in chapter 4; the 

objective is to study the effect of deep learning architecture on VQ based on 
deep learning. The conventional VQ technique (K-means) was constructed to 
quantize the spectral envelope in four different target bitrates. They were 
compared to the standard VQ-VAE in which the architecture was constructed 
from the Convolutional Neural Networks and the Multi-layer Perceptron 
architecture as the Multi-layer Perceptron Vector Quantized Variational 
AutoEncoder (MLP-VQ-VAE).  

 
The second study presented in chapter 5 aims to confirm the 

effectiveness of the techniques utilized in the conventional VQ, the Sub-band 
VQ, and the predictive VQ. We experimented with improving the 
reconstruction performance when applying those techniques in VQ-based 
learning. The conventional VQ was constructed to quantize the spectral 
envelope in four target bitrates compared to the proposed sub-band Vector 
Quantized Variational AutoEncoder (sub-band VQ-VAE) and the Predictive 
Vector Quantized Variational AutoEncoder (Predictive VQ-VAE).  

 
The last study in the dissertation presented in chapter 6 was the advanced 

deep learning training techniques in VQ-VAE, the combination between VQ-
VAE and the Generative Adversarial Network (GAN) designed to work 
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together in the spectral envelope quantization in four different target bitrates 
compared to the conventional VQ, and VQ-VAE. The experimental results 
showed the effectiveness of the adversarial loss update on the whole networks 
of VQ-VAE and only the embedding space of quantization in the VQ-VAE. 

 
 In summary, this dissertation provides the following contribution. 
 

1.   The study demonstrated that the results in chapter 4 showed that the 
vector quantization based on deep learning reconstruction performance 
is better than the conventional vector quantization technique. The 
followings support this contribution: 

 
  1-I. The study showed that deep learning methods effectively 
quantize the speech spectral envelope parameters at the high-quality raw 
speech waveform at 48 kHz called Vector Quantized Variational 
AutoEncoder by utilizing the WORLD vocoder to represent the 
estimated high-quality spectral envelope.  
 
  1-II.  The study showed that the Vector Quantized Variational 
AutoEncoder outperformed the conventional Vector Quantization 
technique (K-means) in terms of reconstruction performance at the same 
various bitrates for spectral envelope quantization. 
 
   1-III. The study implemented the proposed Multi-Layer 
Perceptron Vector Quantized Variational AutoEncoder (MLP-VQ-
VAE) to quantize the spectral envelope parameters of the high-quality 
48kHz WORLD vocoder. As a result, the codebook size of the 
representation vectors of the MLP-VQ-VAE was around 1.6 times 
smaller than that of the conventional vector quantization. Moreover, the 
embedding space and z-latent sizes were around 21 times smaller than 
the conventional VQ-VAE. 
 
  1-IV. The study showed that the MLP-VQ-VAE achieved better 
reconstruction performance in terms of Log Spectral Distortion (LSD), 
and the LSD was reduced by around 1.1 points in dB compared with the 
conventional vector quantization and by around 2.5 dB compared to the 
VQ-VAE. 

 

2.  The study demonstrated that the results in chapter 5 of the vector 
quantization based on deep learning reconstruction achieved better 
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performance by applying the advanced vector quantization techniques. 
The followings support this contribution: 

 
   2-I. We proposed the Sub-band VQ-VAE, which is a combination 
of a sub-band vector quantization technique and the VQ-VAE, to 
quantize the spectral envelope parameters of the high-quality 48kHz 
WORLD vocoder. This model focused on a specific frequency sub-band 
by assigning more quantization bits and leaving unnecessary frequency 
sub-band with fewer bits for the bit-allocation. 

 
  2-II. The study showed that the proposed Sub-band VQ-VAE 
performed well in quantizing the spectral envelope parameter of the 
high-quality WORLD vocoder that operates at 48kHz raw speech 
waveform. The LSD results in the four various bitrates show that the 
sub-band VQ-VAE had lower average LSD values than the VQ-VAE, 
around 0.93 points in dB. 
 

  2-III.  The study showed that the disadvantage of the proposed 
Sub-band VQ-VAE needed more substantial embedding space than the 
conventional VQ-VAE, around 2.17 times. The effective representation 
of the codebook is a future problem. 
 
  2-IV. We proposed the Predictive VQ-VAE, a combination of a 
predictive vector quantization technique and the VQ-VAE, to quantize 
the spectral envelope parameters of the high-quality 48kHz WORLD 
vocoder. The predictive quantization technique utilizes the previous data 
to produce the current data. 
 
  2-V. The study showed that the proposed Predictive VQ-VAE had 
a lower distortion in LSD for four target bitrates than the conventional 
VQ-VAE. However, the model complexity increased a lot because the 
Predictive VQ-VAE required the encoder and decoder predictor 
networks. Nevertheless, the LSD results showed that the average LDS 
from four operation bitrates of the Predictive VQ-VAE was lower than 
the VQ-VAE by around 2.58 points in dB. 
 

 
3. The study demonstrated the results in chapter 6 of the vector 

quantization based on deep learning reconstruction performance 
achieved better performance by applying the advanced deep learning 
techniques. The following findings support this contribution: 
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  3-I. We proposed three improved VQ-VAE training algorithms: 
the VAEGAN implemented in VQ-VAE, the VQ-VAE-EMGAN, and 
the VQ-VAE EMDEC, which implemented advanced deep learning 
based on the Generative Adversarial Networks (GAN) technique. The 
introduction of the GAN techniques to update the specific network 
parameters of the VQ-VAE improved the reconstruction performance 
of the spectral envelope.  
 
  3-II. The study presented experiments of designing four spectral 
envelope parameter quantizers applied to the WORLD vocoder to 
extract the spectral envelope parameter at 16 kHz. The quantization 
performance was evaluated in four target bitrate operations varied from 
low to high bitrates. The results showed that the proposed VQ-VAE-
EMDEC reduced the average LSD by around 0.98 points in dB, the 
average L2 z-latent error by around 0.11, and the proposed method also 
increased the PESQ by around 0.32, compared to the VQ-VAE.  
 
  3-III. The model initialization methods affected the model 
performance, and every single initialized model parameter also affected 
a little bit to performance of the model. 

 
 
7.2 Future Work 
 

In addition to this dissertation, several improvements can provide a 
better quantization performance. First, the existing studies in this dissertation 
utilized the VQ-VAE that the intermediate representation by the vector 
quantization technique, to force continuous z-latent to be discrete z-latent. The 
encoder network should produce the discrete z-latent directly, and the decoder 
network utilizes the discrete z-latent to reproduce the input of the encoder 
network. With this approach, the reconstruction loss term reduces only to 
optimize the difference between input and output error by the optimization tool 
without designing a precise quantizer for the z-latents. Of course, although the 
encoder and decoder training procedures might be complex and carefully 
trained, this end-to-end approach will be an important problem for future deep 
learning vocoder development.  
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A.2 International conference papers (peer-reviewed) 
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2019-2019 IEEE Region 10 Conference (TENCON) (pp. 296-300). IEEE. 
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