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Pedestrian simulation has a significant role thanks to its contribu-

tions in many research fields, including robotics, human safety, and

urban planning. However, perfectly simulating pedestrian behavior

is difficult because of the complexity of the human cognition system.

This complexity causes many problems, such as cognitive bias or hu-

man mistakes, which could not be achieved by using an optimization

method. Many pedestrian simulation models approach the problem

by using an empirical model, often with force-based or rule-based

methods. While these approaches could provide believable results in

common situations, it does not always resemble natural pedestrian

navigation behavior in certain settings. To improve the replicated be-

havior of the pedestrian, the simulation model needs to consider the

ideas in human factors and human cognition.

We proposed a model to simulate pedestrian navigation by adopt-

ing several concepts of the human cognitive system in behavioral

science combined with reinforcement learning. The proposed model

was correspondingly designed consisting of two tasks: a pedestrian

path-planning task to simulate the navigation planning process in the

pedestrian’s mind, and a pedestrian interacting task to replicate the
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interaction between the pedestrian and another obstacle while follow-

ing the planned navigation. For a more realistic human behavior, we

also suggested a prediction method based on the predictive process in

human cognition.

In addition, risk assessment of the obstacle’s danger is another focus in

this dissertation. While this process could substantially affect how a

pedestrian navigates, this problem is often overlooked in other studies.

In our research, we have addressed the risk determination mechanism

by humans and its effect on the pedestrian’s navigation. Based on

that, risk assessment methods were modeled and incorporated exten-

sively in many aspects of our behavioral pedestrian simulation model.

The empirical result demonstrates a highly realistic human behavior

of pedestrian interactions, which resembles actual situations in real

life. The simulated pedestrian actions share many similarities with a

human pedestrian in several aspects such as following common walk-

ing conventions and human behaviors.
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Chapter 1

Introduction

In this chapter, the motivation for this dissertation is presented. Subsequently,

the related concepts in this study, including human factors, human cognition and

reinforcement learning, are introduced. Lastly, the contribution of the study is

described, followed by the outline of the dissertation.

1.1 Motivation

Simulation of pedestrian movement is a topic of great interest to many researchers

thanks to a large number of its application domains. An example of this is the

applications in the robotic field, which aim to replicate human navigation be-

haviors. This could be remarkably beneficial in the future, where robots could

navigate among humans and actively assist people in many different tasks. Pedes-

trian safety is also another critical aim in pedestrian movement simulation. These

studies address the assurance of safety for pedestrians by, for example, simula-

tion of multiple pedestrian movements to ensure no harm could be induced. For

instance, many studies of pedestrian simulation for evacuation activities have

been beneficial to the design in safety features of construction projects [1]. An-

other example is the studies in pedestrian behavior, which are crucial for urban

planning and landscape design [2, 3]. Recently, along with the rising trend of

autonomous vehicles, pedestrian simulation studies have attracted increasing in-

terest, especially in the situation of crossing with vehicles, to avoid possible fatal

accidents [4, 5].
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1.1 Motivation

However, simulating the navigation of pedestrians is a highly complicated

task. While these studies could construct a sufficient reproduction of the pedes-

trian navigation behavior in certain applications, for example, the robot move-

ment in pedestrian roads, their approaches might not be able to provide a realistic

behavior needed for some research, in risk and safety problems for instance. This

is because the goal of a navigation model in robotics is to create a robust and

efficient movement that is deemed safe and comfortable by humans, which does

not require an accurate replication of human navigation. For a human-like be-

havior, there are many problems that need to be addressed whilst modeling the

navigation. One of the most challenging problems is the unpredictable nature of

human behavior. Upon different circumstances or states, subjectively or objec-

tively, a person could behave in totally different ways. In the case of pedestrian

navigation, for instance, the route chosen by a pedestrian could significantly be

altered by a subtle gesture or signal from another pedestrian. Humans also tend

to behave differently when they are in different social situations, such as going

along with a friend or in a group [24]. Another problem is that differences in

regulations and cultures also contribute to the way pedestrians navigating in the

environment. There are certain behaviors considered to be normal in one region

that could be recognized as inappropriate in another. Such behaviors are usually

insufficiently researched, thus formulating these behaviors in a navigation model

could be greatly demanding, as a consequence.

Because of this, research in pedestrian navigation simulation has been greatly

active, addressing different problems of the simulation. A great number of ap-

proaches have been used for the problems. Many studies tried to replicate the

abstract navigation of pedestrians by implementing various empirical models,

which often employ various physics-based methods such as force-based and fluid

dynamics [8] to realize the pedestrian’s movement. The basic idea of these models

is that pedestrian agents are attracted to a specific point-of-interest (e.g. pedes-

trian’s destination) and repulsed from possible collisions (e.g. walls, obstacles,

and other agents). The representation of the force-based models is similar to the

interactions between magnetic objects with some certain improvements. These

methods have some certain resemblance in basic movement and collision avoid-

ance in some applications. However, in many circumstances, their movement

implementations might be too generic and do not depict actual human-like inter-

actions. For instance, when an agent plans a path to go from its current position

2



1.2 Objectives

to a destination, a force-based agent often chooses the shortest path without col-

liding with other obstacles most of the time. In real life, a human pedestrian has

many other aspects affecting his decision such as social comfort, law compliance,

or his personal emotion.

1.2 Objectives

In this study, we concentrate on simulating pedestrian behaviors in a microscopic

setting. Regarding the scale of the research in pedestrian simulation, most stud-

ies in pedestrian simulation are often categorized into three levels of interaction:

macroscopic, mesoscopic, andmicroscopic [32]. The macroscopic simulation mod-

els often use the concept of fluid and particles originated from physics to construct

pedestrian navigations while ignoring the interactions between pedestrians as well

as individual characteristics of each pedestrian. For an excessively high-density

crowd, a macroscopic model could be sufficient; however, for a smaller size of

pedestrians where social interactions are essential, a mesoscopic or microscopic

model would be more suitable. A mesoscopic model sits between macroscopic

and microscopic, which is still able to simulate a relatively large-sized environ-

ment but with the cost of the agent’s movements and interactions. Compared to

mesoscopic, a microscopic model is more realistic as each pedestrian is consid-

ered as an independent object or a computer agent whose behaviors and thinking

processes could be modeled upon.

Specifically, we try to replicate the navigation mechanism of pedestrians when

planning a path to their destination while taking avoiding obstacles and inter-

acting with other pedestrians into account. Many real-life situations require this

problem to be resolved, for example, preparing the necessary safety precautions

for an infrastructure project, like an apartment complex or a shopping mall, ac-

curate pedestrian behavior needs to be precisely simulated. By reflecting the

human behavior in the navigation around an area, which areas the pedestrian

could look at and where the pedestrian would most likely to reach could be ob-

served, therefore potential risks could be early detected and eliminated. This

could also benefit other related activities, such as placing notices for citizens or

advertisement placements.

3



1.3 Human factors and human cognition

Addressing the obstacle’s risk and danger is also a factor that is often overseen

by many studies. Although the majority of research in pedestrian simulation

considers the obstacle in collision avoidance, to our best knowledge, not many

studies have addressed how its danger affects the pedestrian’s choice. For the

papers that discuss this problem [39], the models proposed are quite limited in

using the empirical approach without considering the human cognitive factors.

The results of these models could be consequently insufficient, especially in the

case the danger of the obstacle greatly alters the path choice of the pedestrian.

For safety-focused applications, this problem could produce undesirable results,

possibly causing significant consequences as a result.

For that reason, our objective is to design a pedestrian model that is able to

construct a natural navigation behavior. The natural behavior in our model is

defined as realistic and human-like navigation when assessed by human observers.

Because there are a great variety of navigating traits that could be considered

natural by humans, the navigation behavior in our pedestrian model does not

have to replicate the exact characteristics of a specific human behavior. Addi-

tionally, unlike the approaches from other studies, the behavior is not formulated

by optimizing certain factors, because we believe that optimization may lead to

a less human-like pedestrian demeanor.

Consequently, we proposed a novel cognitive pedestrian simulation model con-

sidering the obstacle’s danger and risk assessment while taking account of human

cognitive factors. Our model adopts the concept of deep reinforcement learning,

a neural network-based machine learning technique, for the training of the pedes-

trian agent. The approach has many similarities with the mechanism of human

cognition. Deep reinforcement learning approaches also employ artificial neural

networks, which were inspired by the mechanisms of the biological neural net-

work in the human brain. Thanks to that, the aspects in obstacle’s danger and

risk assessment are further explored in a similar mean as to how humans address

dangers in real life.

1.3 Human factors and human cognition

To have a better understanding of human behavior, particularly in pedestrian

navigation, the aspects of human factors and human cognition need to be con-
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1.3 Human factors and human cognition

sidered. The study of human factors is a research domain that focuses on the

psychological, social, physical, and biological characteristics of humans in inter-

acting with others. In human navigation, in particular, many factors could affect

walking behavior. For instance, age and gender play a significant role in how

a person navigates [77]. For instance, old people are often less confident than

younger people, thus often focusing on safety when navigating. On the other

hand, young people are usually more confident and focus more on the efficiency

of the navigation, although this could lead to more accidents. Male pedestrians

also have been proven to have higher confidence in navigating compared to female

pedestrians. Children, while generally less confident than adults, they also lack

the ability to accurately identify danger, which may lead to a higher chance of

an accident. On the other hand, there is no difference between male and female

children. These concepts like confidence and different priorities in navigation are

essential for a behavioral pedestrian model.

Regarding human cognition, this is the concept of information processing in

humans. The process is carried out by the cognitive system, the thinking process

inside the human brain, which is responsible for the decision-making process of

everyday tasks. The human thinking process is remarkably complex and difficult

to be analyzed. There have been many studies in different research domains,

including behavioral psychology and cognitive science, conducted to have a better

understanding of the cognitive system. Every moment, an enormous amount of

information surges into the human brain, and the decision needs to be promptly

made. Most of the time, many of the choices are made by the human forming

a “heuristic shortcut” to quickly form the decision. As a result, occasionally

the decisions are non-optimized, inaccurate, and even completely wrong. These

types of faults are called cognitive bias, which is a concept coined by Tversky and

Kahneman [72]. The number of cognitive bias types is highly diverse, however,

they could be sorted into three main categories: attention bias, memory bias,

and judgment bias [41]. By understanding the ideas behind the human cognitive

system, such as how a certain bias is made, to replicate in a human behavior

model, the model’s performance could be improved. The approach of considering

concepts in cognitive science has been addressed in other studies [29, 42, 43],

which have achieved good results. However, this approach has not been properly

considered in studies of pedestrian models.

5



1.3 Human factors and human cognition

As a result, we also need to consider the mechanisms of the cognitive system

in the pedestrian navigation problem. More specifically, the concepts such as cog-

nitive maps, spatial knowledge, and goal-oriented planning are the contributing

factors in the decision process of humans in navigation. An adequate navigation

model should consider these factors and is able to incorporate these concepts

in its realization. The realization of these concepts could be different between

models as each model would have a different approach to streamline the compli-

cated human decision-making process. This could be even more demanding if the

model does not have an appropriate thinking mechanism, such as the force-based

or fluid dynamic models.

Among the elements within the cognitive system, cognitive prediction is one

of the most significant factors in human navigation. This is also the main cause of

many human biases [18]. To reduce the cognitive load, many processes inside the

human brain often employ a prediction method to help with decision making. For

example, when a pedestrian is navigating, most future states of the environment

would be forecasted, such as where the other pedestrians are going or will the

traffic light turn red. Another example is when a person wants to get to a specific

destination, he would always try to address the concerns like is it going to be more

inconvenient if a certain path is chosen. For various reasons, making incorrect

predictions is common in practical situations. As a result, we explored how the

agent could incorporate the cognitive prediction into its navigation behavior,

which we believe could improve the resemblance of the pedestrian interaction in

real life. The difference between this and the prediction in many studies is that,

while these studies aim at the accuracy of the prediction, the focus of our research

is to imitate the prediction in the human cognitive process. This may lead to a

less optimized navigation route or accurate prediction, but this would be closer

to real-life human behaviors.

Not every decision that resulted from heuristic shortcuts leads to error or

suffers from cognitive bias. Humans, similar to many other animals, have a “trial-

and-error” learning mechanism based on the feedback they receive [41]. In the

cases that the decisions result in getting good feedbacks, people would embrace

that decision and would make the same decision, which means using the same

heuristic shortcut in the future and vice versa. This is also the cause of many types

of human bias, as in real life, the feedbacks are often greatly lacking to reinforce

the correct behavior. For that reason, we expect that by using reinforcement
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1.4 Reinforcement learning

learning, with similar feedback as in actual situations, a more realistic navigation

behavior would be modeled.

1.4 Reinforcement learning

Similar to a concept of the same name in behavioral psychology, reinforcement

learning is a machine learning paradigm in which the agent gradually learns to

interact with the environment via trial-and-error progression, in which the learner

needs to find the appropriate actions in the current state for an optimum reward.

For every action taken by a person, he will get some feedback called reward

from the environment. Depending on the reward, which can be either positive

or negative, the actions leading to that reward would be encouraged or avoided,

respectively.

Recently, several reinforcement learning techniques that incorporate neural

network utilization have been proposed. Neural network is a concept in artifi-

cial intelligence, which is considerably adopted in many deep learning techniques.

Like biological neural networks, an artificial neural network consists of multiple

nodes or neurons. In human cognition, these neurons help to analyze and cate-

gorize all sorts of problems, which in turn support the person in most decisions.

Correspondingly, the neurons in an artificial neural network are also organized

into layers, which also helps to solve many machine learning technique problems.

This is particularly similar to how children learn to navigate. Other than

learning to reach a destination, they also need to learn to walk in the right

way and avoid other obstacles. The instructions come from encouragements as

well as punishments from different people, which resemble the reward signals in

reinforcement learning. As an example, in the path-planning task, the child needs

to plan a path to the destination. If he feels uncomfortable with his decision,

because of taking a longer path or colliding with obstacles, for instance, he will

then receive a negative reward and will try to improve his behavior. As a result,

once an environment is observed, he will be able to come up with a path using

his current optimum policy without the need for various calculations such as

“forces” realized in many microscopic pedestrian models. Although the neural

network used in a machine learning program is much less developed compared

to even a child’s brain, a reinforcement learning technique could benefit from
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1.5 Our contributions

much higher training scenarios compared to actual human beings. For example,

a child could learn to reach the correct destination after several tries, it could

take a reinforcement learning agent a few minutes to learn through millions of

states of the environment. For that reason, the neural network could still learn

to accomplish the equivalent task despite the limitation in its network structure.

1.5 Our contributions

The main contributions of this study are the design and formulation of a novel

pedestrian simulation model. The model concentrates on replicating the mech-

anism a pedestrian decides how to navigate inside the environment, considering

the risk from the nearby obstacle while conforming to the natural human behav-

ior. To do this, the agent needs to appropriately choose between planning a task

to its destination and interact with the closing pedestrians or obstacles.

As a result, our proposed pedestrian simulation model consists of:

� A novel pedestrian path-planning model using reinforcement learning. This

model replicates the mechanism an agent observes the environment and

plans a path to the destination. The agent needs to do this under the con-

sideration of the risk from the environment, such as an obstacle or other

pedestrians. Reinforcement learning is employed to train the agent’s navi-

gation planning using rewarding based on the concept of human comfort.

� A model to simulate the interaction between a pedestrian agent with an-

other obstacle or pedestrian. This interaction occurs when the pedestrian is

particularly close to another pedestrian or an obstacle, and the pedestrian

must react appropriately based on the intermediate actions of the others.

Similarly, reinforcement learning is also used for the training of the agent

for interaction behavior. In addition to that, a cognitive prediction model

was proposed using a continuous interpolation method combined with the

concept of prediction in the human cognition system.

� A perpetual task controlling model. This model assesses the current situa-

tion to decide when to use which task, the path-planning or the interacting

one. This is realized by a modest rule-based system, which is continuously

carried out as the pedestrian navigating in the environment.
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1.6 Outline

The implementation of the model is capable of replicating real-life situations,

in which the pedestrian agents could perform natural behaviors in path-planning

and interacting with other pedestrians. The resulted behavior of the agent shares

many similarities with a human pedestrian, conforming to social rules and regu-

lations.

1.6 Outline

The remainder of this dissertation is organized as follows:

Chapter 2 comprises the literature review of other related studies in differ-

ent areas. Firstly, the prevalent or recent significant approaches in pedestrian

simulation scope are explored. In addition, studies in pedestrian prediction are

reviewed. The chapter also covers the literature review of several studies on hu-

man behavior and human cognition. The survey of other research in pedestrian

simulation using reinforcement learning is also presented in the chapter.

Chapter 3 presents the main background concepts of this dissertation. This

includes reinforcement learning and the PPO algorithm.

Chapter 4 introduces various concepts of the cognitive system in navigation,

particularly those inspire the design of our model. Subsequently, the chapter

demonstrates the overview of the model, followed by our realization of the decision

planner in our behavioral pedestrian model. The concept of risk and danger is

also covered in this chapter.

Subsequently, Chapter 5: Path-planning model and Chapter 6: Pedestrian

interacting model are presented to demonstrate the detailed model of each task

in the pedestrian agent’s navigation. In each chapter, the corresponding method-

ology is described, followed by its implementation and evaluation.

The discussion of the overall model is given in Chapter 7. Finally, the disser-

tation is concluded in Chapter 8.

The outline of the dissertation’s chapter structure is presented in Figure 1.1
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Chapter 2

Related works

In this chapter, the literature review of related studies is introduced. The litera-

ture reviews are categorized into four domains: the substantial or recent work in

pedestrian simulation; the studies in pedestrian prediction; the research around

human behavior and the studies in pedestrian simulation using reinforcement

learning.

2.1 In pedestrian simulation

Early models in pedestrian interacting simulation often treat pedestrians as force-

based objects, using Newtonian mechanics to form the forces or accelerations

applied to the pedestrians. Social Force Model, introduced by Helbing and Mol-

nar [7], is a notable model that many subsequent models are built upon. The

core idea of Social Force Model is that the acceleration applied to the pedestrian

agent will be driven by the sum of driving forces, agent interact forces, and wall

interact forces. The driving force attracts the agent toward the destination, the

agent interact force repulses the agent from other agents, and the wall inter-

act force repulses the agent from walls or boundaries. Generally, the agents are

similar to magnetic objects which can attract to or repel from each other and

obstacles. The Social Force Model is simple to implement and could be sufficient

for modeling a large crowd in straightforward situations. Many studies later have

tried to improve the Social Force Model, for example by introducing heading di-

rection [10] or proposing relations between velocity and density [11]. However, in
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2.2 In pedestrian prediction

specific situations which involve human cognition tasks, these models are usually

not able to demonstrate a natural interaction behavior between pedestrians.

Many studies were conducted to improve the interactions between pedestri-

ans, considering human behavior factors. Instead of force-based, these models are

usually agent-based. Compared to force-based models, adopting human thinking

is more accessible in agent-based ones. Several studies, mostly in the robotic

domain, have tried to simulate human behaviors in their models by proposing

various concepts. As an example, the paper by Bonneaud and Warren [12] pro-

posed an approach for a pedestrian simulation model, taking account of speed

control behaviors and wall following, meaning the agent would navigate along

the walls in the corridor. Another example is a study focusing on the dynamic

nature of the environment by Tekmono and Millonig [13], in which the agent im-

itates the method humans find a path when being uncertain about which doors

are open. The agents in these models are rule-based, which means the behaviors

are constructed using a finite set of rules. As a result, it often lacks flexibility in

the choice of actions, as it could be impossible to build these rules based on the

understanding of behavioral psychology in its entirety.

2.2 In pedestrian prediction

In terms of studies in pedestrian prediction, there has been an extensive amount

of research, ranges from simple collision detection to body language analysis.

Some studies have proposed solutions to present the prediction as a “map” of

probability, for example in the papers by Karasev et al. [63] and Ziebart et al. [64].

Those approaches could be difficult to be applied in a reinforcement learning

problem as using these data for training could be challenging and highly unstable.

Many other studies introduce pedestrian navigation prediction based on image

or video processing. For instance, Møgelmose et al. [65], Goto et al. [66], and

Dominguez-Sanchez et al. [67] have proposed different approaches for recognizing

pedestrian movement based on photo and video inputs.

While the studies on highly accurate prediction are extensive, especially in

the robotic domain, there is not much research in the prediction by the human

cognitive system. In a study in human neuroscience, Bubic et al. [18] discussed the

mechanism of the prediction in the human brain, which could also be practical in
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2.3 In navigation behavior

walking situations. Ikeda et al. [19] proposed an approach to the prediction of the

pedestrian’s navigation employing the sub-goal concept, meaning the navigation

path would be segmented into multiple polygonal lines.

2.3 In navigation behavior

Regarding research in human behavior, many studies can be found in the field of

robotics research. Many researchers have tried to solve the problems in human

comfort and constructing naturalness [25]. For an agent to navigate naturally, not

conflicting with other pedestrians or obstacles is not enough; but the agent also

needs to replicate different behaviors from humans. Another concept proposed

in human behavior research is human bias or cognitive bias, which causes the

anomaly in the human decision process. For example, Golledge [34] has shown

that pedestrians do not always choose the most optimized decision while select-

ing a path. Another study by Cohen et al. [35] also discussed how the human

brain makes decisions between exploitation and exploration. These aspects were

supportive for forming the agent behavior in our research.

There are also several studies focusing on pedestrian prediction based on hu-

man behaviors. An example is a study by Yi et al. [68], as the pedestrian walking

behavior is encoded from video data using a convolutional neural network (CNN).

Another example is the prediction model by Schneider and Gavrila [70], which

focuses on the pedestrian motion types extracted from the automated vehicles’

camera inputs. Body language also contributes to the research in pedestrian pre-

diction. For example, Quintero et al. [69] proposed a pedestrian path prediction

based on the human pose data, utilizing Gaussian Process Dynamical Models

(GPDM) method.

2.4 In reinforcement learning

The use of reinforcement learning in the agent-based model has recently become

more prevalent. Prescott et al. [14] proposed a reinforcement learning method to

train the agent’s basic collision avoidance behavior. Recently, Everett et al. [15]

introduced a novel method for the agent to avoid collisions, using reinforcement

learning with deep learning. The resulted behaviors of these models are very
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2.4 In reinforcement learning

competent, however, the effect of human cognition is still lacking. Other studies

have been trying to resolve this problem. For instance, Chen et al. [16] proposed

a deep reinforcement learning model with the agent respecting social norms in

situations like passing, crossing, and overtaking.

In a study by Martinez-Gil et al. [36], an experiment in using reinforcement

learning for a multi-agent navigation system has been implemented; however, the

algorithm used was q-learning which is too simple and does not suit well to a

dynamic environment. Another approach is learning from observing examples

from human behavior. In their paper by Kretzschmar et al. [37], a navigation

model was proposed using inverse reinforcement learning. One difficulty in such

approaches is the example or the dataset from human behavior is not easy to be

extracted or readily available.
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Chapter 3

Background

The background concepts related to the study are presented in this chapter. The

two concepts presented are reinforcement learning and the PPO algorithm.

3.1 Reinforcement learning

The concept of reinforcement learning was first coined by Sutton and Batto [21].

In reinforcement learning, the agent needs to optimize the policy, which specifies

the actions that will be taken under each state of the observed environment. For

each action taken, a reward signal will be given. Depending on the reward, which

can be either positive or negative, this could encourage or discourage the action,

respectively. The aim of the agent is to maximize the cumulative reward in the

long term. Figure 3.1 illustrates the overview of a generic reinforcement learning

model.

The formulation for a reinforcement learning problem is often modeled as a

Markov Decision Process (MDP). An MDP is a tuple (S,A, P, R, γ) where S is a

finite set of states; A is the set of the agent’s actions; P is the probability function

which describes the state transitions from s to s′ when action a is taken, R is the

reward function immediately given to the agent; γ ∈ [0, 1] is the discount factor.

The probability P is calculated by

Pa(s, s
′) = Pr(st+1 = s′|st = s, at = a) , (3.1)

where a is the taken action, s is the previous state and s′ is the current state.
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3.2 PPO algorithm
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𝑅𝑡

state
𝑆𝑡

Figure 3.1: Overview of a reinforcement learning model. [21]

The reward function R is formulated as

Ra(s) = (Rt+1|st = s, at = a) . (3.2)

To solve a reinforcement learning problem is to find the optimal policy that

maximizes long-term cumulative reward. Because certain actions could receive

an intermediate negative reward but may achieve the highest conclusive reward,

a value function is necessary to estimate the present state of the agent. The value

function for the state s would be presented as:

V (s) = max E

[
∞∑
t=0

γtR(st, π(st))

]
, (3.3)

where π : S→ A is the policy for the action A in the state S.

3.2 PPO algorithm

Reinforcement learning algorithms are categorized into 2 categories: model-based

and model-free algorithms. A model of the environment could be interpreted as

the understanding of the agent about the environment. A model-based algorithm

uses the model of the environment for planning by estimating future states before
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3.2 PPO algorithm

taking action. On the other hand, a model-free algorithm learns mostly by trial-

and-error without any planning.

Proximal Policy Optimization (PPO) algorithm, proposed by Schulman et

al. [22], is a model-free reinforcement learning algorithm using a neural network

approach to optimize the agent’s policy via a training process. The idea of PPO

algorithm was primarily based on the Policy Gradient algorithm by Mnih [73]

and improved from their previous Trust Region Policy Optimization (TRPO)

algorithm [74]. Similar to the vanilla Policy Gradient method, the loss function

of the neural network is constructed using an advantage value Ât, the deviation

of the expected reward compared to the current state’s average reward. This

advantage value is calculated by running the policy for T timesteps and compared

with the baseline estimation.

Ât = −V (st) +Rt + γRt+1 + ...+ γT−t−1RT−1 + γT−tV (sT ) , (3.4)

where V (st) is the state value function; t is the time index in [0, T ] and gamma

is the discount factor of the future states.

For algorithms like Policy Gradient, a policy πθ(at|st) will be updated after

every training step. With a noisy environment, the old policy πθold(at|st), which
might actually be better than the new one, will be overwritten; causing the

training process to be less efficient. To avoid the problem, the PPO algorithm

proposed a method to avoid staying away too far from a good policy by keeping

the old good policy and compare it with an updated one using a clip surrogate

objective.

The clip surrogate objective is formulated as

Lclip (θ) = Ê
[
min (rt(θ) Ât, clip (rt (θ) , 1− ϵ, 1 + ϵ) Ât)

]
, (3.5)

where rt =
πθ(at|st)

πθ old(at|st)
and ϵ is a clipping hyper-parameter; θ is the policy param-

eter and Ê indicates the empirical expectation over predefined timesteps.

The clipping helps the training become more stable, as the previous policy will

not be overwritten by a worse newer policy in a noisy environment. Figure 3.2

demonstrated the clipping method in the calculation of the loss function.

With the inclusion of policy surrogate and value function error term, the loss

function in the PPO algorithm is formulated as below

Lclip+V F+S (θ) = Ê[Lclip(θ)− c1L
V F (θ) + c2S[πθ](st)] , (3.6)
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3.2 PPO algorithm
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Figure 3.2: Clipping method in PPO’s loss function calculation. [22]

where c1 and c2 are coefficients, S represents entropy bonus and LV F is the

squared-error loss LV F (θ) = (Vθ(st) − V targ
t )2. The use of policy surrogate and

value function error term is not compulsory and could be omitted when perfor-

mance is in high priority. However, this is required when using a neural network

structure that parameters between the policy and value function are shared.

The more detailed network structure used in the PPO algorithm is illustrated

in Figure 3.3. Similar to Policy Gradient, the neural network used in the PPO

algorithm is an Actor-Critic network. The network has the same input layer but

has two heads in the output layer. The first head is the Policy head (Actor),

consisting of the agent’s action probability distributions. The structure of the

action probability distribution in the output layer of the Policy head depends on

the type of the agent’s actions. In the case of discrete action outputs, a categorical

probability distribution is used, which consists of the probability for each action.

In the case of continuous action outputs, the neural network will output the

Gaussian distributions of the actions, represented in their parameters: mean and

standard deviation. The second head is the Value head (Critic), which outputs

the state value V (st), which indicates the current estimation of the environment.

Algorithm 1 expresses the PPO algorithm in detail.

There are two loops involved with the algorithm. The first loop is to calculate

the advantage estimate Â1, ..., ÂT by using the policy πθold for T timesteps. This

is done by letting the agent interacts with the actual environment through online

learning. Instead of estimating the expected reward, the advantage value could
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Figure 3.3: The neural network structure in path-planning model.

Algorithm 1: PPO Algorithm, Actor-Critic style [22]

for iteration = 1, 2, ... do

for actor = 1, 2, ..., N do

Run policy πθold in environment for T timesteps

Compute advantage estimates Â1, ..., ÂT

end for

Optimize surrogate L wrt θ, with K epochs and minibatch size M ≤ NT

θold ← θ

end for
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3.2 PPO algorithm

be precisely calculated using the formula 3.4, as the cumulative reward is given

through the agent’s actual interactions with the environment. This is contrary to

an off-policy reinforcement learning method, such as Q-learning or DQN, in which

the agent learns from the existing experience and the action-state value (i.e. Q

value) must be estimated. Because of this reason, using a simulation tool for the

agent is beneficial as it could speed up the learning process and allow the agent to

explore the environment. The training process starts with the agent mostly takes

stochastic actions. After getting some feedback, the agent would be better with

its action and less dependent on exploration. On the second loop, the algorithm

collects all of the advantages values, then uses gradient descent on the policy

network using the clip objective 3.5. Usually, the PPO algorithm maintains two

policy networks, one for old policy and the other for updated policy. After every

K epochs, the algorithm will synchronize the updated policy to the old policy,

using optimization on the surrogate loss with M -sized minibatch.
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Chapter 4

Behavioral pedestrian simulation

model

In this chapter, we introduced various concepts of the human cognitive system in

pedestrian navigation. Subsequently, the behavioral pedestrian model’s overview

is presented. The consisted pedestrian decision planner task of the model is also

demonstrated in detail. In addition, this chapter introduced the concept of risk

and how it could affect the pedestrian’s decision in navigation.

4.1 Cognitive system in navigation

Many animals also use a cognitive system for their navigation. To comprehend

the cognitive system in navigation for human pedestrians, researchers have been

studying the navigation behavior of animals. The studies have suggested that the

navigational cognitive system in animals shares many similarities to that in hu-

mans. Furthermore, many errors that happened in human navigation also persist

in the navigation behavior in animals. For instance, the mechanism of memorizing

and choosing routes by humans is similar to the routing mechanism in bees [44].

Another example is the navigation behavior of grizzly bears, which is impacted

by cognitive bias and also is capable of learning from past experience [41]. Addi-

tionally, cognitive maps and hippocampus are also used in mammals and other

animals to help them to make decisions in navigation [45].

The overview of the cognitive system in navigation could be illustrated in

Figure 4.1. To make decisions in navigation, firstly, the pedestrian would need
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Figure 4.1: Overview of the human cognitive system in navigation.

to perceive the environment. The information is then consciously and subcon-

sciously stored in the memory. At the same time, this information, combined with

the pedestrian’s experience, forms the cognitive map. Finally, the hippocampus

is responsible for making the decision depending on the current goal of the pedes-

trian.

The first step in the pedestrian’s decision-making process is perception. There

is an immense amount of information constantly feeding into the human brain ev-

ery moment. This information includes all types of data including visual, audio,

and haptic perception, which is brought to the brain via different human senses.

To make decisions from this, the human brain consciously and subconsciously

chooses which information to be passed into the cognitive system and which in-

formation to be discarded. These data, as they need to be transferred through

the senses, are sometimes incorrect and do not reflect the actual real-world in-

formation. For that reason, we have carefully considered which information is

perceived by a human pedestrian in modeling the environment and also in the

designing of the pedestrian’s observations.
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4.1 Cognitive system in navigation

Among the selective information, a portion of that will be stored within the

human memory [45]. There are two types of memory in humans: declarative and

procedural memory. While procedural memory is used for various types of auto-

matic processing and controlling human locomotion, declarative memory is used

to store and process past experiences and events. For the cognitive system to

make decisions from the received information, only declarative memory is used.

Declarative memory can also be further categorized into semantic memory, which

is used for storing information such as names, facts and concepts; and episodic

memory, which is for experienced events. The environment information is stored

in the memory in the form of spatial knowledge. There are more than three lev-

els of spatial knowledge [46]. The lowest level of spatial knowledge is landmark

knowledge, which represents the memory of the pedestrian for the objects within

the environment. The next level is called route knowledge, which could be in-

terpreted as the memory of a series of routes to navigate to the destination. A

higher level is survey knowledge, which is stored as a mental representation of

the spatial environment, like a bird-eye view of the environment for instance.

Not only the experiences of the past navigation are used in the human cog-

nitive system. In most situations, humans also make predictions of future envi-

ronment states over a certain planning horizon for more efficient navigation [18].

Generally, the mechanism of cognitive prediction involves the following steps.

Firstly, the person anticipates the current state by comparing the short-term ex-

pectation with the perceived data from human sensors. From the anticipation,

the prediction of the future state will be made under consideration of the prospec-

tion, potential distant future occurrences. The mechanism of prediction in human

navigation is greatly acknowledged in our study. Different pedestrian prediction

methods, depending on the current task of the pedestrian agent, are accordingly

realized. These will be presented in more detail in Section 5.4 and Section 6.3.

The perceived information, combined with the current spatial knowledge and

planned prediction, will be processed within the cognitive system. All of these

data put heavy stress on the cognitive load. To reduce the cognitive load, various

tasks will be carried out in the human brain as a result. These tasks are mostly

executed by an organism placed under the temporal cortex inside the human

brain, called the hippocampus [50]. The hippocampus is accountable for the

decision-making process, particularly in navigation [45]. Figure 4.2 illustrates

the shape of the hippocampus (yellow) inside the human brain.
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4.1 Cognitive system in navigation

Caudate nucleas

Figure 4.2: The hippocampus and the related regions inside the human brain.

One of the tasks performed by the hippocampus is to model the aforemen-

tioned information into a cognitive map, a visual representation of the navigation

inside an environment. The concept of cognitive map was first coined by Tol-

man [55], presented in both human and animal brains. This cognitive map is

often a distorted representation of the actual environment due to the complex

processes involved with the construction of the cognitive map as discussed. Deci-

sions on how to navigate the cognitive map could be made using some navigating

mechanisms, such as path integration, piloting, and guidance. More specifically,

path integration or dead reckoning is used by the pedestrian to expect a general

orientation, such as heading toward a cardinal direction. Piloting is used when the

pedestrian reaches a matching view or snapshot of a location stored within mem-

ory. Lastly, guidance is applied when the pedestrian is following its usual routine

to navigate in a familiar setting or environment. Another common mechanism

to navigate the cognitive map is to perform the planning of the path from the

pedestrian’s position to the destination before actual navigation [47]. Planning

helps the pedestrian maneuver more strategically, thus more efficient navigating

compared to other animals. The planning process often involved different levels

of spatial knowledge as mentioned above. That means, depending on the situ-

ation, the human pedestrian could plan the path using his survey knowledge or

try to navigate using the route knowledge. There are other tactics the pedestrian

could use in navigation, like wall-following and turn-into-door for example. The

24



4.1 Cognitive system in navigation

cognitive system often combines different tactics to generate the decision based

on the pedestrian’s current goal. The mechanism of the hippocampus is known

to be goal-oriented, which means that it will consider the current goal of the

pedestrian to provide the appropriate decision.

Inspired by this mechanism of the cognitive system, we designed our path-

planning model that replicates the pedestrian’s process of planning the path from

his position to the destination. The model will be represented in Chapter 5. We

also modeled a decision planner, presented in Section 4.3, which takes hints from

the goal-oriented decision-making process of the hippocampus inside the human

brain.

As previously presented in Section 1.2, in many cases, the human brain could

skip part or all of the thinking process to make the decision, and sometimes, this

could lead to an incorrect or unoptimized choice. This is called human bias or

cognitive bias. The human nervous system has a mechanism of learning from

these mistakes in a trial-and-error approach called reinforcement learning. In the

human brain, an organ called basal ganglia is responsible for the human reinforce-

ment learning process. In principle, the mechanism of the basal ganglia is similar

to the structure of an actor-critic model, in which the actions and the movement

of the human are matched with the states and rewards from the environment to

help shape the human’s actions. In the human brain, the sense of rewarding is

produced by the neurotransmitter called dopamine. The dopaminergic neurons

send the dopamine to striatal neurons to signal the reward expectation. This,

combined with the sensory prediction from the cerebellum’s forward model to out-

put the desired actions to the thalamus. These actions are similar to the action

outputs in the reinforcement learning paradigm in machine learning. Figure 4.3

illustrates the basal ganglia inside the human brain, together with the anatomy

of the related brain regions involved in the reinforcement learning process, as

suggested by Ludvig et al. [56].

By giving our model an analogous method in making decisions in navigation,

we expect our pedestrian agent to produce a human-like behavior with similar

choices as well as common human navigational errors.
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Figure 4.3: The anatomy of the reinforcement learning process with the basal

ganglia, based on the structure suggested by Ludvig et al. [56]

4.2 Model overview

There are three levels involved with the procedure of navigating in the envi-

ronment of a human pedestrian [23]. In the first level, the strategic level, the

pedestrian needs to initiate the planning, such as determining the destination

and planning the means to get there. For instance, if a pedestrian planning to

navigate from his house to the supermarket, the purpose of the strategic level for

his decision-making process is to choose which way to go. For example, he could

choose the shortest route, or he could choose the route with the least detours. In

practical situations, humans often choose the most familiar route, meaning that

the route chosen should have the least difference from the highly used options

in the past. The second level is the tactical level, the pedestrian needs to plan

the navigation path to achieve the intermediate desired goal, such as reaching

the local destination. More specifically, if the choice at the strategic level is a

set of paths or roads from the starting position to the destination, the naviga-

tion in each path is what needs to be done at the tactical level. At the tactical

level, the pedestrian also needs to consider possible obstructions that may hinder

the navigation. For instance, if there are obstructions like physical obstacles or

other pedestrians, the agent also needs to plan forward so that the path will not

conflict with their navigation. The third level, which is the operational level, will
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4.2 Model overview

handle the agent’s operational dynamics such as movement or gesture controls.

An example of interaction is when the pedestrian is getting close to another per-

son, but that person suddenly changes the movement in an unpredictable manner

that could intervene in the planned path. In this situation, the agent needs to

continuously observe the other’s every action, and accordingly decide which in-

teraction or movement to make. For example, if that person moves to the left of

the pedestrian, he could go to the right or slow down to observe more responses

from the other person.

In our study, the choice made at the strategic level is disregarded, as we want

to concentrate on the behavioral interaction of the pedestrian at lower levels.

There has been a great amount of research regarding pedestrian route choice at

the strategic level. The most common method is using a graph node structure

for traversal [19]. The needs or interests of the pedestrian also take an important

role in how the pedestrian chooses the route, as indicated by Koh and Wong [75].

Jaros et al. [76] took a different approach by observing the activity pattern of the

pedestrians and subsequently replicating its behavior.

For this reason, our behavioral pedestrian simulation model consists of two

main parts: A pedestrian path-planning task, which simulates the pedestrian’s

path-choosing process at the tactical level; and a pedestrian interacting task,

which simulates the pedestrian’s interaction behavior at the operational level.

The model also includes a pedestrian decision planner, of which the primary

function is to determine when the path-planning task is performed and when the

interacting task is carried out instead.

The model consists of:

1. Path-planning task: In this task, the pedestrian agent observes the state

of the environment, then plans a draft path to the next destination. Instead

of executing consecutively, the task will be carried out gradually. A par-

ticular example of this is a pedestrian using a mobilephone while walking.

Each time the pedestrian is not looking at the mobilephone to observe the

surrounding, this planning task is executed. If there is no remarkable event

that requires special attention, the pedestrian could navigate following his

planned path without the need of observing the environment constantly.

The details of this task are presented in Chapter 5 of this dissertation.
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2. Interacting task: This task is usually inactive; however, when the pedes-

trian is following the path that was planned in the planning task but there

is an unexpected event or anomaly that occurred, this task will be exe-

cuted. For example, an unexpected vehicle or pedestrian emerges and may

conflict with the pedestrian’s path, or an existing obstacle does not behave

like the prediction of the pedestrian. In such cases, the pedestrian needs

to carefully perceive the obstacle’s actions to interact properly. Unlike the

planning task, this task will be carried out consecutively until these inter-

actions are no longer required. This task is presented comprehensively in

Chapter 6.

3. Decision planner: This component decides which task is performed un-

der the current environment’s states. In the example above, when the

pedestrian is navigating without any obstructions, the path-planning task

is periodically called. However, when the pedestrian is significantly close to

an obstacle and has a high chance of colliding with it, the interacting task

will be consecutively executed. This will be further explained in Section

4.3.

4.3 Pedestrian decision planner

Humans are consistently required to choose between multiple objectives in their

lives. For example, a researcher may need to consider when to research in a new

direction and when to continue improving the current hypothesis. The decision

results from a number of factors, such as the positivity of the current finding

or the available resources for testing out the new hypothesis. The same process

happens in many other activities in our lives, including minor tasks like shopping,

cooking, studying, and significant responsibilities like getting married or finding

a job. The human brain always needs to carefully select the appropriate task to

handle the situation before the detailed processes of that task are carried out.

This decision-making process is accomplished by the hippocampus inside the

human brain. Many studies have indicated that the mechanism of the hippocam-

pus is goal-oriented [47, 48], meaning that depending on the current goal of the

pedestrian, the hippocampus will choose the appropriate task to carried out. Re-

garding pedestrian navigation, in the scope of navigating from one position to
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another, there are at least two main tasks that need to be addressed in order

to form the cognitive map [49]. The first one is planning a path to navigate

and the second one is interacting with other obstructions. When to choose each

task mostly depends on how close the pedestrian is to the obstructions and how

the pedestrian is confident with his choice (i.e. his prediction is highly correct).

More specifically, if there is an obstacle such as another person approaching, and

the obstacle is still far, only the path-planning task is necessary. On the other

hand, if the obstacle is moving unpredictably, planning a path should be largely

inefficient. This means the pedestrian’s brain would use the interacting task to

give the instructions for his action. By doing this, the pedestrian needs to con-

tinuously observe what is happening and act correspondingly. Naturally, if no

obstacle is present, the interacting task is redundant.

As a result, we created a rule-based system for the pedestrian decision planner.

Using a rule-based system has several advantages. Firstly, a rule-based system

should be similar to goal-oriented approach of the hippocampus to some extent.

In addition, if a rule-based model is used, the path-planning task and the inter-

acting task could be separated. This means we could research and evaluate each

task more profoundly without affecting the other’s results. Lastly, implementing

the rule-based system is more straightforward than other implementations.

For the implementation of the rules, we consider the following requirements

for each related task:

1. Path-planning task

� Is usually called on a regular basis.

� Is often ignored in case of being close to a moving obstacle.

� Does not need to be called if the pedestrian is still following an existing

planned path and there is no significant change in the environment

states.

2. Interacting task

� Uses the planned path as a guide.

� Is called when there are the needs to change in the initially planned

path (e.g. change in environment states, obstacle with unpredictable

behavior, complex environment).
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Figure 4.4: Flow chart of the decision planner task.
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Figure 4.5: Example of the timing when the decision planner is called.

Based on the requirements, The rule sets for our pedestrian decision planner

are designed as a flow chart in Figure 4.4.

The task is carried out periodically, sometimes in a shorter interval than oth-

ers. As an example, when there is no visible obstruction in the environment, the

decision planner could be executed at a lower frequency. In contrast, when the

pedestrian is interacting with the obstacle, the interval is much shorter for the

interacting task to be called. The interval period also varies between genders and

age groups. For example, older people often need to frequently observe and make

decisions, while young pedestrians tend to trust their environment analysis and

make fewer navigation choices. The interval period choice of children is much less

inconsistent because of their inexperience in understanding the situations. They

might continuously observe and take decisions even when there is no threaten

obstacle, but in a more dangerous situation, their decision planner may be in-

sufficiently performed. Cultural differences also contribute to how the decision

planner task performs. Upon observation, we perceived that the pedestrians in

the countries with a more ordered navigating culture, including Japan, require

less attention in decision making than in other countries. That means their deci-

sion planner does not need to be carried out in a short interval, as opposed to the

others. Figure 4.5 represents an example of when the decision planner is called

in correspondence with the interaction task. In this figure, the period when the

interaction task and the decision planner are called is presented in blue and green,

respectively.

Undoubtedly, the rule-based implementation of the pedestrian decision plan-

ner is much more simple compared to the one in the human cognition system.

The decision planner task by the hippocampus is much more sophisticated for

several reasons. One of the reasons is that all parts of the brain are intertwined,

meaning any decisions or results will also affect the choices in other parts of the
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brain. Another reason is that the data interpreted in the human brain is not

in concrete form, but is rather more like fuzzy values. As a consequence, all

operations on the data would be performed using fuzzy logic instead. Humans

also often make decisions based on their instinct and experience that could lead

to certain unexplainable behaviors, which is also another reason that makes the

human decision planner task much more complex.

4.4 Obstacle’s danger and risk

Obstacle is a substantial concept in our study, as its presence apparently has a

great impact on how the pedestrian navigates in the environment. Different from

a physical obstacle in the real world (e.g. a rock, a wall, or a construction site), the

obstacle in our model is any person, animal, or object that would be considered as

an obstruction in the pedestrian’s thinking. Occasionally, the obstacle could be

physical or abstract, such as a restricted area defined by traffic laws, for instance.

The observed obstacle is defined by spatial effect, a term introduced by Chung

et al. [38]. An example of this is a group of other pedestrians walking together.

Theoretically, these are considered multiple obstacles, but because planning a

path through these obstacles is viewed as unnatural and even impolite, such

practice is not encouraged. In our model, these obstacles would be considered

as a single obstacle. In addition, because of the spatial effect, the obstacle may

dynamically change its properties. An example of this is the crossroad. If the

light is red, the entire crossroad would be treated as an obstacle, but if the

light is green, it is no longer viewed as an obstacle from the pedestrian agent’s

perspective.

One of the most critical properties of an obstacle would be its risk perceived

by the agent. The difference in the perceived risk of the obstacle could greatly

change how the agent plan the path. For example, if the obstacle is a highly

dangerous one (e.g. a deep hole on the street), the pedestrian would very likely

stay further away from it, as represented in Figure 4.6.b. On the other hand, if

the obstacle is safer (e.g. a shallow water puddle), the pedestrian is less likely

to avoid it too much. In certain situations, such as when the pedestrian is in

a hurry, he may choose to walk over the water puddle obstacle, as presented in

Figure 4.6.a.
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4.4 Obstacle’s danger and risk

Figure 4.6: Path planned by an agent with different obstacle’s danger.

The risk perceived from the obstacle could depend on many factors. As in

the ISO/IEC Guide 51 in Safety Aspect [79], risk is defined as the “combination

of the probability of occurrence of harm and the severity of that harm”. For

instance, the danger of a lion should be remarkably high, but if that lion is kept

inside a cage, its risk should be close to 0 as the chance of the lion interacting

with others is low. In pedestrian navigation, the danger from a human should be

lower than a construction machine, for example. However, the risk coming from

a pedestrian running at high speed, toward the pedestrian agent, should have a

greater risk compared to the construction machine moving slowly on the side.

Accordingly, we model our obstacle consisting of the following properties:

danger, size, direction, speed, and type of obstacle. Similar to ISO/IEC Guide 51,

the risk from the obstacle is formulated by the obstacle’s harm and its probability

of collision perceived by the agent. The size of the obstacle should cover the

concept of spatial effect mentioned above, not just the size of the physical obstacle.

For example, a damaged or unstable power pole would have a much larger “size”

compared to a steady or stable one due to the fear of the pole falling. For

simplicity, we assume our obstacle has a round shape; thus, the size of an obstacle

will be expressed by a radius value.

All risk, danger level, and other obstacle’s properties used in our study are

perceived by only the pedestrian’s cognitive system, which could be different from

the actual information of the obstacle.
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Chapter 5

Pedestrian path-planning

This chapter demonstrates the model for the path-planning task of the pedestrian

agent. The path-planning task simulates how the pedestrian plan the path from

the current position to the destination in the decision making process.

5.1 Introduction

The path-planning process is carried out within the human cognitive system

before the pedestrian’s actual navigation. In this step, the two following tasks

are carried out sequentially. In the global path-planning task, the pedestrian

uses his experience and knowledge to specify his destination and plan the route

to get there. In the local path-planning task, the surrounding environment is often

observed via human vision and transformed into a topological map. Subsequently,

the pedestrian estimates the path would be taken before carrying out the actual

movements [51]. While there is a great deal of research that addresses the global

path-planning, the route selection process to the destination [52, 53], the studies

of the local path-planning problem are generally scarce. For the few studies that

focus on this problem, their models often try to optimize certain objectives, such

as next state optimizing [13] or way finding [54]. In real life, people tend do

not usually choose the most optimized solution [34]; therefore, these models may

yield inaccurate navigation behavior in certain situations.

The path-planning process is crucial because a tolerable plan could help the

pedestrian avoid a foreseeable accident. This process is usually carried out uncon-

sciously in most navigating situations. To accurately simulate the path-planning
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process is a challenging task. As this process happens only inside the human

mind, the pedestrian’s observable behavior and the planned path could be not

entirely alike. To properly address this problem, different aspects in behavioral

psychology and cognitive science should be considered. Many studies only focus

on replicating the navigating behavior by optimizing the path taken, however,

it has been shown that humans do not always take the most optimized action.

This is due to the reason that for every task, humans usually consider cognitive

biases, the systematic flaws developed when humans trying to make decisions

based on their previous limited experiences. Other studies try to approach the

problem by creating empirical models based on the observable behavior of pedes-

trians. These models usually concentrate on only the most essential behaviors

while certain factors might be ignored.

To overcome these problems, we adopted using reinforcement learning for

the pedestrian agent’s local path-planning process, as discussed in Section 1.2,

reinforcement learning techniques share many similarities with the operation of

the human cognitive system. Moreover, reinforcement learning techniques using

neural networks, such as the PPO algorithm, even use a resembling structure

as the human’s neural system. Consequently, we need to determine how the

human brain works in doing that task. More specifically, we need to address the

mechanism of planning a navigation path by the human pedestrian.

This process of the agent learning to navigate is similar to a child learning

how to get to the destination and avoid colliding with any obstacle. Once the

behavior is learned, he can naturally do the task simply from experience without

the need of learning again. However, just learning the navigation task through a

trial-and-error approach might not be enough for efficient path planning. For a

grown-up human to carry out the path-planning task, further thinking processes

are utilized. In particular, the cognitive predictive process is essential in the way

the human brain processes many tasks, including navigation. This helps the adult

pedestrians navigate more competently with fewer collisions with surrounding

obstacles.

Another important process which humans gradually learn through their lives

is the risk assessment of obstacle’s danger. In a study by Ampofo-Boateng [57], it

is indicated that children at different ages perceive danger differently. The older

children could identify the danger more correctly, while younger children usually

could not specify the danger apart from moving vehicles.
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Because of these reasons, we need to address the risk assessment process and

the prediction in the path-planning task for the model to replicate the planned

path more accurately. More specifically, the risk assessment process in our model

aims to replicate the observation of risk for our pedestrian agent, to be subse-

quently employed by the reinforcement learning model.

As a result, we design our model focusing on two tasks: learning task and

prediction task. The learning task helps the agent learn the natural behavior of

navigating. The prediction task simulates the human prediction of the obstacle’s

upcoming position, which subsequently the pedestrian will avoid instead of the

current position of the obstacle.

5.2 Model overview

Figure 5.1 demonstrates the overview of our pedestrian path-planning model.

The model consists of two components:

1. Path-planning training. This component instructs the agent to learn the

basic navigation and collision avoidance within the environment using rein-

forcement learning. The details of the component are presented in Section

5.3.

2. Point-of-conflict (POC) prediction. This component simulates the agent’s

prediction of the collision with the obstacle. The process of prediction

updates the input of the path-planning components and is handled before

the planning process. Section 5.4 explains the prediction model in more

detail.

For a reinforcement learning model, the design of the environment plays an

important role. An environment that is similar to the real-world environment is

usually unsuitable, as its complexity often leads to multiple problems. First of

all, generally, the agent is not able to earn efficiently in a complex environment.

For example, if there are many obstacles within the environments, they would

create an extensive number of different states, leading to a considerably noisy

training environment. To learn in an environment like that could be difficult for

the agent, as the training would be quite unstable. Another problem of that is
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Figure 5.1: Overview of the pedestrian path-planning model.
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5.3 Path-planning navigation training

the overfitting problem. This means the agent could learn to navigate in the

training environment, but its knowledge could not be transferred into unfamiliar

environments.

For that reason, our environment is designed to have a fixed area size, and also

there is only one obstacle that may exist inside. A complex environment would be

scaled down or divided into multiple parts, depending on the situation. There are

several methods to realize this. For instance, in a study by Ikeda et al. [19], the

agent would treat each component navigation part as its sub-goal when planning

the route to a certain location. This would greatly help stabilize the training

process while still is able to expand its applicability to new environments.

Consequently, our environment is modeled as illustrated in Figure 5.2. The

area of the environment is 22 meters by 10 meters. The position of the agent is

randomized between the coordinates (−5,−12) and (5, 12). The agent’s current

destination is randomized between the coordinates (−5, 10) and (5, 10).

The navigation path from the agent’s position to its current destination con-

sists of 10 component nodes whose coordinates’ y values are predefined. The x

coordinates of these nodes correspond to 10 outputs of the neural network. This

will be presented in more detail in Section 5.2.

This modeling of the environment is similar to the concepts of spatial knowl-

edge in the human cognitive system. The environment modeling conforms to the

representation of survey knowledge, and the planned path of the agent conforms

to the concept of route knowledge. These are used by the hippocampus to form

the cognitive map for planning and making decisions.

5.3 Path-planning navigation training

The path-planning training utilizes reinforcement learning for the pedestrian

agent to learn the navigation behavior. In reinforcement learning, the agent

needs to continuously observe the states (usually partially) of the environment

and subsequently take appropriate actions. These actions would be rewarded

using the rewarding functions to let the agent know how good these actions are.

For the training task, the model utilizes the PPO reinforcement learning algo-

rithm. The training model uses the observations of the agents, the agent’s actions
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Figure 5.2: Path-planning environment modeling

based on the current policy, and the resulted reward of the actions to train in

a neural network to output an optimized policy. In the interference phase, the

agent could use the policy to decide which actions to take based on the current

observations. In our model, the POC prediction and the risk assessment tasks

affect the observations of the agent in the interference phase, but they are not

implemented in the training phase.

Consequently, the following issues need to be addressed: modeling a learning

environment, specifying the agent’s observation of the environment and actions

taken, and rewarding for the agent’s actions.

5.3.1 Environment modeling

The environment is modeled as presented in Figure 5.2. For the learning task,

the chance of an obstacle appearing in the environment is randomized in each

training episode. In the case of the obstacle’s appearance, its size is randomized

between 0.5 and 2, and its danger level is randomized between 0 and 1. The

entire environment might be scaled along its length (the y axis as in Figure 5.2)
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so that the agent could adapt its actions better to different real-life environments.

Accordingly, in each training episode, the environment’s scale will be randomized

between 0.2 and 1.

The training episode is finished immediately when the path is planned, con-

forming to the real-life path-planning process. Also correspond to the path-

planning process in real life, the agent’s action is the entire planned path to the

destination. This also means each training episode has exactly one step, and the

environment’s states will be randomized in the next step. In addition, the agent’s

actions, in this case, cannot affect the states of the environment, also similar to

the human planning process. In real life, apart from planning the path, the agent

could not take any further actions until he needs to actually carry out the naviga-

tion, which will be later discussed in Chapter 6. As a result, the agent will need

to collect all necessary information from the environment and quickly finish the

task by constructing a planned path. Alternatively, the path-planning process

could be realized by simulating the navigation path and perform an optimization

method on the path. However, this method is not appropriate because, in real

life, the human pedestrian carries out the planning process by following their

intuition based on their previous experience. For this reason, training the policy

using reinforcement learning for the path-planning task is a more proper method.

In particular, when using an algorithm like PPO, we could construct a policy for

the agent to form the planned path in one step similar to human pedestrians via

learning through multiple experiences with various states of the environment.

A problem with this resetting mechanism is that this could cause the envi-

ronment to be much noisier, which could lead to subsequent problems with the

training of the neural network. An example of this is when the training envi-

ronment has an obstacle in an episode, but no obstacle in the next one. In this

case, even if the agent could not plan a path that successfully avoids the obstacle

in the first episode, it is easy for the agent to do that in the second one and

achieve a more favorable reward. This makes the agent accommodate the newer

policy despite it may achieve worse results than the previous one. With a noisy

environment like this, it would take much longer for the neural network to suc-

cessfully converge the cumulative reward, and occasionally the policy could not

be improved any further due to its inability to notice a better policy over the

timesteps. To prevent this, we add another resetting mechanism for our envi-

ronment. Instead of resetting immediately, we only reset the environment if the
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agent could plan a path without conflicting with the obstacle. Otherwise, the

current states are kept so that the agent could try planning again. If the agent

takes over a predefined number of steps without being able to plan a successful

path, we also need to reset the environment, or the agent could be stuck in finding

the appropriate policy.

Regardless of whether the environment is reset or not, the training episode is

terminated every step, conforming to the path-planning process of human pedes-

trians. The PPO algorithm, however, will always collect a predefined number

of steps M to put into a minibatch to optimize the training. That means each

minibatch contains the data from M episodes or steps. By randomizing the en-

vironment using the aforementioned mechanism, the neural network would be

provided with a sufficient amount of data for policy optimization.

For the advantage values Ât to be specified, a total of T episodes will be

performed, with T is the time horizon value. Subsequently, the algorithm specifies

the advantage values using formula 3.5 and uses that to form the loss function.

Because each episode has only one step, instead of considering the future states,

the algorithm considers the different states of the environment through stochastic

initialization after reset. As a result, the agent could update the policy while still

considering the other states of the environment. For example, in the case that the

obstacle is not on the direct path to the destination, the agent would still consider

the existent of the obstacle instead of updating the policy so that the navigation

always heads straight to the destination when updating the policy. However, in

the case that the agent fails to plan the path without colliding with the obstacle,

the agent would be given more chances to optimize the policy to avoid the obstacle

as we do not reset the environment in that case. While this could be less sample

efficient than other off-policy methods, this is not a problem as the simulation

tool allows running millions of episodes in a few hours. An advantage of this

method is that the advantage value could be precisely calculated and no value

estimation needs to be formulated.

5.3.2 Agent’s observations and actions

In each step, the agent will observe the following states:

� x position of the agent’s position;
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� x position of the agent’s destination;

� Whether the obstacle appears in the environment or not;

� (if the obstacle is present) The obstacle’s position, size and risk;

� The scale of the environment.

The y positions of the agent’s position and destination do not need to be

observed, as they are constantly determined in the modeling of the environment,

as presented in Section 4.2.

For the learning task, the risk of the obstacle has the same value as its danger

level. The purpose of this is to let the agent learns how to act differently with

diverse values of risk. This does not teach the agent how to assess the risk from

the obstacle’s danger, however, as this would be carried out in the prediction task

of the agent.

We need to specify the actions that the agent takes following its observations.

In our model, these are a set of 10 values corresponding to the x coordinates of

the navigation path. Each output is mapped to the x coordinate of the navigation

nodes. Specifically, assuming the outputs of the network are x1, x2, x3...x10, the

navigation of the agents would be the path through the following nodes: (x1,−10),
(x2,−8), (x3,−6)... (x10, 8), and finally, the agent’s destination.

5.3.3 Rewarding formulation

The rewards are used to tell the agent how good its taken actions are, which in

this case are the planned path to the destination. Rewarding is an essential task

in any reinforcement learning model. Different from rule-based models, rewarding

is usually based on the results of the agent’s actions or the effect of the agent’s

actions on the states. For a natural behavior to be conducted, the rewards should

correspond to how humans view the navigation behavior as natural or not, or

how comfortable the humans would feel when observing the movement. In this

regard, Kruse et al. [25] proposed the idea of human comfort. This idea introduces

a number of factors in movement that could help the observing humans to feel

comfortable, consequently perceiving the movement to be more human-like.

Within the scope of our study, we choose to adopt the following factors for

our rewarding mechanism:
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� Choosing the shortest path to the destination;

� Avoiding frequently changing direction;

� Following basic navigation rules and common-sense standards;

� Colliding with obstacles.

The first factor, which is also considered a decisive factor in many studies, is

to plan the shortest path to the destination. While in real life navigation, human

pedestrians may subconsciously aim at the shortest navigation time, they still

consider shortest path to be the highest-ranking factor, as in a study conducted

by Golledge [34]. As each rewarding factor correlates with the aspect that the

human pedestrian is aiming at or wants to achieve, planning the shortest path

would be formulized.

Consequently, we calculate the rewarding for this behavior by placing a neg-

ative reward corresponding to the sum of the squared length of each component

path. This means if the path is longer, the agent would receive a larger penalty.

This rewarding is formulated as follows:

R1 = −λ
11∑
i=0

∥pi∥2 , (5.1)

where λ is the environment’s scale, and pi is the vector of each component path.

The following factors are the essential behaviors to ensure safety in inter-

actions with others. More specifically, accidents could happen when a person

abruptly changes direction or does not follow the flow of the navigation within

the environment. If a person navigates in that way, others would view him as a

possible risk, therefore that behavior could be considered unnatural.

Regarding the rewarding for changing direction, we only consider the changes

in angles which are larger than 30◦. Any changes in angles which are smaller

than this could be acceptable and are still considered natural. For this reason,

we formulate the rewarding for this behavior by placing a penalty each time there

is a large change of direction in the planned path as follows:

R2 = −
10∑
i=0

θ (angle(pi, pi+1)) , (5.2)
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where angle (pi, pj) is the angle value between the vectors pi and pj; θ (x) is the

Heaviside step function, specified by

θ(x) =

{
0 , if x < 0 ,

1 , if x ≥ 0 .
(5.3)

As for the rewarding based on following basic navigation rules and common-

sense standards, the rules may vary between different regions and cultures. From

our observation, the following rules are applied in our study:

1. Following the flow of navigation by walking parallel to the sides.

2. Walking on the left side of the road. While pedestrians are not required to

strictly follow this, in real life, people still choose to follow this as a gen-

eral guideline to avoid accidents. Similarly, in right-side walking countries,

pedestrians would choose to walk on the right side of the road.

3. Avoiding getting close to the sides.

To define the appropriate rewarding formulations, the planned path of the

agent is sampled into N values si with i ranges from 0 to N . The respective

rewarding functions are calculated as follows:

R3 = −λ
N∑
i=0

θ (∥xpos(si+1)− xpos(si)∥ −H1) , (5.4)

R4 = −λ
N∑
i=0

θ (−xpos(si)) , (5.5)

R5 = −
N∑
i=0

θ (∥xpos(si)∥ −H2) , (5.6)

where xpos (si) function returns the x coordinate of the point si.

The value H1 in equation 5.4 is the threshold value for the difference in x

coordinates that the agent could make in each sample navigation part. The

smaller difference in x coordinates of the navigation produces the path that is

more parallel to the sides. In our model, with N = 200, H1 is given a value of

0.4. In addition, our model will put a negative reward on the agent whenever its
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5.3 Path-planning navigation training

x coordinate is less than 0 as in equation 5.5, meaning the agent is at the left

side of the road. Regarding equation 5.6, as suggested in other studies [7, 12],

the agent would stay approximately 0.5 meters from the walls to avoid possible

accidents. In our model, the navigation path has a width of 10 meters, therefore

the value H2 is set to 4.5 so that when the agent’s position has an x coordinate

higher than 4.5 or less than −4.5, it would receive a negative reward.

Lastly, with respect to collision avoidance, the agent needs to keep a certain

distance from the obstacle. The highest risk would seemingly be at the center

of the obstacle, and the risk gradually decreased with longer distance. However,

once the agent has reached a certain distance with the obstacle, any further than

this would be unnecessary. For example, if the pedestrian in real life would like to

avoid stepping on a puddle, as long as the navigation path does not conflict with

the puddle, it does not matter if the path needs to be much further away from

it. Because of this reason, we formulate our rewarding for the collision avoidance

behavior as follows:

R6 =
N∑
i=0

{
δ(si,obs)

Robs
2 r2 , if δ (si, obs) ≤ 0 ,

0.01 r2 , if δ (si, obs) > 0 ,
(5.7)

with δ (si, obs) = d (si, obs)
2 − Robs

2, where d (si, obs) is the distance from the

sampled position si and the obstacle; Robs is the radius of the obstacle’s area;

and r is the risk from the obstacle. In the training task, r has the value of

obstacle’s danger, as presented in Section 5.2.

The resulted cumulative reward R that is given to the agent each episode is

the sum of all components rewards multiplied by the corresponding coefficients:

R =
6∑

i=1

Riκi , (5.8)

where κi is the coefficient of the appropriate reward.

Each variation of a set of κi results in a different personality in the agent’s

path planning process. In real life, different people have different priorities in

how the navigation path is formed. For example, to simulate the pedestrian who

prioritizes following the regulations, the coefficient forR4, walking on the left side,

should be higher. Similarly, to replicate the behavior of a cautious pedestrian,

the model should use a higher value for R6, obstacle avoidance rewarding.
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Figure 5.3: Determining the advantage value Ât.

In PPO algorithm, to calculate the advantage value, a total of T steps must

be carried out using the current policy, where T is the time horizon value. In

our path-planning task’s environment modeling, this corresponds to T episodes

as each episode has only one step. This means the agent will output a series of

actions at, each action is an array of 10 values to form the path to its destination,

from a series of state st with t ∈ [t, T ]. Noted that the same policy will be utilized

for the agent to generate the action at from the state st.

Consequently, withR1,R2...RT determined, the advantage values Â1, Â2, ..., ÂT

are determined by following the formula 3.4:

Ât = −V (st) +Rt + γRt+1 + ...+ γT−t−1RT−1 + γT−tV (sT ) , (5.9)

with t ∈ [1, T ]. This process is illustrated in Figure 5.3.

The objective of the algorithm is to maximize the LCLIP value in the for-

mula 3.6. That means we need to optimize the policy so that the advantage

value is maximized.

Ât = R̄ − V (st) (5.10)

where R̄ =
∑T−1

i=t γi−tRi + γT−tV (sT ) with Ri is the cumulative reward from the

agent’s action (the planned path) at the state si. Ri measures how good the

policy is under the state si.
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5.4 Point-of-conflict prediction

Consequently, the value R̄ indicates how good the current policy is under

multiple states st, ...sT−1. Accordingly, by initializing the environment’s state,

the neural network is able to optimize the current policy under consideration

of other states of the environment, which means maximizing the weighted sum∑T−1
i=t γi−tRi.

For that reason, the agent’s action at cannot affect the state of the environ-

ment, therefore st+1 does not depend on the action at. This conforms to the

real-life human planning process, in which the planning is unable to alter the en-

vironment’s conditions. As a result, with the environment being initialized with

random states every step, the neural network could train the agent’s policy to be

able to plan the appropriate path that maximizes the cumulative reward in any

environment.

The discount value γ, instead of adjusting the effect of the agent’s action on

the future state, is responsible for how the neural network considers the variety

of environment’s states while training the agent’s current policy. In our study,

we employed γ = 0.99.

5.4 Point-of-conflict prediction

To accurately simulate the navigation of a pedestrian, the incorporation of the

prediction is necessary. This prediction might not be accurate, as humans in real

life usually make inaccurate predictions. As a result, the prediction process in

our model also focuses on replicating a similar prediction mechanism.

We proposed a concept called point-of-conflict (POC), a location within the

environment that the agent thinks could collide with the obstacle or at the pre-

dicted position of the obstacle when it is closest to the agent [20]. Even in the case

of a low chance of collision (e.g. when the agent and the obstacle are navigating

on two sides of the road), a POC is still predicted. The motivation is that, when

the human has already learned the appropriate prediction method, the prediction

process would occur in most cases. This would happen naturally inside human

cognition without much reasoning.

When the prediction task is handled, the agent would use the information

from the POC instead of the actual obstacle in the path-planning training task as

introduced in Section 4. The location of the POC will be predicted by the agent
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5.4 Point-of-conflict prediction

Figure 5.4: Obstacle avoidance with point-of-conflict.

depending on the obstacle’s type, which will be demonstrated in more details

subsequently. Figure 5.4 illustrates the path-planning process of the agent after

the prediction task is utilized.

The position of the POC depends on the type of obstacle. For example, if

the obstacle is stationary, the POC’s position should be the same as the position

of the obstacle. Apart from stationary obstacle, we define two other obstacle’s

types: single diagonal movement obstacle, and pedestrian obstacle. Each type of

obstacle has a different method of calculating the POC’s position. To simplify the

prediction of the POC, we assume the agent has the information of the obstacle’s

speed and heading direction. It is worth noting that the heading direction is

the direction toward the obstacle’s destination instead of its current orientation.

This is because when moving, the pedestrian may not always heading toward his

destination, but could turn in another direction for various reasons (e.g. steering

to the left-hand side). There have been several studies addressing the problem [66,

67, 71], which could be applicable to our study.

5.4.1 Single diagonal movement obstacle

A single diagonal movement obstacle is an obstacle that is mostly moving in one

direction and with a uniform speed. Some examples of this obstacle’s type are
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5.4 Point-of-conflict prediction

Figure 5.5: Point-of-conflict of a single diagonal movement obstacle.

a pedestrian crossing the environment or a road construction machine moving

slowly on the sidewalk. This type of obstacle does not include a vehicle moving

at normal speed. In that case, the pedestrian agent should exclude its navigation

area from the model’s environment, as it would be too dangerous to navigate

inside that area.

Figure 5.5 illustrates the POC prediction process in the case of a single di-

agonal movement obstacle. In order to specify the area of the POC, we need to

figure the approximate time until the obstacle is getting close. As the prediction

process is carried out before the path-planning task, we could only estimate this

using the agent’s general direction toward its destination. The calculation for

this approximate time is formulated as:

t = δ
vobs

vagent cos θa + vobs cos θo
if (vagent cos θa + vobs cos θo) > 0 , (5.11)

where δ is the distance in y coordinate between the agent and the obstacle,

vagent and vobs are the velocity of the agent and the obstacle; θa is the agent’s di-

rection angle relative to the upward vertical axis, and θo is the obstacle’s direction

angle relative to the downward vertical axis.

As a result, the POC’s position (xPOC , yPOC) is specified as follows:

(xPOC , yPOC) = (xobs, yobs) + t λ vobs êobs , (5.12)
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5.4 Point-of-conflict prediction

where (xobs, yobs) is the position of the obstacle, êobs is the unit vector having the

direction of the obstacle, and λ is the environment’s scale as presented in Section

5.1.

If the (vagent cos θa+ vobs cos θo) ≤ 0, it is unlikely for the agent to collide with

the obstacle. In this case, the POC is omitted in the planning task of the model.

In addition, if the calculated POC’s position is outside the range of the agent’s

environment, the POC is also ignored in our model.

5.4.2 Pedestrian obstacle

Pedestrian obstacles are usually the most common type of obstacle that could

interact with the pedestrian agent. However, the definition of pedestrian obstacle

in our study does not include a pedestrian crossing the environment, as it is

considered as a single diagonal movement obstacle discussed above. To predict

the position of a POC, the agent needs to specify the navigation path that the

obstacle might take. While the model for single diagonal movement obstacle

could also be adopted in this case, its result would be fairly inaccurate, and more

importantly, does not conform to the human predictive system.

For that reason, we have proposed a unique method of predicting the POC

for a pedestrian obstacle. Firstly, to define the predicted navigation path of the

obstacle, we utilized our existing reinforcement learning path-planning model. By

doing this, the predicted navigation path would have the same advantage as our

reinforcement learning model and therefore could replicate a realistic navigation

path. Subsequently, the POC will be specified on that navigation path, using the

velocity of the agent and the obstacle. Figure 5.6 represents the POC’s prediction

in the case of a pedestrian obstacle.

Before the obstacle’s navigation path could be constructed, its estimated des-

tination needs to be determined. This could be achieved by projecting the ob-

stacle’s orientation to the end of its navigation environment (separate from the

agent’s environment). The projected destination (xDobs, yDobs) could be formu-

lated as follows:

(xDobs, yDobs) =

(
xobs −

λ L vx
vy

, yobs − λ L

)
, (5.13)
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5.4 Point-of-conflict prediction

Figure 5.6: Point-of-conflict of a pedestrian obstacle.

where (xobs, yobs) is the obstacle’s position, (vx, vy) is the orientation vector of

the obstacle and L is the length of the obstacle’s environment. In our proposed

model’s environment, L has a length of 22 meters.

The observations of the obstacle consist of the obstacle’s position and its

projected destination. The observations do not include the observation of an

obstacle (i.e. the pedestrian agent in the obstacle’s environment) for two reasons.

The first reason is that the POC prediction happens before the path-planning

process, therefore the obstacle can’t specify the agent’s path. Trying to specify

the paths of the agent and the obstacle at the same time would certainly cause

conflict. Another reason is related to the process of human thinking in real life.

When a pedestrian is predicting the navigation path of the obstacle, he would

not consider himself as an obstacle, but rather trying to navigate in a way that

could avoid a collision.

The RL model used in our obstacle’s path-planning process is the same one

used by the pedestrian agent. The reason is that usually a person often thinks

other people would act the same way, for example, navigating the same way as he

would do. Alternatively, the obstacle could use the mean RL model from multiple

training.

The predicted position of the POC could be subsequently determined using
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the scale between the velocities of the agent and the obstacle. The calculation of

the POC’s y coordinate is formulated as follows:

yPOC = yobs − δ
vobs

vagent + vobs
, (5.14)

where vagent and vobs are the velocity of the agent and the obstacle, respectively;

δ is the difference in the y axis between the agent and the obstacle.

Finally, the location of the predicted POC is specified by the point on the

pedestrian’s navigation path at the yPOC value in the y axis.

5.5 Risk assessment

With the point-of-conflict prediction, the pedestrian agent would observe the

POC’s position and assess its risk instead of using the obstacle’s position and

danger level. As previously discussed in Section 4.1, risk is calculated based on

the obstacle’s harm and the probability of collision, which is formulated as

r = harm · P , (5.15)

where r is the risk, harm is the possible harm caused by the obstacle and P is the

probability of collision with the obstacle. To conform to the agent’s observations

in our reinforcement learning model, all values r, harm and P have a range from

0 to 1.

To estimate the probability of collision, we need to specify the proximity of

the POC’s position to the navigation path. Because the risk assessment is carried

out before the path-planning task, the navigation path could be approximated

as a straight line from the agent’s position to its current destination. Its line

formula could be represented by

x− xa

xD − xa

=
y − ya
yD − ya

, (5.16)

which equals to the following general linear equation

(yD − ya)x+ (xa − xD) y + (xD − xa) ya − (yD − ya)xa = 0 . (5.17)
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Considering (yD − ya) = A, (xa − xD) = B, and (xD − xa) ya− (yD − ya)xa =

C; the distance from the POC’s position (xPOC , yPOC) and the line above is

calculated as follows:

δPOC =
|AxPOC +ByPOC + C|√

A2 +B2
. (5.18)

The collision probability P is highest when δPOC = 0, and gradually decline

with higher δPOC . P is formulated in our model as follows:

P = 1− δPOC

δPOC +M
, (5.19)

where M is a distance constant. When δPOC = M , the collision probability P

would be at 0.5. For that reason, we adopted using M = 3 in our implementation.

To estimate the harm from the obstacle, we use the obstacle’s danger level and

also its speed, as the speed could also impact the harm caused by the obstacle [58].

As an example, the risk observed from a person running at a high speed should

be higher than the risk observed from a person walking at a normal speed toward

the agent, even when the perceived danger from the two persons is the same.

Arguably, the obstacle’s speed could also contribute to the probability of the

agent’s avoidance. However, because the agent’s navigation path was not formed

at the current process, the avoidance probability is unspecified. Assuming the

capability of avoidance of the pedestrian agent is constant, the obstacle’s speed

should not affect the probability of collision P .

In the case that the obstacle’s speed is irrelevant, such as a static obstacle,

the harm of the obstacle is equivalent to its danger level.

Otherwise, we adopt using the concept of kinetic energy to estimate the harm

of the obstacle, similar to how humans feel the impact of a moving object when

it hits. As a result, harm is formulated as

harm = max

(
1, danger

(
1 + γ

Kobs

Knormal

))
, (5.20)

where Kobs is the kinetic energy of the moving obstacle, Knormal is the kinetic

energy of an object moving at a normal speed, and γ is the discount value.

Considering K = 1
2
mv2, the harm of a moving obstacle could be formulated

as follows:
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Figure 5.7: Path-planning task implementation screenshot.

harm = max

(
1, danger

(
1 + γ

(
vobs

vnormal

)2
))

, (5.21)

where vnormal is the average speed of a moving object which could be perceived

as normal. In several studies [59, 60, 61], vnormal is specified to be approximately

1.31m/s.

Finally, with the harm value calculated, the risk of the obstacle is formulated

by equation 5.15. This risk value together with the POC’s position specified

in Section 6, is used in the agent’s observations in the pedestrian reinforcement

learning model. More specifically, regarding the obstacle’s properties, the pedes-

trian agent will observe the POC’s relative coordinates, the obstacle’s size and

the risk formulated in this section. Consequently, the formulated reward in equa-

tion 5.7 is updated (which, in the training process, uses the same value of the

obstacle’s danger for its risk). This could result in a more precise navigation path

in a similar way the path is planned by a human pedestrian.

5.6 Implementations

The model of our study was implemented using the real-time development plat-

form Unity. The source code is available at https://github.com/trinhthanhtrung/

unity-pedestrian-rl, by opening the scene PathPlanningTask within the Scene

folders. Figure 5.7 presents a screenshot of our implemented application.
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Figure 5.8: Cumulative reward statistics.

For the training task of the pedestrian agent, we adopted the reinforcement

learning library ML-Agents [26], which acts as a communicator between Unity

and Python machine learning code. In each training episode, the information of

the model, consisting of the agent’s observations and actions, and the cumulative

reward value, is sent to Python. The information is subsequently used for training

the agent’s policy in a neural network using the PPO algorithm, then the updated

policy will be sent back to the pedestrian agent.

Because the environment’s states are moderately noisy, it is recommended

to train the agent with a large batch size. We utilized 2 hidden layers, each

consisting of 128 hidden nodes. Furthermore, multiple instances of the same

training environment are created to speed up the training process. We have been

able to successfully get the cumulative reward to converge after two million steps

with a learning rate of 2.3 × 10−4 and time horizon of 512. For a smoother

navigation path, we used the mean of the agent’s actions in multiple episodes

of the same environment’s state. Figure 5.8 shows the statistics of the training

process in TensorBoard.

The coefficient parameters for the rewarding components are adjusted so

that the resulted navigation behavior closely matches the experiments conducted

in our laboratory. Figure 5.9 shows a screenshot from our experimental video

datasets. In our experiment, we have two pedestrians. One pedestrian acts as

a pedestrian obstacle, navigating with a predefined script; and the other acts as

the pedestrian agent, walking to the destination while avoiding the collision.

Figure 5.10 shows the planned path of the agent in different situations in

our implementations. In these figures, the actor model at the bottom is the
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Figure 5.9: Screenshot from path-planning model experimental dataset.

pedestrian agent, the red point on the top is the agent’s destination, the black

circle represents the predicted POC by the agent, and the red circle (covered by

the POC in (b) and (c)) is the current obstacle.

We have implemented an SFM model to evaluate our model. The parame-

ters of the SFM agent are calibrated so that the resulted behavior matches the

conducted experiment as previously presented. The repulsion parameters are ad-

justed so that the distance between two persons is often higher than a comfort

distance (around 1.5m in our experiment). Figure 5.11 shows how the implemen-

tation of our model compares to SFM. In each figure, our implementation is on

the left and the SFM implementation is on the right (darker environment).

From observation in Figure 5.10, the agent could be able to plan a sufficiently

realistic path to the destination, while also considering the rules and following

common conventions like walking to the left side and naturally changing direction.

This can be seen in situation (a), where the agent has chosen to walk on the left

side of the road and gradually move toward the destination when needed, instead

of walking straight to the destination. Although the planned path was constructed

from the outputs of the neural networks, it is shown to be remarkably stable. The

agent has also shown its capability to avoid the obstacle, as the planned path does

not collide with the obstacle or its prediction in most situations.

Furthermore, its planned path also seems to be adapted to the risk from the

obstacle. This is observable by comparing the paths planned by the agent in
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Figure 5.10: Agent’s planned path in different situations: (a) no obstacle; (b)

with a static obstacle with a low danger level; (c) with a static obstacle with

a high danger level; (d) with an obstacle moving straight in one direction away

from the agent (e) with an obstacle moving straight in one direction toward the

agent; (f) with a pedestrian obstacle.
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Figure 5.11: Comparison with SFM in different situations: (a) no obstacle; (b)

with a static obstacle; (c) with a moving obstacle; (d) with a pedestrian obstacle

(b) and (c). We implemented the obstacles to have the same properties in both

situations; however, the obstacle in (c) has a much higher danger level than the

obstacle in (b). The result is that in Figure 5.10.b, the agent only almost avoided

colliding with the obstacle, while in (c), the agent chose a path that steers much

further away from the obstacle than in (b). This resembles actual human thinking

when planning a navigation path where there is a dangerous obstruction on the

road.

Figures 5.10.d and 5.10.e demonstrate how the agent adopts the prediction

process into path planning. In both situations, the agent planned the path to

avoid the possible point-of-conflict instead of the actual current position of the

obstacle, which is similar to how an adult person plans the navigation path.

However, the obstacle in (e) was moving at a higher speed, therefore the risk

perceived from the obstacle is higher. As indicated in the figure, the harm value

calculated in (d) was 0.61, compared to the higher harm value calculated in (e)

at 0.81. Additionally, the difference in the POC’s position causes the change in

their probability estimations, which are 0.77 in (d) and 0.92 in (e). The increased

probability also contributes to a higher resulted risk specified in (e) situation
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(0.745 in (e), compared to 0.470 in (d)). This was reflected in the navigation

path by the pedestrian agent, as it is shown that the agent could plan the path

to quickly avoid the possible collision. The risk formulation in (d) and (e) has

shown that it could be greater to or less than the obstacle’s danger level (0.6 in

both situations) depending on the speed of the obstacle, consistent with human

thinking in real life.

Figure 5.10.f presents the planned path of the pedestrian agent in the case

of another pedestrian obstacle. In this case, the obstacle’s path was formed to

predict the possible collision, which also resembles the human thinking process

when a pedestrian trying to avoid another person while walking.

Additionally, a survey was provided to further assess the human likeness of our

model, compared with the SFM implementation. The objective of the question-

naire is to specify how real humans evaluate the experimental results. Therefore,

we have prepared a questionnaire in Google Form format and send it to sev-

eral people. To let people determine the level of human likeness in our model

compared to the SFM implementation, we provided the 4 situations in the im-

plementation results presented in Figure 5.11. Our implementation results were

placed on the left and the SFM implementation results were place on the right.

However, the participants were not informed of which one is ours and which one

is SFM’s. In each situation, people could choose a number between 1 to 5, with

the following denotations:

1. The left one is much more natural

2. The left one is slightly more natural

3. They are similarly natural

4. The right one is slightly more natural

5. The right one is much more natural

A screenshot of the questionnaire is presented in Figure 5.12.

Additionally, we also collect the participants’ genders and their age groups

to observe how different human factors could contribute to the evaluation. As

most of the participants are not aware of the study, the questionnaire came with

a short basic explanation of how the planned path is formed in each situation.
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Figure 5.12: Questionnaire used to assess the human likeness of the implemented

models.
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Specifically, the planned path is presented as a path to a predefined destination

formed within the human pedestrian’s mind before navigation. In the case of

an obstacle on the road, the pedestrian also needs to plan the path so that the

collision with the obstacle could be avoided. Because the participants come from

different cultural backgrounds, we also specify a constraint of the pedestrian nav-

igation, which is that the pedestrian navigates on the left side of the road. For

people from right-side walking countries, they were instructed to invert the pre-

sented navigation in each model. All participants were not given any additional

details, such as the approach of our model or SFM. The additional message sent

to participants is provided as follows:

� For Japanese participants: “The assumption is that pedestrians are required

to navigate on the left side of the road. In both cases, you (the pedestrian)

start from the green circle and walk to reach the red circle. Please respond

assuming that you avoid (do not collide with) the obstacles moving from the

black circle to the white circle.” [Translated from Japanese]

� For Vietnamese participants: “Assuming you need to plan the path to nav-

igate from the bottom to the red dot on the top. Which one do you think is

more human-like, the path on the left or the right? Noted that you need to

plan the path so that you will not collide with the obstacle. In the case of

(3) and (4), the obstacle could move along the dotted line. You may want

to invert the presented navigation in each model, as people in Japan walk

on the left-hand side.” [Translated from Vietnamese]

� For participants from other countries: “Assuming you need to move from

the bottom to the top (red dot) and you must plan the path before navigation.

In the case that there is an obstacle (black), you need to plan the path so

you will not collide with the obstacle. The obstacle could move in the dotted

line in the figures. Noted that in Japan, people need to navigate on the left

side of the road.”

There have been 18 people participating in the survey. A minority of the

participants are Japanese students in the same laboratory as ours and only a

few people are aware of our study. The rest of the participants are from differ-

ent countries, including Vietnam, Egypt, Singapore and also Japan and are not

aware of our study. Among the participants, the majority are male, accounting
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PPRL Similar SFM

No obstacle 10 1 7

Static obstacle 12 2 4

Moving obstacle 10 2 6

Pedestrian obstacle 10 2 6

Table 5.1: Number of people favoring each model’s implementation.

Total points PPRL SFM

ALL 60 32

No obstacle 17 12

Static obstacle 15 6

Moving obstacle 15 7

Pedestrian obstacle 13 7

Table 5.2: Total scores awarded to each model’s implementation.

for 72.2% of total responses, with female participants contributing 27.8% to the

total responses. Regarding the age groups of the participants, there has been a

percentage of 55.6% of responses were given by people from 30 to 44 years old.

The remaining 44.4% of participants are younger people from 18 to 29 years old.

The number of people favoring the implementation of each model is presented

in Table 5.1.

To evaluate our model in more detail, we also introduced a scoring system

as follows: Each time the participant chooses option (1), 2 points are added to

our model’s score; If the participant chooses (2), 1 point is added. Similarly, if

the participant chooses (4) or (5), 1 point or 2 points are added to SFM’s score,

respectively. No point is awarded if the participant chooses (3). The resulted

score of the two implementations are presented in Table 5.2.

From the evaluation, our model has demonstrated better results in all situa-

tions, compared to the implementation of SFM. This result proves that our model

is more human-like or natural to human pedestrians in all situations. However, we

noticed that in the situation of “No obstacle”, the difference between the results

of our model and SFM is not significant. Furthermore, most participants either

chose option (1) - our model is much more natural, or option (5) – SFM model

is much more natural. Our assumption is that in the case when no other people
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5.6 Implementations

Figure 5.13: Implementations of different coefficient sets: (a) default; (b)high

priority on shortest path; (c) low priority on obstacle avoidance

Implementation γ1 γ2 γ3 γ4 γ5 γ6

(a) 0.03 0.006 0.001 0.001 0.0005 0.03

(b) 0.06 0.006 0.001 0.0002 0.00025 0.03

(c) 0.03 0.006 0.002 0.001 0.00025 0.015

Table 5.3: Coefficient parameter value.

are around, many pedestrians may ignore certain navigation rules or behaviors

such as those presented in our model.

There is not much difference between the choices given by people from the two

age groups participating in our survey. Regarding the choices given by different

genders, female participants are more in favor of our implementation’s result.

However, because the number of female participants is fairly small, this may not

guarantee that the survey results accurately reflect navigation behavior by female

pedestrians.

We have realized several path-planning models by implementing with different

sets of coefficients. Figure 5.13 presents the implementation results with the

following parameters: (a) default set; (b) high priority on shortest path; (c)

low priority on obstacle avoidance. This process is done by altering the set of

coefficients and matching the agent’s behavior with several observed pedestrian

behavior types in Japan. The coefficient parameters in each implementation are

presented in Table 5.3.
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To measure the contribution of the rewarding components to each model, we

implemented a custom reward logging mechanism. During the training process,

all component reward values are stored in a text file every fixed time duration.

Figure 5.14 illustrates the recorded values in the training of each model, using

the moving averages of 300 records for more accessible observation.

In order to facilitate the observation of the changes in the rewarding statistics,

we offset all initial rewarding values to 0, so we easily assess how each component

reward is optimized during the training process. The adjusted rewarding values

are presented in Figure 5.15.

Looking at the reward value statistics in implementation (a) and (c) in Fig-

ure 5.15, it can be seen that the reward values for shortest path in (a) are notably

higher than in (c) while their coefficients for shortest path γ1 are the same. To

measure the differences, we compared the maximum and the average of the cor-

responding rewards. We omitted the first 100 records of each implementation

in the mean calculation because in the earlier stage of the training process, the

agent mostly takes random action, which may consequently lead to inaccurate

reward values. Comparing the max reward values, the shortest path reward in

(a) reaches 0.216 while in (c), the respective reward value reaches 0.527. Regard-

ing the average reward value for shortest path, the mean values are 0.081 in (c)

and 0.201 in (a). This is because in (c), the agent does not have to put as much

attention on obstacle avoidance, therefore the planned path could be shorter.

Walking on the left could also affect the shortest path reward, as could be seen

in the implementation (b). Compared to (a) and (c), the coefficient parameter for

shortest path, at 0.06, is twice the respective parameter in (c), at 0.03. However,

as the left-side walking coefficient parameter in (b) is much lower (0.0002 in (b)

compared to 0.001 in (a) and (c)), the reward values for shortest path in (b)

while training is much higher than in other implementations. More specifically,

the max value for shortest path reward in (b) is 1.566 and the average value is

0.720, compared to 0.216 and 0.081 in (b); and 0.527 and 0.201 in (c).

By observing the distribution of the coefficients in all implementations, we

find that the coefficient for shortest path has the highest priority in all of the

model implementations, followed by obstacle avoidance. This finding agrees with

many other studies in pedestrian navigation, which also suggests human pedes-

trians subconsciously choose the shortest path as the highest-ranking priority in
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Figure 5.14: Component reward values during training.
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Figure 5.15: Adjusted component reward values during training.
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navigation [34]. The results also suggest that changing the priority of one coeffi-

cient parameter could affect the received reward values of other factors. On the

other hand, upon observation of the rewarding statistics, the reward value for

changing direction does not seem to be affected by other factors.

5.7 Discussion

The implementations have shown that the agent in our model could develop a

relatively natural path compared to how humans plan the path right before nav-

igation. As each individual thinks and plans differently, the planned path by

the agent may not be identical to a specific person’s thinking. However, this

planned path could still be seen as natural or human-like thanks to several sim-

ilar traits found in the result, such as smooth navigation and following common

regulations. This also indicates that by providing the appropriate rewarding for-

mulations, the reinforcement learning agent could develop a behavior similar to

the human decision-making process, thus partly confirming the hypothesis raised

by other studies [62]. By supplementing and refining the rewarding formulation,

a more realistic and natural navigation could be replicated.

Nonetheless, admittedly with enough complex rule sets, a rule-based model

could achieve a similar result as our model. However, it could be difficult to

develop the rule sets for extended states of the environment, while with reinforce-

ment learning, the agent could adapt well to an unfamiliar environment. Another

advantage of utilizing reinforcement learning in the path-planning model is that

a reinforcement learning model always retains a slight unpredictability, provid-

ing some sense of the same unpredictability in human nature, which makes the

navigation path more believable. On the other hand, that could also result in

unknown outcomes in unforeseeable situations.

When comparing to the Social Force Model’s implementation, it is apparent

that the two implementations take distinctive approaches, as this could be seen

in Figure 5.11. For the human’s local path-planning task, our model has shown a

better result, mostly because humans rarely generalize the idea of “force” when

planning the path in real life. The inaccuracy of the SFM’s implementation is

more noticeable in the case in which the pedestrian needs to navigate from one

side to the other, as the SFM agent tends to disrupt the flow of the navigation
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5.7 Discussion

path. The lack of a prediction method also makes SFM less ideal to realize the

human’s path-planning process. As a result, the path planned by the SFM agent

heads straight to the destination without considering obvious possible collisions

within the navigation. The path only avoids the walls and the obstacles when it

is at a certain distance from those obstructions. Nonetheless, in the case when

planning is difficult, like in a crowded environment for example, or for people who

rarely plan before navigating, the SFM model could be sufficient.

Despite having shown a relatively natural path, assessing the model’s resem-

blance to the human solutions is a challenging task since the path-planning pro-

cess only happens in the thoughts of pedestrians. This makes evaluating the

human-likeness of the result difficult, which is the major limitation of our study.

We have considered several mechanisms in human cognition of assessing human

likeness in pedestrian behavior. The problem is, when observing the movement,

humans do not have the exact criteria to determine specific behavior is human-like

or not. Instead, the human conscious and subconscious recognition processes will

subjectively evaluate the movement by matching it with existing sensory data.

Occasionally, even a more realistic behavior may trigger the uncanny effect, con-

sequently leading humans to negate the human likeness of that behavior. As a

result, to overcome this limitation, more insight into the human cognitive system

needs to be carefully addressed.

The risk assessment seems to have contributed to the model’s reasonable re-

sult. This corresponds to actual human pedestrians when perceiving different

properties from an obstruction. The observable result seems to resemble how hu-

mans would perceive risks from the obstructions; however, as aforementioned, to

estimate its resemblance to the task performed by humans could be demanding.

It should be noted that, in this task, only the path-planning task happening

inside a human pedestrian’s thinking before navigating is replicated. This path

could be different from the actual path taken by the pedestrian. When following

the planned path, the agent should be able to interact with the surrounding

obstructions, especially when the obstructions are not navigating as predicted.

In our future work, the pedestrian interacting problem for those situations will

be addressed to further improve the movement of the pedestrian agent.
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5.8 Summary

5.8 Summary

We have developed a novel pedestrian path-planning model using reinforcement

learning while considering the prediction of the obstacle’s movement and the risk

from the obstacle. The model consists of two main components: a reinforcement

learning model to train the agent the behavior to navigate in an environment

and interact with the obstacle, and a point-of-conflict prediction model to form

the estimated interacting position of the agent with the obstacle. Both compo-

nents of the model acknowledge the risk assessment of the obstacle to provide

corresponding results. The implementation results of our model have demon-

strated a sufficiently realistic navigation behavior in many situations, resembling

the path-planning process of a human pedestrian.
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Chapter 6

Pedestrian interacting model

In this chapter, the model for our pedestrian interacting task is presented. In the

interacting task, the pedestrian needs to carefully observe the movement of the

obstacle and act accordingly.

6.1 Introduction

Recent studies in pedestrian simulation have been able to sufficiently construct

a realistic navigation behavior in many circumstances. However, when replicat-

ing the close interactions between pedestrians, for example, when the pedestrian

needs to avoid another person who suddenly changes his direction, the replicated

behavior is often unnatural and lacks human likeness. There are two possible rea-

sons for that. Firstly, these models often ignore the cognitive factor in the human

pedestrian in the interactions. The majority of the current studies are physics-

based, such as using forces [7] or fluid dynamics [8] to realize the pedestrian’s

movement. In real life, human pedestrians do not interact with others using

force. When moving, humans do not feel the forces of repulsion from surround-

ing objects, but instead, the cognitive system is used to process the information

and make decisions. The human cognitive system is remarkably complex and

is an important research object in many different scientific fields, such as cogni-

tive science and behavioral psychology. Several studies have adopted the ideas

in cognitive science into their applications, such as autonomous robots [29], and

achieved favorable results. However, to our best knowledge, no pedestrian model

has considered these ideas. Another reason is that humans do not always make
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6.1 Introduction

optimized decisions [6]. Many approaches replicate the pedestrian behavior by

using rule-based models [12] or more recently, using neural networks [30]. They

usually aim at optimizing certain objectives, such as shortest path or minimizing

the number of collisions. Although people usually aim at the best solution, the

choices are often affected by different determinants such as personal instinct and

human biases. By optimizing certain factors like shortest path or minimize the

number of collisions, the resulted behavior might be unnatural or unrealistic to

real-life pedestrians.

As a result, we tried to address the problem of simulating the pedestrian’s

interacting process using reinforcement learning, similar to the approach we have

presented in Chapter 5. Correspondingly, we also explored various concepts in

cognitive science to incorporate into our pedestrian interaction model. In partic-

ular, we propose a cognitive prediction model which is inspired by the predictive

system in the human brain. The difference between our cognitive prediction and

the prediction in many studies is that, while these studies aim at the accuracy

of the prediction, the focus of our research is to imitate the prediction in the

human cognitive process. By integrating the prediction with the reinforcement

learning model, the navigation behavior in pedestrian interaction scenarios would

be improved.

An example of this is the circumstance when the obstacle is navigating un-

predictably and the pedestrian has already been close to the obstacle. In this

case, the pedestrian needs to look at how the obstacle is moving and try not to

collide with it. When this happens, a pedestrian interacting model is necessary to

replicate the interactions between the pedestrian agent and other objects. Other-

wise, if there is no obstacle, or the obstacle is moving predictably, the agent only

needs to navigate along the planned path, which is the result of the path-planning

process as presented in Chapter 5. By incorporating the pedestrian interacting

process with the path-planning process, we could replicate a more natural and

realistic navigation behavior of a real-life pedestrian.

Without integrating with the pedestrian path-planning model, the interaction

model could still contribute to many studies in several application domains. An

example of its applications could be the research and development of an auto-

mated vehicle model. Understanding the pedestrian’s behavior could improve the

model in the case of possible interactions with other people crossing the vehicle’s

path. For example, in the mixed traffic roads where the navigations of vehicles
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and pedestrians are not separated, the pedestrian may accidentally walk into the

car moving area while trying to avoid an obstruction. By appropriately assessing

the situation, the automated car could avoid possible collisions. Computer games

could also benefit from the research, as a more realistic human behavior would

greatly enhance the user immersion.

Many studies in pedestrian simulation often approach the interaction prob-

lem using an empirical model while ignoring the concepts of the human cognition

system. For example, for collision avoidance, many models adopted a repulsive

mechanism to simulate the interaction between two pedestrians. In real life, on

the other hand, there are many actions that the pedestrians could take, like

slowing down [9] or predicting where the other would advance. Sometimes, the

pedestrian may still fail to successfully avoid, thus subsequently collide with the

other. This could cause problems if the simulation needs the preciseness of pedes-

trian behavior, for instance, a traffic simulation system for automated vehicles.

To avoid this, we analyzed the problem with the consideration of human

cognition incorporated with our pedestrian interacting model. Specifically, we

proposed a reinforcement learning model for pedestrian interaction simulation

and a cognitive prediction model motivated by the human predictive system.

6.2 Model overview

Similar to the path-planning task, we also employed reinforcement learning for the

agent’s interaction learning and a prediction model for a more natural interacting

behavior, especially observable from adult humans.

Generally, when the navigation needs to proceed to this process, the pedestrian

is already close to the obstacle, within a distance of a few meters. Accordingly,

the environment modeled in this task does not need to be too extensive. In

addition, the model does not need to include too many obstacles. In our study,

the environment is designed so that there is a chance of one obstacle possibly

conflicting with the navigation of the pedestrian.

The model for our setting is illustrated in Figure 6.1. The pedestrian agent A

has to try to get the destination D and also avoid the obstacle O (if exists). In

usual circumstances, the agent does not always avoid the obstacle in its current
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Figure 6.1: Pedestrian interacting environment setting.

Figure 6.2: Learning task training environment.

position. Instead, the agent will form a prediction of the obstacle’s movement

and avoid the future interaction area.

6.3 Pedestrian interaction learning

Our model also uses reinforcement learning for the learning task, similar to the

learning task in the agent’s path-planning process, presented in Section 5.3. Sim-

ilarly, to realize the reinforcement learning model for the pedestrian interaction

learning task, we need to address the following problems: designing the agent’s

learning environment and proper rewarding approach for the agent’s actions.

6.3.1 Environment modeling

Figure 6.2 presents the design of the learning environment for our model. Our

training environment is an area of 10 by 10 meters. In each training episode,

the pedestrian agent starts at (0, 0), which is the center of the environment.

The agent will be heading to an intermediate destination, placed at a distance
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Figure 6.3: Agent’s destination as a sub-goal.

randomized between 2 to 4.5 meters and could be in any direction from the

agent. This could be considered as a sub-goal [19] of the agent for the long-term

planned navigation path. For example, with the agent’s planned-path to the goal

presented in our previous paper [31] consisting of 10 component path nodes, the

intermediate destination would be the closest component node to which the agent

is heading, as demonstrated in Figure 6.3.

An obstacle could be randomly generated inside the environment. The obsta-

cle is defined as another pedestrian that could walk into the pedestrian agent’s

walking area or a slow-moving physical obstacle such as a road marking machine.

We chose not to include a fast-moving object like a car in our definition of obsta-

cle. In that case, the entire area exclusive for its movement will be too dangerous

for a pedestrian and will be excluded from the agent’s navigation area. Regard-

ing static obstacles, like an electric pole or a water puddle, these could have been

addressed in the planning process and could not interfere with the pedestrian

agent’s path. From the definition, the obstacle will be randomly initialized be-

tween (−5, 5) and (5, 5) in each training episode. After that, it will move at a

fixed speed to its destination, randomly positioned between (−5,−5) and (5,−5).
With this modeling, the pedestrian agent’s path might collide with the obstacle’s

movement in any direction.

As proposed in Section 4.4, we suggest that the obstacle’s danger level and how

the agent measures the risk could moderately impact how the agent navigates.

For example, if the human pedestrian encounters a less dangerous obstacle such

as another regular pedestrian, he may alter his navigation just a bit to avoid a

collision. On the other hand, if the obstacle is a moving construction machine,

the pedestrian should try to steer away from the obstacle to avoid a possible
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accident.

Another important factor is the size, which is the affected area of the obstacle.

For instance, if the obstacle is a group of multiple pedestrians walking together

instead of one, the whole group should be treated as a single large-sized obstacle,

as suggested by Yamaguchi et al. [24]. In our model, the size of the obstacle is

randomized between 0.5 and 2; the danger level is randomized between 0 and 1

at the beginning of each training episode. When the prediction of the obstacle’s

movement is used, the risk of the obstacle will be used instead of its danger level.

The formulation of risk is presented in Section 6.3.3.

6.3.2 Agent’s observations and actions

In each step, the agent will observe various states of the environment before tak-

ing actions. We have considered two possible approaches to the design of the

agent’s observations and actions. The first approach is using Euclidean coordi-

nates. This means the agent will observe the relative position of the obstacle

and the destination as well as the obstacle’s direction in Euclidean coordinates.

For example, assuming the current agent’s position and obstacle’s position are

(xa, ya) and (xo, yo) respectively. The agent needs to observe the related position

of the obstacle, in this case, that would be the two values (xo−xa) and (yo− ya).

Since a neural network is used for training, this could lead to a problem of finding

a relationship between the coordinates and the rewarding. For instance, when

the agent moves, the x (or y) coordinate may increase or decrease. However,

the increment or decrement of the value does not have a direct correlation with

the increment or decrement of the cumulative reward. Increasing the number of

network’s hidden layers could be more effective, but even then it would be more

complicated for the neural network to find an optimal policy.

The second approach, using radial coordinate, could resolve this problem.

Instead of using the coordinates in x and y values, the agent’s observations and

actions would instead use the distance and angle (relative to the local position

and heading of the agent). This is helpful for the neural network to specify the

relationship between the input and the output. For instance, a low angle and a

short distance to the obstacle mean the obstacle is close, therefore going straight

(angle close to 0) could lead to a lower reward value.
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Figure 6.4: Training statistics for radial and Euclidean coordinate methods.

In a comparison between the training of the model using the radial coordinate

method and using Euclidean one, we found out that the training using the radial

coordinate method is better at both achieved cumulative reward and time to

converge. The result is shown in Figure 6.4, in which the blue line represents the

reward statistics for the radial coordinate method and the pink line represents

the reward statistics for the Euclidean one.

The typical downside of using radial coordinate is angle calculation, e.g. cal-

culation of the change in distance and angle if both the agent and the obstacle are

moving. However, in the interacting process, the interval between two consecutive

steps is very small, therefore the changes in the distance and angle are minimal.

For this reason, we adopt the radial coordinate approach for the observations and

actions of the agent.

More specifically, the observations of the environment’s states consist of: (1)

the distance to the current destination; (2) the body relative direction to the des-

tination (from agent’s forward direction); (3) The presence of the obstacle. The

obstacle is considered present only if it is within the agent’s field of vision. If the

obstacle is observable by the agent, the agent will also observe: (4) the distance

to the obstacle; (5) the body relative direction to the obstacle; (6) the obstacle’s

body relative direction to the agent (from the obstacle’s forward direction); (7)

the obstacle’s speed, size, and danger level.

The possible actions which the agent could perform consist of: (1) The desired

speed; (2) The angle change in the direction from the current forwarding direction.

Certain constraints are put on the actions of the agent. Firstly, the agent
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cannot immediately reach the desired speed, but that speed needs to be gradually

increased or decreased. Secondly, the angle change each timeframe is capped at

around 10 degrees. The reason for these constraints is the limitation of human

locomotion. If the constraints are not set up, it could lead to unnatural walking

and turning pedestrian behavior (e.g. the pedestrian turns more than 360 degrees

in less than 1 second).

The above step will be repeated until the agent reaches the destination, the

agent gets too far from the destination or it takes too long for the agent to reach

the destination. After that, the total reward will be calculated to let the agent

knows how well it has performed the task. The details of the rewarding will be

explained in the next section. Finally, the environment will be reinitialized, and

the agent will repeat the above steps. The set of agent’s observations and actions,

as well as the cumulative reward, is sent to be trained in a neural network aiming

at maximizing the cumulative reward value.

6.3.3 Rewarding behavior

Taking the cue from the learning task for the path-planning process, we also

designed the rewarding behavior for our model using the idea of human comfort,

as suggested in Chapter 5. There are numerous factors in the concepts of human

comfort. For the training task of this pedestrian interacting process, we adopted

the factors listed below, grouped into two categories: Goal Optimisation (GO)

and Natural Behavior (NB).

The category GO consists of the behaviors which encourage the agent to

achieve the goal in the most efficient way. The following factors are put under

this category:

A. Reaching destination reward

The agent receives a small penalty every step. This is to encourage the agent

to achieve the goal as swiftly as possible. The agent also receives a one-time

reward when reaching the destination. This also leads to the termination of the

current episode and resets the environment. The formula for this reward at time

t is calculated by:

R1,t =

{
Rstep, if δ

(t)
A,D ≥ δmin ,

Rgoal, if δ
(t)
A,D < δmin ,

(6.1)
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where δ
(t)
A,D is the distance between the agent and its destination at the time t;

Rstep is a small constant penalty value for every step that the agent makes; Rgoal

is the constant reward value for reaching the destination.

B. Matching the intended speed

The agent is rewarded for walking at a desired speed. This value varies be-

tween people. For example, a healthy person often walks at a faster speed than

the others, while an older person usually moving at a slower speed.

The reward for this is formulated as follow:

R2,t = ∥vt − vdefault∥ , (6.2)

where vt is the current speed and vdefault is the intended speed of the agent. This

value may vary depending on different factors like age or gender. For example, a

healthy person tends to walk faster, while an old person tends to walk slower.

C. Avoid significant change of direction

Constantly changing direction could be considered unnatural in human nav-

igation. Appropriately, the agent is penalized if the change in direction of the

agent is greater than 90◦ in one second. The reward for this behavior is formulated

as follow:

R3,t = − Rangle, if
ϕ∆

∆t
> 90 , (6.3)

where ϕ∆ is the change in agent’s direction, having the same value as action (2)

of the agent; ∆t is delta time, the time duration of each step; and Rangle is the

constant penalty value for direction changes.

The category NB consists of the behaviors which encourage the agent to be-

have naturally around humans. As the navigation model in our research is fairly

limited, such interactions such as gestures or eye movement cannot be imple-

mented. As a result, the only factor put under this category that is used in our

model is:

D. Trying not to get too close to another pedestrian.

The reward for this behavior is formulated as follows:

R4,t =


− danger, if sizeO δ

(t)
A,O < 1 ,(

δ
(t)
A,O−1

S−1
− 1

)
danger, if 1 ≤ sizeO δ

(t)
A,O < S ,

0, if sizeO δ
(t)
A,O ≥ S ,

(6.4)
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where δ
(t)
A,O is the distance between the agent and the obstacle at time t; danger

and sizeO are the danger level and the size of the obstacle respectively; S is

the distance to the obstacle which the agent needs to start interacting with. As

mentioned in Section 4.1.1, danger is the agent’s perception of the obstacle’s

danger. This will be updated with risk when a prediction of obstacle’ movement

is formed, which will be presented in Section 6.3.3.

In normal circumstances, for example, when a pedestrian is walking alone or

when he is far away from other people, the pedestrian does not have to worry

about how to interact naturally with others. As a result, the behaviors listed

in the NB category need less attention than other behaviors listed in the GO

category. On the contrary, when the pedestrian is getting close to the other, the

GO behaviors should be considered less important. As a result, the cumulative

reward for each training episode is formulated as follows:

R =
n∑

t=1

h
(
N

(t)
GO, N

(t)
NB

)
, (6.5)

where h is a heuristic function to combine the rewards for achieving the goal and

the rewards for providing the appropriate human behavior; n is the number of

steps in that episode; N
(t)
GO is the sum of the cumulative rewards for all behaviors

in GO category at time t and N
(t)
NB is the sum of the cumulative rewards for all

behaviors in NB category at time t.

N
(t)
GO = κ1R1,t + κ2R2,t + κ3R3,t , (6.6)

N
(t)
NB = κ4R4,t , (6.7)

where κ1 is the coefficient for reaching destination rewarding; κ2 is the coefficient

for matching intended speed rewarding; κ3 is the coefficient for changing direction

avoidance rewarding; κ4 is the coefficient for collision avoidance rewarding.

Different people have different priorities for each previously mentioned behav-

ior. As a result, with different coefficient values of κ1, κ2, κ3 and κ4, individual

pedestrian personality could be formulated.

The heuristic function is implemented in our model as follows:

R =
n∑

t=1

(
γ N

(t)
GO + (1− γ)N

(t)
NB

)
, (6.8)
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where γ is a value ranged from 0 to 1, corresponding to how far the agent is from

the obstacle and also the size of the obstacle. The reason for including the size

of the obstacle in the calculation of γ is that when an obstacle is bigger, it would

appear closer to the pedestrian, and the pedestrian would likely stay further away

from the obstacle as a result. Therefore, γ is specified in our model as follows:

γ =
1

δA,O sizeO + 1
, (6.9)

where δA,O is the distance between the agent and the obstacle; sizeO is the ob-

served size of the obstacle.

6.4 Prediction task

The predictive process happens in almost every part of the brain. This is also the

cause of many bias signals sent to the cognitive process, leading to the behavior

in which humans act in real life [18]. In the human brain, the prediction is

made using information from past temporal points, then it would be forwarded

to be compared with actual feedback from sensory systems. The accuracy of the

prediction is then used to update the predictive process itself.

The prediction task helps the agent avoid colliding with the obstacle more effi-

ciently. Without using a prediction, the pedestrian might interrupt the navigation

of the other pedestrian or even collide with. This behavior is more frequently ob-

servable in younger pedestrians, whose prediction capability has not been fully

developed.

The prediction task could happen in both the path-planning process and the

interacting process. For example, when a person observes another pedestrian

walking from afar, he could form a path to avoid the collision. In the imple-

mentation result from the path-planning task, as presented in Chapter 5, it is

shown that the prediction helps the pedestrian agent to plan a more efficient and

realistic navigation path.

The prediction in the interacting process, however, is different from the pre-

diction in the path-planning process. While in the path-planning process, the

agent only needs to project an approximate position of the obstacle in order to

form a path, in the interacting process the agent will need to carefully observe
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Figure 6.5: The problems with the position forwarding prediction model.

every movement of the obstacle to expect its next actions. This will be carried

out continuously when the agent is having the obstacle in sight.

For this reason, a simple position forwarding prediction could not be suffi-

cient. The first problem with this is that when the obstacle is moving with a

certain pattern (for example, the obstacle is moving along a curve, as shown in

Figure 6.5.a), a position forwarding prediction using only the obstacle’s direction

is usually incorrect. The second problem is that when the obstacle is uncertain

about its orientation and choosing to move in two opposite directions. The agent

may see the position in the center is safe to navigate (as shown in Figure 6.5.b),

while actually, it is usually the contrary. In order to solve these problems, we

had to look into the mechanism of the predictive process. Based on that, we set

up three steps for the prediction task, presented as follows:

1. Step 1 – Estimation: Based on the previous movement of the obstacle, the

pedestrian agent forms a trajectory of its movement. Subsequently, the

agent specifies the location in that trajectory that he thinks the obstacle

would be at the current moment

2. Step 2 – Assessment : The difference between the predicted location and

the actual current position of the obstacle is measured. This indicates how

correct the prediction was, meaning how predictable the movement of the

obstacle was. If the predicted location is close to the actual position, that

means the movement of the obstacle is fairly predictable, thus the agent

could be more confident in predicting the future position of the obstacle.

3. Step 3 – Prediction: The agent forms a trajectory of the obstacle’s move-

ment based on the current movement. Combining with the difference cal-

culated in Step 2, the agent predicts the future position of the obstacle on
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Figure 6.6: Prediction task model.

that trajectory. If the difference is small, meaning that the agent is confi-

dent with the prediction, he would predict a position further in the future

and vice versa.

Figure 6.6 illustrates the modeling of the prediction task. P1, P2, P3, P4, and

P5 are the sampled positions of the obstacle’s movement, with P5 is the obstacle’s

current position. Pe is the projected position of the obstacle from P1 to P4 and

Ppredict is predicted position of the obstacle. The flowchart for the prediction

process is presented in Figure 6.7.

As an example, if a pedestrian obstacle is going straight in one direction, its

movement could be easily figured. Thus, the difference between its predicted

location and its actual current position should be primarily small. The agent

then will be able to predict the obstacle’s position further in the future and will

be able to comfortably avoid it. On the other hand, if the pedestrian is moving

unpredictably, it will be very difficult for the agent to guess its movement. In this

case, the predicted location of the obstacle in the further future would be mostly

incorrect. Consequently, avoiding the near future or even the current projection

of the obstacle would be a better decision.
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Figure 6.7: Prediction process flowchart.

6.4.1 Estimation

The recent position data of the obstacle is stored together with its respective time

information in a data structure by being logged every fixed timeframe. To avoid

the incorrect data being logged, the timeframe should be longer than the time

duration between two continuous frames.

First of all, the agent needs to form a trajectory of the obstacle’s movement

from the past positions. To do that, the agent will need to choose some samples

from previously recorded location data of the obstacle, then perform interpolation

to get a parametric representation of the movement.

To help the agent with choosing the sample and performing interpolation,

we propose a concept called confidence rate. The confidence rate of the agent,

denoted by c, is a value that is dependent on the accuracy of the agent’s previous

prediction. With a high confidence rate, the agent could be more comfortable

interpolating using a wider time span. The confidence rate will be calculated in

the Assessment step, presented in Section 6.3.2 below.

For the interpolation process, we used two Lagrange polynomial interpola-
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tions. One interpolation is used for the set of (xi, ti) and the other is used for

the set of (yi, ti). For the interpolating polynomial presented in the form of a

cubic function, four sets of samples corresponding to t1...t4 are required. Given

the current time τ , the value ti is calculated as follows:

ti = τ − (5− i)∆ , (6.10)

with

∆ = c γ1 , (6.11)

where c is the confidence rate ranging from 0 to 1; γ1 is a time constant discount.

For example, if the agent is very confident (c = 1) and the samples chosen from

the pedestrian obstacle’s previous movement of 2 seconds, then γ1 could be 0.4.

We set a minimum value of 0.3 for ∆ as in reality, human perception cannot

recognize the object’s micro-movement. Therefore, in the case of a low confi-

dence rate (for example, when the previous prediction was greatly incorrect), the

pedestrian agent will still use samples from the obstacle’s previous 1.5 seconds

approximately.

The four sets of the corresponding (xi, ti) and (yi, ti) are used to specify the

x = x(t) and y = y(t) functions using Lagrange interpolation. Specifically, the

x = x(t) function are formulated from (x1, t1)...(x4, t4) as follows:

x =
(t− t2)(t− t3)(t− t4)

(t1 − t2)(t1 − t3)(t1 − t4)
x1 +

(t− t1)(t− t3)(t− t4)

(t2 − t1)(t2 − t3)(t2 − t4)
x2+

(t− t1)(t− t2)(t− t4)

(t3 − t1)(t3 − t2)(t3 − t4)
x3 +

(t− t1)(t− t2)(t− t3)

(t4 − t1)(t4 − t2)(t4 − t3)
x4 .

(6.12)

The y = y(t) function is similarly specified.

The estimation of the current position of the obstacle Pe(xe, ye) at the current

time τ is defined by: (xe, ye) = (x(τ), y(τ)) .

6.4.2 Assessment

The predictability of the obstacle’s movement is calculated using the distance

δe between the obstacle’s current position (x5, y5) and the estimated position of

the agent (xe, ye) as calculated above. If δe is small, that means the movement is
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Figure 6.8: Plot of the function ε = f
(
δe
D

)
.

predictable. On the contrary, if δe is large, that means the movement is not as the

agent expected. An example of this is when a pedestrian encounters an obstacle,

which is another pedestrian walking in the opposite direction. When trying to

avoid running into the obstacle, the pedestrian observes that the movement of the

obstacle was going to his left-hand side. However, the obstacle makes a sudden

change and walk to the right instead. This makes the movement of the obstacle

seemingly unpredictable, and thus the pedestrian needs to be more careful when

planning to interact.

We defined a value predictability rate as ε, determined by:

ε =
1(

δe
D
+ 1
)5 , (6.13)

where D is the average distance between the first and the last sample points P1

and P4.

The plot of the function ε = f
(
δe
D

)
is presented in Figure 6.8. As observed

from the figure, we could see that when δe
D

is close to 0, ε will be approximately

1. The ε value drops steeply when δe
D

decreases. For example, when δe
D

is around

0.5, the ε value is only 0.13.

The confidence rate c will be then calculated using the predictability rate. The

confidence rate gets higher or the agent is more confident when ε is consecutively

at a high value and vice versa. The formulation for calculating the confidence

rate could be different for each person, as some people could be more confident

after several correct predictions than the others.

The formulation for calculating the confidence rate ct at time t is presented
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Figure 6.9: Resulted prediction with different θ.

as follows:

ct = ct−1 + γ2 (εt − ct−1) , (6.14)

where γ2 is the discount for the change in confidence rate, with γ2 = 0 meaning

the confidence rate is not dependable on the prediction rate, and γ2 = 1 meaning

the confidence rate will always equal the prediction rate. Practically, γ2 should

be from 0.3 to 0.6.

6.4.3 Prediction

Similar to the Estimation step, we also use Lagrange interpolation in the Pre-

diction to form the functions x = x̄(t) and y = ȳ(t) for the projection of the

movement. In this step, however, the sample positions used are P2 to P5 (the

current position of the obstacle) respectively. For instance, the function for the

four sets of samples (x2, t2)...(x5, t5) is presented as:

x =
(t− t3)(t− t4)(t− t5)

(t2 − t3)(t2 − t4)(t2 − t5)
x2 +

(t− t2)(t− t4)(t− t5)

(t3 − t2)(t3 − t4)(t3 − t5)
x3+

(t− t2)(t− t3)(t− t5)

(t4 − t2)(t4 − t3)(t4 − t5)
x4 +

(t− t2)(t− t3)(t− t4)

(t5 − t2)(t5 − t3)(t5 − t4)
x5 .

(6.15)

The y = ȳ(t) function is similarly specified.

The prediction of the obstacle is determined from the functions x = x̄(t)

and y = ȳ(t) at the time ti = τ + θ, where τ is the current time and θ is the

forward time duration in the future. Consequently, if the agent wants to predict

the location of the obstacle at 1 second in the future, θ would be 1. Figure 6.9

demonstrates how different θ value affects the resulted prediction of the obstacle.

The value θ depends on the confidence rate c. If the agent is confident with

the prediction, he will predict an instance of the obstacle at a further point in
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the future. On the contrary, if the agent is not confident, for example when

the obstacle is moving unpredictably, he would only choose to interact with the

current state of the obstacle (θ close to 0). The estimation of θ in our model is

formulated as follows:

θ = c ε γ3 , (6.16)

where γ3 is a time constant discount. For example, when the agent is confident,

the current prediction is correct and the forward position of the obstacle could

be chosen at 1 second in the future, γ3 could be set to 1.

To summarize, the function to calculate the predicted position (xp, yp) of the

obstacle could be formulated as follows:

(xp, yp) =
(
x̄(τ + c ε γ3), ȳ(τ + c ε γ3)

)
. (6.17)

Finally, the predicted position of the obstacle will be assigned to the obser-

vation of the agent as presented in Section 6.2. More specifically, instead of

observing the current position of the obstacle, the agent will use the predicted

position (xp, yp) of the obstacle.

The risk of the obstacle, as mentioned in Section 4.1.1, will be updated de-

pending on the confidence rate of the agent. One reason for this is when an

obstacle is moving unpredictably, it could be hard to expect where it could go

next, which leads to a higher risk assessed by the agent. The relation between

the obstacle’s risk and danger level is defined as follows:

r = danger + (1− danger)(1− c) , (6.18)

where r is the risk, danger is the danger level of the obstacle perceived by the

agent and c is the confidence rate of the agent. That means if the agent is

confident with the movement of the obstacle, the perceived risk will be close to

the danger level observed by the agent. However, if the confidence rate is low,

the risk will be increased correspondingly.

6.5 Implementation and discussion

Our proposed model was implemented using Unity 3D. We prepared two sepa-

rate environments for the implementation. One environment is used for the agent
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Figure 6.10: A screenshot from the implementation application.

Figure 6.11: Learning task training statistics.

training of the learning task and the other for implementing the prediction task

as well as to validate our model. The source code for our implementation could be

found at https://github.com/trinhthanhtrung/unity-pedestrian-rl. The

two environments are placed inside the Scenes folder by the names Interact-

TaskTraining and InteractTaskValidate, respectively. Figure 6.10 presents our

implementation application running in the Unity environment.

For the training of the learning task, we also used the Unity-ML library.

For our designed training environment, the pedestrian agent has the cumulative

reward converged after 2 million steps, using a learning rate of 3 × 10−4. The

computer we used for the training is a desktop computer equipped with a Core i7-

8700K CPU, 16GB of RAM and NVIDIA GeForce GTX1070 Ti GPU. With this

configuration, it took 1 hour 40 minutes to complete the process. The statistics

for the training are shown in Figure 6.11.
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6.5 Implementation and discussion

Figure 6.12: Screenshot from interacting model experimental dataset.

For the predicting task, we created a script called Movement Predictor and

assign it to the pedestrian agent. The position records of the obstacle are stored in

a ring buffer. The advantage of using a ring buffer is the convenience of accessing

its data: with the confidence rate specified, the time complexity to get the data

of the obstacle’s past locations is always O(1). The values γ1, γ2 and γ3 in (6.11),

(6.14), (6.16) are set to 1.7, 0.45 and 1.1, respectively.

Similar to the path-planning process, the parameters used in our model are

calibrated to resemble the human movement in our conducted experiments on

pedestrian interacting behavior. In our experiment, one person acts as the agent

to interact with another person acting as an obstacle. In each situation, the

obstacle person navigates following a script that was predefined using certain

real-life scenarios. The other person could move and interact in the same way

as in normal situations. Figure 6.12 shows a screenshot from our pedestrian

interacting experimental dataset.

The demonstration of our pedestrian interacting behavior could be observed

from https://github.com/trinhthanhtrung/unity-pedestrian-rl/wiki/Demo.

The user could freely control an obstacle and interact with the agent. In our ex-

periment, we controlled the obstacle to walk and interact with the agent in similar

behavior as an actual person using existing pedestrian video datasets. From the

demonstration, it could be seen that the movement of the pedestrian agent bears

many resemblances with the navigation of actual humans. The pedestrian agent

is able to successfully avoid the obstacle most of the time and reach the des-
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tination within a reasonable amount of time. This result suggests that basic

navigation behavior could be achieved by the agent by utilizing reinforcement

learning, thus confirming this study’s hypothesis as well as the suggestion by

other researchers [62]. By incorporating the prediction process, the agent also

expressed avoidance behavior by moving around the back of the obstacle instead

of passing at the front, similar to how a human pedestrian moves. In case of

an obstacle with unpredictable behavior, the agent shows certain hesitation and

navigates more carefully. This also coincides with human movement behavior

when encountering a similar situation, consequently introducing a more natural

feeling when perceiving the navigation, corresponding to our expectations.

On the other hand, several behavioral traits of human navigation were not

presented in the navigation of our model’s implementation. An example is that

a human pedestrian in real life may stop completely when the collision is about

to happen. This is for the pedestrian to carefully observe the situation and also

to make it easier for the other person to respond. In our model, the agent only

slightly reduces its velocity. Another example is when interacting with a low-risk

obstacle, the agent may occasionally collide with the obstacle.

To evaluate our model, we compared our results with a Social Force Model

implementation and the built-in NavMesh navigation of Unity. Some examples

of the implementation are demonstrated in Figure 6.13. In each situation, our

cognitive reinforcement learning model is on the left (blue background), the Social

Force Model implementation is in the middle (green background), and the Unity

NavMesh implementation is on the right (yellow background). The green circle

represents the agent and the red circle represents the obstacle. The green and the

red spots are the periodically recorded positions of the agent and the obstacle,

respectively.

Upon observation of each model’s behavior, the difference in the character-

istics of its movement could be noticed. As the SFM model is realized using a

force-based method, the movement of the pedestrian agent in SFM is very sim-

ilar to a magnetic object. The appearance of an obstacle could push away the

agent when it is being close. The agent in the Unity NavMesh implementation

often takes the shortest path approach. However, as the agent only considers the

current state of the environment, it may occasionally take a longer path when

the obstacle moves. On the other hand, the behavior of the agent in our model is

more unpredictable, although certain factors such as taking the shorter path and
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Figure 6.13: Example interacting situations between agent and obstacle in com-

parison with Social Force Model and Unity NavMesh. The green circle represents

the agent and the red circle represents the obstacle.

collision avoidance are still considered. Except for the NavMesh implementation,

both implementations of our model and SFM could demonstrate the behavior of

changing the agent’s speed. While the agent in SFM often changes the speed to

match the obstacle’s velocity, the agent in our model tends to slow down when

being close to the obstacle.

In the most basic situations, when there are two pedestrians walking in op-

posite directions as simulated in (a), all models could demonstrate acceptable

navigating behavior. These are also the most common situations observed in real

life. However, the difference between the implementations is most evident when

in certain scenarios in which the obstacle does not follow the usual flow of the

path, such as in other situations presented in Figure X. These are modeled from

the real-life pedestrians in the cases when, for instance, a person crossed the path,

a person was walking while looking at his phone without paying much attention

to the others, or a person suddenly noticed something and changed his path to-

ward that place. While our implementation shows natural navigation in all test

scenarios, the SFM and NavMesh implementations show many unnatural behav-

iors. This could be seen in situation (f) for NavMesh implementation, where the
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agent takes a wide detour to get to the destination. For SFM implementation,

the agent demonstrates much more inept behavior, notably seen in situations (b),

(d), (e) and (f). Another problem of the SFM’s implementation could be seen in

(c). In this circumstance, the pedestrian agent is unable to reach its destination,

as the force from the obstacle keeps pushing the agent away. On the contrary,

the problem with NavMesh’s agent is that the agent continuously collides with

the obstacle. This is most evident in the situation (d) and (e), in which the agent

got very close to the obstacle, then walked around the obstacle, greatly hinder-

ing the obstacle’s movement. Arguably, this behavior could be seen in certain

people, however, it is still considered impolite or ill-mannered. The agent in our

implementation suffers less unnatural behavior compared to the others. Take the

situation (f) for example, while the obstacle was hesitant, the agent could change

the direction according to how the obstacle moves.

We also compared our implementation with SFM and NavMesh using the fol-

lowing aspects: the path length to reach the destination, the navigation time and

the collision time (i.e. the time duration that the agent is particularly close to

the obstacle). These are some commons evaluation criteria, which are used in

many studies to evaluate the human likeness of the navigation. To evaluate these

aspects, we ran a total of 121 episodes of the situations modeled from similar

settings from real life. Each episode starts from when the agent starts navigating

to when the destination is reached, or when the end time limit of the simulated

situation has been reached. The collision time is specified by measuring the time

that the distance between the agent and the obstacle is less than the sum of the

radius values of the agent and the obstacle. The average results are shown in

Table 6.1. Compared to our model, the Social Force Model agent took a consid-

erably longer path as the agent always wanted to keep a long distance from the

obstacle. Consequently, the average time to complete the episode of the Social

Force Model agent is much higher than ours. Understandably, the collision time

of the Social Force Model is the lowest, as avoiding the obstacle is its top priority.

This figure seems to be too ideal in practical situations, particularly when the

obstacle is moving unpredictably. The agent in the Unity NavMesh implemen-

tation has the shortest path length and fastest time to reach the destination on

average, as the agent only avoids the obstacle when the distance is really close.

However, this also leads to a slightly higher collision time with the obstacle than

in our model.
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InteractingRL SFM NavMesh

Average path length (meter) 5.134 5.608 4.987

Average navigation time (second) 4.142 4.965 3.881

Average collision time (second) 1.182 0.291 1.267

Table 6.1: Comparisons with Social Force Model and Unity NavMesh in average

length, time and collisions.

This finding shows that while certain measurements by SFM and NavMesh

are more positive, this result is not reflected in the implementation results, as

could be seen in the actual results. This is consistent with our initial suspect, the

optimization of such factors as shortest path or least collision may not provide

the most human-like behavior in pedestrian navigation. This result consequently

validates the questions raised from the experiments of pedestrian behavior in

other studies [34]. However, to specify the factors that determine human likeness

in pedestrian navigation is a difficult problem. This will be addressed in our

future research.

There are still many issues and improvements we need to address in future

research. One problem is that our pedestrian agent still ignores many social rules

in the case of being close to the other. Partially, the problem is caused by the lack

of any gesture implementations in our research, such as eye gestures (e.g. glance,

gaze or focusing on something) or body language (e.g. nod, bow). Supplementing

different rewarding behaviors could help, such as adding rewarding behavior for

passing the right-hand side (left-hand side for countries using left-hand traffic)

or when the pedestrian is in a hurry or not, as suggested by Daamen et al. [27].

Another problem is the interaction process in our research is limited to between

the agent and an obstacle only. The interactions of the agent could be particularly

different with the addition of other pedestrians, expanded to various behaviors

like grouping or speed matching [24]. On the other hand, our study might still be

applicable to multiple pedestrians by forming two pedestrian groups, as human

pedestrians often navigate in groups and following the leaders, as suggested by

Pelechano et al. [28].

To accurately evaluate the model is a challenging task as there is not an ideal

solution for any specific scenarios. While the pedestrian behavior data can be

extracted from a data source such as a video recording, the interactions in this
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data are not the only applicable approach. As a result, it is necessary to have a

separate extensive study to comprehensively propose the evaluation method for

such models.

6.6 Summary

In this chapter, we presented a novel approach to a model of simulating the

human-like pedestrian interacting behavior. The model consists of the learning

task and the prediction task. In the learning task, we employed deep reinforce-

ment learning to train the agent to learn the interacting behavior with another

obstacle. This is done by providing the agent with appropriate rewarding behav-

iors subjected to several human comfort factors. We also proposed the concept

of risk, which has been demonstrated to moderately affect how the agent navi-

gates to the destination. In the predicting task, we explored the mechanism of

the predictive system in human neuroscience and proposed a predicting model to

incorporate with the learning task. This model consists of three steps. Firstly,

in the estimation step, the position of the obstacle at that moment is projected

from the past movements of the obstacle. This is followed by the assessment step,

which determines the predictability of the obstacle’s movement by comparing the

projection with the obstacle’s actual position. Finally. in the prediction step,

the agent predicts the position of the obstacle at a specific time in the future,

depending on the agent’s confidence.

The empirical result of the model has presented a striking resemblance to the

interacting behavior of human pedestrians. Although the model still lacks cer-

tain aspects in social rule conformity, many pedestrian navigation behaviors are

present. In the future, we will need to address the problems related to standard

social behaviors as well as the inclusion of multiple obstacles.

This model demonstrates the effectiveness of reinforcement learning in general,

especially in pedestrian simulation. In particular, when the practices in human

cognition are considered, the agent could show more realistic performance. The

studies in other application domains could as well benefit from this with appro-

priate adaptation.
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Chapter 7

Discussion

In this chapter, the findings of our results are discussed. Specifically, we discuss

the contribution of the concepts in human factors and human cognition. Risk is

also an important factor that contributes to our behavioral navigation model. We

also express our justification in different approaches, using reinforcement learn-

ing or using a traditional method. Finally, we discuss the principle of natural or

realistic behavior, particularly navigation behavior.

From the results of our studies, many improvements in the navigation behav-

ior of the pedestrian agent could be observed. This could be achieved thanks to

the contribution of several realizations of the ideas in human factors and human

cognition. More specifically, we have proposed a path-planning model and also

incorporated the concept of cognitive prediction in our model. These aspects

in cognitive science are important for designing a realistic pedestrian model. As

previously discussed, many human factors could also greatly affect navigation be-

havior, such as age or gender [77]. While these factors are not explicitly presented

in our model, they could be regulated from other parameters such as the coeffi-

cient parameters in the learning model or the confidence rate in the interacting

task. These parameters help our model to present a variety of characteristics in

human pedestrians, which is certainly necessary for a realistic pedestrian simula-

tion model.

In our model, the obstacle’s danger and its risk assessment are also our focus.

This aspect is often overlooked in other studies. In many application domains, es-

pecially safety-related, these are important issues that need to be addressed. The
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real-life observation indicates that pedestrians would navigate differently when

assessing different risks from surrounding obstructions. Our implementation has

successfully demonstrated this behavior to a certain extent. The navigation by

the pedestrian could respond to the risk of the obstacle, caused by several factors

like its harm and speed, similar to how humans observe the danger. Consequently,

the navigation results are considerably similar to the movement by humans. The

implementation results are tolerable, which possibly benefits other studies in the

safety application domain.

In both models, we compared ours with other related models, mainly Social

Force Model. As is observable from each corresponding evaluation, pedestrian

navigation is significantly more realistic than in the SFM model. The pedestrian

agent demonstrates many social conforming behaviors, even though the rewarding

mechanism given to the agent is still fairly limited. While SFM has shown to be

better than our model in certain aspects (e.g. collision avoidance), this result is

also better than actual pedestrian humans. Therefore, when being evaluated by

actual humans, our model is mostly seen as a higher accurate simulation than

the SFM model. This finding shows that a human-like navigation behavior may

not be achieved by just optimizing certain factors in the pedestrian model.

Reinforcement learning method has proven to be a viable solution to replicate

a natural pedestrian behavior. By providing a reasonable rewarding formulation,

the agent could learn to act appropriately. Designing the rewarding formulation

could be difficult, similar to how the teacher needs to provide effective teaching

methods to students. In our model, we have been able to instruct the agent to

navigate in a human-like manner by providing the rewarding formulation simi-

lar to how humans feel when observing the navigation. Using a reinforcement

learning method also gives the agent a sense of unpredictability when taking ac-

tions. This may provide the same unpredictability in human actions; however,

this could also lead to unknown actions in unforeseeable situations.

Arguably, the adjustment in giving the rewards is somewhat similar to con-

structing a rule set in a rule-based model. However, it is significant to note that

the pedestrian behavior’s agent is the result provided by the output of a neural

network. This is different from a rule-based model, in which the rules are con-

structed manually, the rules or mechanisms in our model are fully transparent.

Because of this reason, the result of a rule-based model could be restrained by

the designed rules. For instance, a pedestrian could observe state s1 and s2 of the
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environment and make the action a1. When designing the ruleset, a statement

like “IF state s1 is X THEN do Y” could ignore the value of s2 entirely. In real

life situation, the pedestrian could do differently if the state of s1 is X but the

state of s2 is a certain value. This situation could be an oversight, but when it

happens, it could lead to unnatural behavior, or at worst, it may lead to serious

consequences. A model utilizing neural networks is not prone to this problem,

as the model has already been trained through a vast number of states of the

environment.

While other models could implement the aspects in human factors and human

cognition into their models similar to ours, the results will be strictly restricted

to the rules which are manually applied. Specifying an exact quantitative value

for any behavior could be challenging. Accordingly, a slight deviation of the value

could cause the behavior to be unnatural or falls into the category of “uncanny

valley” (i.e. when certain aspects are very close to that of humans but still slightly

different, the actions would be observed as highly unnatural even compared to

when the aspects are less identical).

To fully evaluate the model is considerably difficult. Even when comparing

with real-life situations, if the navigation of the pedestrian differs from the real-

world data, that still does not mean the accuracy of the model is low. There

are many different criteria to assess a pedestrian simulation model, depending on

the aspects of the navigation. We concentrated on creating realistic and natural

behavior for the pedestrian agents, however, correctly defining “realistic” and

“natural” is hard to be accomplished. In real life, even if actual humans see a

pedestrian with unrealistic behavior, they might not be able to indicate which

behaviors are unnatural.

Within the scope of our study and considering the human factors, we indicate

several aspects that could contribute to a human-like navigation behavior. These

include: following the flow of the path, maintaining a normal speed, and avoiding

getting too close to other pedestrians and objects. The common idea behind

these aspects is avoiding the risk of collisions. In other words, those behaviors

are the realization of the requirements of risk avoidance. Consequently, we believe

the idea of risk avoidance is essential for the construction of natural pedestrian

behavior. This idea could also be extended in other human behavior-related

studies, such as automated automobiles or robotics.
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Chapter 8

Conclusion and Future Work

In this chapter, we conclude this dissertation by summarizing the overview of the

model together with its components. Subsequently, the primary finding of the

study is presented, followed by the suggestions of our study’s future work.

8.1 Summary of the model

The behavioral pedestrian model employed several ideas in cognitive science to

create believable human behavior for the pedestrian agent. The reinforcement

learning technique, as the name suggests, is also a great instrument to realize the

ideas thanks to the similarities with many different areas in cognitive science.

Obstacle’s danger and its risk assessment are also primary focuses in our

study, as they could considerably affect how the agent navigates. These aspects

were considered in many parts of the model, for instance, designing the reward-

ing behavior and specifying the prediction rate for the pedestrian’s interacting

prediction.

Based on that conception, we designed our behavioral pedestrian model con-

sists of three component tasks:

1. Pedestrian path-planning task : This task imitates the initial planning task

in the pedestrian’s mind. This process happens when the pedestrian aims

to reach a certain destination. The path-planning model uses reinforcement

learning for the primary plan of the path, considering various common nav-

igation rules including walking along the path, follow the traffic laws, and
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avoid getting too close to the boundaries. With the presence of an obstacle,

the pedestrian also needs to avoid colliding with. These rules are realized

by giving the appropriate rewarding behavior in the reinforcement learning

system. To further improve the model, we also incorporate a prediction

mechanism in case of a moving obstacle. Two prediction methods are in-

troduced: the single diagonal method for the obstacle moving in a straight

direction, and the pedestrian prediction for the pedestrian obstacle. From

that, a point-of-conflict is determined, which subsequently substitutes the

original obstacle in the learning process.

2. Pedestrian interacting task : This task simulates the interaction of the

pedestrian agent with the other obstruction. This obstruction is usually

a moving obstacle with unpredictable movement, like another pedestrian

for instance. Similar to the planning task, this process also utilizes rein-

forcement learning for fundamental navigation and collision avoidance. The

prediction of the obstacle’s movement, however, is much different from the

prediction in the path-planning task as in this process, the agent needs to

carefully act correspondingly to the movement of the obstacle. To do this,

we proposed an interpolation method to determine the trajectory of the ob-

stacle’s movement as well as the confidence of the agent in that prediction.

3. Pedestrian decision planner : This task helps the agent decide when to use

the path-planning task and when to use the interacting task. We designed

the decision planner as a sufficient rule-based model from the agent’s ob-

servation of the environment.

The behavioral pedestrian simulation model benefits from adopting different

theories in cognitive science, for example, the strategic thinking process and the

predictive system of the human brain. Accordingly, the model has proven to

be capable of constructing much more realistic human behavior in pedestrian

navigation.

8.2 Conclusion

We proposed a novel behavioral pedestrian simulation model that can replicate a

remarkable realistic human navigation behavior. This could be achieved thanks
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to the utilization of reinforcement learning, considering several ideas in cognitive

science. This results in more realistic pedestrian behavior compared to other

force-based or agent-based pedestrian simulation models, such as Social Force

Model. The implemented application has demonstrated a favorable result, with

the pedestrian agent’s capabilities of many human demeanor like following social

rules or avoiding possible danger.

8.3 Future work

Although our model could perform well in many settings similar to that in real

life, several problems need to be addressed to further improve our model. This

section discussed these problems and deliberate their possible approaches.

8.3.1 Considering the development of humans

Human beings cannot do everything since birth. Instead, they need to learn

gradually through their lives. This is particularly true for navigation behaviors.

Babies need to learn to walk and find the way to their goal before they can avoid

different obstacles. The process of learning continues until they are fully grown.

Before people could navigate naturally, they need to learn many different skills,

such as recognizing different obstacle types, learning to predict people’s behavior

or adapt to different cultures.

To realize natural navigation behavior, it is essential to study the development

of humans. This could also be beneficial when it is necessary to realize the

navigation behavior of young children, for example. In this circumstance, using

a method like curriculum learning could be appropriate. Curriculum learning

is a reinforcement learning technique by providing training environments with

different difficulties. By aligning the difficulty to the development of humans, we

could have more understanding of the aspects that contribute to natural human

behavior.
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8.3.2 Approaching reinforcement learning using concepts

in neuroscience

Besides cognitive and behavioral science, many other scientific fields in neuro-

science are also the inspiration for the research in the human behavioral model,

pedestrian navigation model included. Researchers have been adopting the in-

sights of computational neuroscience into the realization of navigation models and

have achieved promising results [78]. In the human brain, the cognitive system,

which is handled by the hippocampus, is separated from the reinforcement learn-

ing process, which is primarily managed by the basal ganglia and some related

brain regions. In this study, several ideas of the human hippocampus were con-

sidered, however, the reinforcement learning concepts of the basal ganglia have

been mostly ignored. In the future, it would be better to design a model structure

that separates the cognitive and reinforcement learning process by adopting the

computational models of the hippocampus and the basal ganglia. This is par-

ticularly beneficial for the research in navigation models as well as other related

studies.

8.3.3 Designing a cognitive decision planner

In our model, the cognitive decision planner is implemented as a simple rule-based

model. As discussed in Section 4.3, this is much simpler than the actual human

thinking process. The reasons we have mentioned are the interlinks between

different parts of the brain, the interpretation of the inputs as fuzzy data, and

the compliance with the predefined instinct of humans.

Reinforcement learning is also a reliable option for designing the cognitive

decision planner model. However, to efficiently realize the model, its compo-

nent tasks (i.e. the path-planning task and the interacting task in our study)

must be highly accurate in simulating navigation behavior. Otherwise, the result

could be easily overfitting, meaning it could produce incorrect behavior when the

component tasks are improved.

The decision planner task could also employ fuzzy logic for its observation

and output data. Specifically, concepts such as near, far or minor, major change

of the environment could be modeled as fuzzy input. This could create a sense

of uncertainty in the way the pedestrian agent behaves.
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8.3.4 Increasing the number of obstacles

Our current model has a limitation of having only 1 obstacle at maximum. In

many situations in real life, the pedestrian needs to interact with more than 1

obstacle, especially when the pedestrian is walking in a crowded environment.

While in most basic cases, this problem could be settled by having the pedestrian

observes only the nearest obstacle, the simulation could be unnatural in other

complex situations.

To solve this problem, a method that could be implemented is to increase

the number of obstacles in the pedestrian path-planning task. However, this

also means an increase in the number of inputs of the neural network. The

environment also needs to be redesigned in a way that the difficulty of the training

would be gradually increased. Otherwise, it would be hard for the agent to learn

how to act in a noisy environment.

The model also needs to specify which group the obstacles are in, as in real

life, many people often walk in groups. In the human brain, when looking at

several people walking in groups, the navigation would be much different from

when looking at multiple separated people.

Another issue that needs to be focused on is the “leader following” effect when

a pedestrian is walking in an environment with multiple obstacles. Aside from

collision avoidance, the pedestrian agent also needs to demonstrate the capability

to follow other pedestrians’ behavior, such as speed controlling and distancing.

Recently, studies in imitation learning have made immense progress, which could

be a great candidate for realizing the leader following mechanism.
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[52] Andreev, S., Dibbelt, J., Nöllenburg, M., Pajor, T.,& Wagner, D. (2015).

Towards realistic pedestrian route planning. In 15th Workshop on Algorith-

mic Approaches for Transportation Modelling, Optimization, and Systems

(ATMOS 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[53] Zhang, L., Liu, M., Wu, X., & AbouRizk, S. M. (2016). Simulation-based

route planning for pedestrian evacuation in metro stations: A case study.

Automation in Construction, 71, 430-442.

[54] Reitter, D., & Lebiere, C. (2010). A cognitive model of spatial path-

planning. Computational and Mathematical Organization Theory, 16(3),

220-245.

[55] Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological re-

view, 55(4), 189.

[56] Ludvig, E. A., Bellemare, M. G., & Pearson, K. G. (2011). A primer on

reinforcement learning in the brain: Psychological, computational, and neu-

ral perspectives. Computational neuroscience for advancing artificial intel-

ligence: Models, methods and applications, 111-144.

[57] Ampofo-Boateng, K., & Thomson, J. A. (1991). Children’s perception of

safety and danger on the road. British Journal of Psychology, 82(4), 487-

505.

108



BIBLIOGRAPHY

[58] Stoker, P., Garfinkel-Castro, A., Khayesi, M., Odero, W., Mwangi, M. N.,

Peden, M., & Ewing, R. (2015). Pedestrian safety and the built environ-

ment: a review of the risk factors. Journal of Planning Literature, 30(4),

377-392.

[59] Robin, T., Antonini, G., Bierlaire, M., & Cruz, J. (2009). Specification,

estimation and validation of a pedestrian walking behavior model. Trans-

portation Research Part B: Methodological, 43(1), 36-56.

[60] Elliott, J. R., Simms, C. K., & Wood, D. P. (2012). Pedestrian head trans-

lation, rotation and impact velocity: The influence of vehicle speed, pedes-

trian speed and pedestrian gait. Accident Analysis & Prevention, 45, 342-

353.

[61] Goh, P. K., & Lam, W. H. (2004). Pedestrian flows and walking speed:

a problem at signalized crosswalks. Institute of Transportation Engineers.

ITE Journal, 74(1), 28.

[62] Botvinick, M.; Weinstein, A.Model-based hierarchical reinforcement learn-

ing and human action control. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369,

20130480

[63] Karasev, V., Ayvaci, A., Heisele, B., & Soatto, S. (2016, May). Intent-aware

long-term prediction of pedestrian motion. In 2016 IEEE International Con-

ference on Robotics and Automation (ICRA) (pp. 2543-2549). IEEE.

[64] Ziebart, B. D., Ratliff, N., Gallagher, G., Mertz, C., Peterson, K., Bag-

nell, J. A.,... & Srinivasa, S. (2009, October). Planning-based prediction

for pedestrians. In 2009 IEEE/RSJ International Conference on Intelligent

Robots and Systems (pp. 3931-3936). IEEE.

[65] Møgelmose, A., Trivedi, M. M., & Moeslund, T. B. (2015, June). Trajectory

analysis and prediction for improved pedestrian safety: Integrated frame-

work and evaluations. In 2015 IEEE Intelligent Vehicles Symposium (IV)

(pp. 330-335). IEEE.

[66] Goto, K., Kidono, K., Kimura, Y., & Naito, T. (2011, June). Pedestrian

detection and direction estimation by cascade detector with multi-classifiers

utilizing feature interaction descriptor. In 2011 IEEE Intelligent Vehicles

Symposium (IV) (pp. 224-229). IEEE.

109



BIBLIOGRAPHY

[67] Dominguez-Sanchez, A., Cazorla, M., & Orts-Escolano, S. (2017). Pedes-

trian movement direction recognition using convolutional neural networks.

IEEE transactions on intelligent transportation systems, 18(12), 3540-3548.

[68] Yi, S., Li, H., &Wang, X. (2016, October). Pedestrian behavior understand-

ing and prediction with deep neural networks. In European Conference on

Computer Vision (pp. 263-279). Springer, Cham.

[69] Quintero, R., Almeida, J., Llorca, D. F., & Sotelo, M. A. (2014, June).

Pedestrian path prediction using body language traits. In 2014 IEEE Intel-

ligent Vehicles Symposium Proceedings (pp. 317-323). IEEE.

[70] Schneider, N., & Gavrila, D. M. (2013, September). Pedestrian path pre-

diction with recursive bayesian filters: A comparative study. In German

Conference on Pattern Recognition (pp. 174-183). Springer, Berlin, Heidel-

berg.

[71] Asahara, A., Maruyama, K., Sato, A., & Seto, K. (2011, November).

Pedestrian-movement prediction based on mixed Markov-chain model. In

Proceedings of the 19th ACM SIGSPATIAL international conference on

advances in geographic information systems (pp. 25-33).

[72] Kahneman, D., & Tversky, A. (1996). On the reality of cognitive illusions.

[73] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T.,...

& Kavukcuoglu, K. (2016, June). Asynchronous methods for deep rein-

forcement learning. In International conference on machine learning (pp.

1928-1937). PMLR.

[74] Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015, June).

Trust region policy optimization. In International conference on machine

learning (pp. 1889-1897). PMLR.

[75] Koh, P. P., & Wong, Y. D. (2013). Comparing pedestrians’ needs and be-

haviours in different land use environments. Journal of Transport Geogra-

phy, 26, 43-50.

[76] Jaros, M., Di Angelo, M., & Ferschin, P. (2016, July). Modeling and sim-

ulation of pedestrian behaviour: As planning support for building design.

In 2016 6th International Conference on Simulation and Modeling Method-

ologies, Technologies and Applications (SIMULTECH) (pp. 1-8). IEEE.

110



BIBLIOGRAPHY

[77] Barton, B. K., & Schwebel, D. C. (2007). The roles of age, gender, inhibitory

control, and parental supervision in children’s pedestrian safety. Journal of

pediatric psychology, 32(5), 517-526.

[78] Sukumar, D., Rengaswamy, M., & Chakravarthy, V. S. (2012). Modeling

the contributions of Basal ganglia and Hippocampus to spatial navigation

using reinforcement learning. PLoS One, 7(10), e47467.

[79] ISO/IEC Guide 51: 2014. (2014). Safety Aspects—Guidelines for their In-

clusion in Standards.

111


	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Human factors and human cognition
	1.4 Reinforcement learning
	1.5 Our contributions
	1.6 Outline

	2 Related works
	2.1 In pedestrian simulation
	2.2 In pedestrian prediction
	2.3 In navigation behavior
	2.4 In reinforcement learning

	3 Background
	3.1 Reinforcement learning
	3.2 PPO algorithm

	4 Behavioral pedestrian simulation model
	4.1 Cognitive system in navigation
	4.2 Model overview
	4.3 Pedestrian decision planner
	4.4 Obstacle's danger and risk

	5 Pedestrian path-planning
	5.1 Introduction
	5.2 Model overview
	5.3 Path-planning navigation training
	5.3.1 Environment modeling
	5.3.2 Agent's observations and actions
	5.3.3 Rewarding formulation

	5.4 Point-of-conflict prediction
	5.4.1 Single diagonal movement obstacle
	5.4.2 Pedestrian obstacle

	5.5 Risk assessment
	5.6 Implementations
	5.7 Discussion
	5.8 Summary

	6 Pedestrian interacting model
	6.1 Introduction
	6.2 Model overview
	6.3 Pedestrian interaction learning
	6.3.1 Environment modeling
	6.3.2 Agent's observations and actions
	6.3.3 Rewarding behavior

	6.4 Prediction task
	6.4.1 Estimation
	6.4.2 Assessment
	6.4.3 Prediction

	6.5 Implementation and discussion
	6.6 Summary

	7 Discussion
	8 Conclusion and Future Work
	8.1 Summary of the model
	8.2 Conclusion
	8.3 Future work
	8.3.1 Considering the development of humans
	8.3.2 Approaching reinforcement learning using concepts in neuroscience
	8.3.3 Designing a cognitive decision planner
	8.3.4 Increasing the number of obstacles


	Bibliography

