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Abstract 

 

 Topology optimization is a preliminary process for the structural design to acquire an 

optimal layout based on each boundary condition. Moreover, the topology optimization is 

the most complex on the design process due to the optimal layout acquires from an 

unknown initial design. In automotive manufacturers, a nonlinear design is important for 

the safety of  occupants to increase a deformation while keeping the transmitted load, such 

as a crashworthiness design. So, this research proposed the methodology and algorithm for 

topology optimization under material nonlinearities. Solid Isotropic Material with 

Penalization (SIMP) approach was employed for the optimization algorithm to determine 

the optimal layout. Element densities of  design variables were updated based on a 

proportional algorithm, which is a non-sensitivity method for finding a suitable value of  

the element density in each iteration. The new proportional algorithm was introduced and 

formulated for updating the element densities by concerning the criteria of  fully stressed 

design for topology optimization. The proportional topology optimization for nonlinear 

material behavior was first verified for investigating the performance of  this algorithm by 

comparing it with the optimal layout on the gradient method. The optimal layout on the 

proportional technique showed significantly effective for the nonlinear optimization 

procedure.  



 

 

 

Abstract 

_______________________________________________________________________________ 

 

 iii 

Next, a characteristic of  bilinear elastoplastic material was concerned for optimizing 

with the static load was applied. The objective of  the optimization problem is to maximize 

the internal energy of  the structure subjected to the maximum limit of  the von mises 

stresses to avoid failure behavior. The results from the geometrical nonlinear structure were 

completely different when concerned with only elasticity structure. Besides, cyclic loading 

was applied to the structure for topology optimization under the material characteristic of  

isotropic and kinematic hardening. In this case, an unloading behavior was considered 

during the nonlinear optimization process to acquire the optimal layout. A common weight 

filtering factor cannot clearly obtain a final layout from topology design when the unloading 

behavior was concerned. Finally, a new weight filtering factor was introduced to acquire a 

clear layout from nonlinear topology design without the effect of  unloading behavior and 

possesses all requirements for optimization constraint. 

 

Keywords:  Cyclic loading, Nonlinear structure, Structural design, Topology optimization, 

Weight filtering factor    
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Chapter 1 
 

INTRODUCTION  
 

1.1 Background and Signification of  this Research 

Structural optimization is a technique to find an optimal layout for the structure 

under various loading and boundary conditions. The final layout after the optimization 

procedure will be shown the suitable layout corresponding to the user-defined objective 

and optimization constraint. Generally, there are three types of  structural optimization: size 

optimization, shape optimization, and topology optimization. The size optimization is the 

simplest technique of  the structural optimization and applies for adjusting the size or 

thickness of  the structural components. Figure 1.1a shows an example of  the size 

optimization when a diameter of  each rod is assigned to be the design variable. In shape 

optimization, the design variable can be an example of  the diameter of  holes, the radius of  

fillets or any other measure and will not result in new holes or split bodies apart (figure 

1.1b). Both size and shape optimizations are acquired the final results when the preliminary 

design layout is already known. Topology optimization is the most common form for 



Chapter 1: Introduction  
_______________________________________________________________________________ 
 

2 
 

structural optimization and usually applies to be the preliminary design process. Purpose 

of  the topology optimization is to find an optimum material distribution inside the design 

domain by assigning the element density of  each element to be the design variable. For 

topology optimization, the result will be shown a necessary area of  material which should 

remain (solid element) or the useless area which should remove (void element). As 

mentioned above, only topology optimization has to determine the optimum distribution 

of  material by not considering the layout of  the initial design domain.  
 

 
(a) Size optimization 

 

(b) Shape optimization 

 

(c) Topology optimization 

Figure 1.1 Types and overview of  structural optimization [1]. 

 

The most general problem for topology optimization is a structure subjected to the 

static load and assumed a small displacement to that problem. To optimize the structure, 

the objective for these cases usually define for two different problems: maximized stiffness 

of  structure under volume constraint or minimized the mass of  the given design area by 

concerning the stiffness or stress of  the structure. The optimal distribution of  material will 

be showed into difference layout and amount of  element density based on the objective 

and optimization constraint of  each problem. There is no efficient method for solving all 
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the optimization problems. Therefore, a number of  optimization methods have been 

developed for solving various optimization problems in which the optimal seeking method 

is also known as a mathematical programming technique. For the topology optimization, 

there are also many optimization algorithms are employed for investigating the best result. 

In order to acquire the final layout, the optimization algorithms are integrated with a 

numerical analysis such as the meshfree method or finite element method (FEM).  

The topology optimization always concerns for a linear problem or elastic material 

properties in which the structure can recover after deformed. However, when the external 

load is applied to the structure and causes large deformation, this case is necessary to 

consider the problem into nonlinearity. There are three categories for consideration the 

nonlinearities for mechanical structure: contact or friction problems, kinematics problems 

(large displacement, large rotation, etc.), and material nonlinearities problems. The 

technique for seeking the optimal layout under the nonlinear structure might be different 

and depended on the application of  each problem. So, a methodology, algorithm, and the 

layout for topology optimization under nonlinear problems are also a difference from the 

elasticity. 

Nonlinear topology optimization is a challenging problem to acquire an optimal layout 

due to the characteristic of  material properties and nonlinear problems. An effective 

algorithm is necessary to suggest for optimization under nonlinear design due to the 

behavior of  permanent deformation is completely different from the elasticity design. 

According to the application of  automotive manufacturer, the structure is expected to 

increase a deformation via internal energy density while keeping the force transmitted to 

the occupants. Likewise, stiffness of  the design area is also focused for increasing during 

the permanent deformation without failure. Since the characteristic of  load-displacement 

curve of  nonlinear geometry shows the value of  compliance is not equal to two times of  

strain energy and complementary work. Therefore, the user needs to define the objective 

and optimization constraint according to the application of  their problems. Moreover, an 

algorithm for nonlinear optimization also needs to implement and develop to obtain an 

effective method for topology technique.  
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To achieve the problem of  nonlinear topology optimization, this dissertation aims to 

propose the proportional method for updating the element density during topology 

optimization under fully nonlinear analysis. The proportional algorithm is implemented by 

including the fully stress design criteria for topology design as a factor of  the update 

function. The optimization method performs with Solid Isotropic Material with 

Penalization (SIMP) approach according to an application of  crashworthiness design. A 

study on static and cyclic loads were conducted to acquire the optimal layout based on 

structural topology design in this dissertation. The optimal layout should clearly obtain for 

nonlinear topology optimization and different from the elastic behavior. A new weight 

filtering factor for cyclic loading of  topology design also proposed in this research. Finally, 

numerical examples based on the nonlinear design with the proportional technique are also 

examined. 

 

1.2 Objectives  

1.2.1 Optimize a mechanical structure under topology optimization by concerning 

nonlinear problem based on nonlinear material geometries: 

 This dissertation aims to optimize the mechanical structure by using the topology 

optimization method under nonlinear behavior. A nonlinear analysis and nonlinear material 

geometries will be concerned during the optimization procedure. Therefore, the permanent 

deformation of  the structure will be included for acquiring the final layout.  

 

1.2.2 Implement an update function for nonlinear structural design for updating an 

element density of  each design variable: 

 The update function is required for updating an element density of  each iterative 

calculation during topology optimization. For nonlinear analysis, a stress behavior is not 

constant in the linear relationship for all analysis procedures. So, a technique for updating 

the element density will be developed in this research. 



Chapter 1: Introduction  
_______________________________________________________________________________ 
 

5 
 

1.2.3 Design the structure based on topology technique with a static and cyclic loads are 

applied as an external load: 

 An external load is applied based on the characteristic of  static and cyclic loads to 

the structure by concerning an unloading effect. For the cyclic load, an unloading point 

affects structural behavior when the permanent deformation is concerned. Therefore, an 

optimization procedure and structural behavior between static and cyclic load will be 

different and affects the final layout. 

 

1.2.4 Propose a new weight filtering equation for designing the structure under topology 

optimization when unloading behavior is concerned: 

 To avoid a checkboard pattern problem during the optimization procedure, the 

weight filtering equation is used for investigating a neighbor element connectivity. Thus, 

the efficient filtering factor indicates the good final layout after topology optimization and 

performs a numerical analysis for all procedures.  

 

1.3 Scopes of  the Dissertation 

1.3.1 Optimal layouts of  a prescribed design domain are determined by investigating an 

element density of  each design variable based on topology optimization procedure as the 

preliminary design process.  

 

1.3.2 Nonlinear analysis is considered on the category of  material characteristic of  

nonlinear behavior on two types: bilinear elastoplastic material property and isotropic and 

kinematic hardening material property. 

 

1.3.3 Structural models are created and analyzed by finite element technique based on 

LS-DYNA software while the optimization performed on MATLAB coding to determine 

an element density and optimal layout of  the structure. 
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1.3.4 Numerical examples are focused on shell element model (2D element) with 

concerned the material distribution for the optimization process on two-dimensional only. 

Shear stress, which causes along to direction of  load, is assumed to be small and neglect in 

this study.  

 

1.4 Dissertation Outline 

This dissertation aims to present the methodology for nonlinear topology optimization 

under material nonlinearities. Therefore, the structure of  this dissertation is organized as 

follows: 

Chapter 1 introduced the background and signification of  this study. The objectives and 

scopes was set to achieve the target of  the current work. Moreover, related studies also 

reviewed for concerning on method and procedure of  this research. 

Chapter 2 explains on the theoretical issue of  structural optimization and nonlinear 

finite element analysis. A general formulation of  the optimization process and 

complements of  the topology optimization problem are described to conduct the complete 

optimization problem before optimizing the structure. And the problem of  nonlinear 

topology design is also explained in this chapter. 

Chapter 3 describes on opportunities to apply the nonlinear topology optimization for 

application of  crashworthiness design. A fully dynamic analysis by finite element always 

uses to investigate the structural strength and occupant’s safety. Therefore, optimization on 

dynamic problem by finite element is a one choice for engineering design for automotive 

manufacturer. 

Chapter 4 proposes a new proportional algorithm for updating element densities during 

topology optimization. The updated procedure of  the proportional technique will display 

in this chapter until it obtains the optimal density of  each design variable. 

Chapter 5 shows a validation process on the new proportional algorithm with nonlinear 
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topology design. The optimal layout is compared with the results on the gradient approach 

to investigate an effective on this algorithm and procedure. 

Chapter 6 investigates an optimal layout for nonlinear topology optimization by focusing 

on static analysis with the constant load. Over-relaxation factor uses for reducing a 

computation cost during the optimization procedure are also examined. The layout from 

the nonlinear analysis is compared with the elastic material property. 

Chapter 7 shows an optimization process when the cyclic loading is applied. The optimal 

layout cannot acquire with a common weight filtering factor. So, the new weight filtering 

factor is proposed in this chapter for nonlinear topology optimization under cyclic loading.  

Chapter 8 is a final chapter in this dissertation and concludes the study along with 

discussion regarding future works opportunities in this research. 

 

1.5 Literature Review 

Structural optimization is a process to design a suitable condition corresponding to 

each problem. There are three categories for structural optimization: size optimization, 

shape optimization, and topology optimization. Size and shape optimization is used for 

optimizing the structure when their initial design already obtained. On the other hand, the 

topology optimization applies to determine a preliminary layout from unknown shape and 

size of  that structure. Therefore, topology optimization is the most complicated method 

and technique for the structural design process. 

Topology optimization based on linear problem concerned a structure under 

elasticity or assuming to be a small deformation. Many optimization algorithms have been 

proposed for linear topology optimization in various applications and methodologies. The 

density approach is implemented to optimize a structure with maximizing the stiffness and 

defined an allowable mass of  the design area [2]. A modified density approach has 

developed the algorithm by applying a penalization factor, so-called Solid Isotropic Material 
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with Penalization (SIMP) approach and employed to optimize the structure under the two-

dimensional problem [3]. Likewise, a three-dimensional problem was also determined the 

final layout based on the regularized SIMP interpolation approach under stiffness and 

volume conditions [4]. The level set approach is one technique to acquire the optimal layout 

by using iso-surface of  the level set function. A two-dimensional structure was optimized 

based on the level set method and combined with discrete function [5] and the reaction-

diffusion equation [6] under linear problems. Moreover, the immersed interface method [7] 

and fictitious interface energy [8] also proposed for combining with the level set method 

for solving the topology optimization problem. The combination of  the topological level 

set method, augmented Lagrangian algorithm, and assembly-free deflated finite element 

was suggested for solving multi-constraint on a three-dimensional topology problem [9]. 

As mentioned above, both SIMP and level set approaches are common schemes for seeking 

the optimal layout of  the structure. Furthermore, a discrete method, which is a hard-killed 

approach (indicates only presence or absence materials), is also applied for finding the 

optimal layout under topology optimization. A genetic algorithm [10] or Ant colony 

optimization [11] were also adopted and acquired the suitable structure under linear 

problem. A commercial software was implemented for optimizing the structure under 

topology and multidisciplinary design [12, 13], and used that design process for application 

of  engineering to design the vehicle structure based on the results from finite element 

analysis [14, 15]. Most studies usually seek a suitable layout based on maximizing stiffness 

under mass constraint and volume minimization under displacement constraint. However, 

both cases can generate the final layout-based material distribution, which sustains the best 

way for the applied load under user-defined boundary conditions [16]. 

 When an external load is applied to the structure and causes a large deformation to 

the structure, the nonlinear analysis should be concerned for that condition. A high 

computational cost is required to calculate the optimal layout under nonlinear topology 

optimization. An evolutionary method [17] and a revised bi-directional evolutionary 

optimization (BESO) [18] method was used to maximize the structural stiffness for 

nonlinear topology design. A sequential piecewise linear programming (SPLP) is 
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mathematical programming which proposed to solve topology optimization under large 

displacement problem [19]. All subproblems of  the SLPL method were converted into 

linear programming to speed up the algorithm on the nonlinear design. Nonlinear 

programming has investigated performance on the level set approach for topology 

optimization with methods of  moving asymptotes (MMA) and a globally convergent 

modification under nonlinear problems [20]. Kreisselmeier-Steinhauser (KS) function was 

maximized for solving the geometrically nonlinear structure by using the level set method 

under volume constraint [21]. The results were effectively compared to the final layout from 

other criteria of  stiffness problems. These problems were assumed for the large 

displacement of  the structure under linear analysis for nonlinear behavior. A mesh-free 

particle technique was also proposed to determine the optimal structure under the 

geometrical nonlinearity problem by using the level set approach [22]. Reduced Order 

Model (ROM) was introduced to alleviate the heavy computational cost of  nonlinear 

topology optimization [23]. The ROM can reduce a multiscale model for macroscopic 

structural design on stiffness problem using discrete level-set approach. A nature-inspired 

method, which imitates an animal behavior in nature, was a one optimization technique and 

developed for solving the problem on nonlinear topology optimization. Artificial bee 

colony algorithm (ABCA) was used with a rank-based method to improve the candidate 

solutions and results [24], while a modified ant colony optimization (ACO) was developed 

to obtain a stable robust design [25]. Both ABCA and ACO were adopted to optimize the 

structure under structural stiffness problems. Most studies focused on the stiffness of  

structure on nonlinear geometry due to compliance of  the structure is not equal to two 

times of  complementary work and strain energy [20], along to the typical of  load-

displacement cure of  nonlinear structure (figure 1.2). Therefore, different results may be 

obtained if  a different function is used in optimization process under geometrical 

nonlinearity.  

Element distortion in finite element analysis often encountered when considering the 

large displacement. This problem is kind of  a serious issue for topology optimization due 

to it caused a numerical instability during the optimization procedure. To avoid this 
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problem, a meshless method was employed to resolve the nonlinear topology problem, 

which formulated with the element-free Galerkin (EFG) method [26]. Element 

connectivity parameterization (ECP) was introduced to resolve an analytic sensitivity 

problem on nonlinear topology optimization when the commercial nonlinear finite element 

code is used for the two-dimensional problem [27]. In the same way as a three-dimensional 

problem, an internal ECP (I-ECP) also developed to substantially enhance computational 

efficiency on topology optimization under nonlinear material behaviors [28]. 

 

             
Figure 1.2 A load-displacement curve of  geometrically nonlinear structure. 

 
A sensitivity analysis is commonly required through the optimization process under 

nonlinear topology design. The sensitivities of  the objective functions were derived and 

conformed to the adjoint method [18, 29, 30]. On the other hand, a non-sensitivity 

approach also proposed as a proportional method for optimizing the structure under the 

topology problem. Mechanical structures were optimized by manipulating the proportional 

method [31], and the results were significant compared to each optimization function. The 

proportional method was adopted to the robust topology design for solving the loading 

uncertainty problem [32]. Multi-material interpolation problem was solved by applying the 

proportional technique with the SIMP approach and effectively realize the polarization of  
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the intermediate-density elements [33]. Almost researchers concerned about the stress ratio 

at the current state of  each element and on the summation of  stress on the design area to 

be the update function through the proportional method. Furthermore, the optimization 

problem was also considered to a linear problem. 

A density filtering technique is necessary for topology optimization with the density 

or SIMP approaches. The filtering density equation is useful to avoid the checkerboard 

pattern of  the final layout which occurs during the optimization process and caused an 

instability of  the numerical analysis. A gray-scale transition between solid and void elements 

of  the final layout is eliminated by adopting a new morphology-based restriction scheme 

for the filtering technique [34] and combining it with the density algorithm. The regularized 

Heaviside projection method was employed to achieve a minimum length scale and the 

density solution nearly 0-1 for simple linear projection scheme and non-linear projection 

scheme [35]. Likewise, the Heaviside Projection Method (HPM) was also used for 

restricting the minimum length scale criterion of  each material phase during the topology 

optimization process [36]. 



Chapter 2 
 

THEORETICAL ISSUE 
 

This chapter lectures on general technique for structural optimization, especially, 

methods for topology optimization. An algorithm of  Solid Isotropic Material with 

Penalization (SIMP) approach which employed for the optimization procedure in this 

research. The procedure of  nonlinear finite element analysis is also explained in this 

chapter. 
 

2.1 Size Optimization 

Sizes of  each member or component inside the structure can be adjusted by applying 

the size optimization technique. For this method, a user needs to know the preliminary 

design or shape of  the structure before applying this technique. After that, the objective 

and optimization constraints are defined in the optimization problem. Design variables are 

size or thickness of  each element of  the structural domain, such as a thickness of  metal 

during sheet metal process or diameter of  a rod of  truss structure under static loading 
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condition. Figure 1.1a showed an example of  size optimization by adjusting the diameter 

of  structural elements. 

 

2.2 Shape Optimization 

This technique is similar to the size optimization because the preliminary design, such 

as number of  holes, beams, etc., of  the structure, needs to be decided before the shape 

optimization is applied to that structure. The design variables of  this technique can be 

thickness distribution along with structural members, diameter of  holes, radius of  fillets, 

or any other measure inside the structural domain. Results from the shape optimization will 

not show a new hole, split the design domain, or new structural layout. However, an optimal 

dimension of  each design variable (as mentioned above) will be resulted (as shown in figure 

1.1b). To update the shape inside the design domain, the Perturbation vector approach [1] 

is a common method to employ with the shape optimization to change the shape to the 

discretized the finite element model.  
 

2.3 Topology Optimization 

The first step and most general process for structural design is the topology 

optimization technique. To design the structure based on size and shape optimization, the 

preliminary layout of  the structure can be acquired by employing the topology technique 

for investigating an optimal layout, the number of  holes, the direction of  filet, etc., of  the 

preferred design area under each loading condition. The topology optimization will result 

in optimal material distribution by deciding which area should be remain or remove areas 

(as in figure 1.1c).  

 To design by using the topology optimization, the structure is discretized by using 

the finite element method (FEM) for dividing the design area into a discrete element or 

mesh (figure 2.1). Each element of  the design domain is assigned to be one dimensionless 
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of  the design variable. The process of  topology optimization will find the optimal location 

for overall design variables by identifying the number of  1 or 0 of  each element for 

representing a solid or void element, respectively. The topology problem can be classified 

into two types: hard-killed and soft-killed problems. The hard-killed problem indicates a 

value of  design variables into 0 or 1 only, while the value of  each design variable during the 

optimization process can be continuous from 0 to 1 in case of  the soft-killed problem.  

 

 
Figure 2.1 Discretization on design area by using finite element. 

 

Many methods were proposed in order to update the design variables on the topology 

optimization process, or some methods also can be selected for the new design variables 

randomly. Thus, a selection and verification of  procedure for updating the design variable 

based on topology design are important because the results may differ due to local or global 

optima. Moreover, the scheme for updating the design variable will affect the number of  

iterations until the global optimum is obtained. The common approaches for the topology 

optimization based on continuum structure are described in the following sub-section. 

 

2.3.1 Homogenization Method 

The effective material properties of  the equivalent homogenized domain in a physical 

can be found by applying the homogenization method which it is an emergent by 

mathematical theory [37, 38]. This approach can be used in topology optimization as the 

structure to be optimized can be considered as a composite consisting of  material and void. 

Bendsoe and Kikuchi [39] proposed the application of  topology optimization based on the 

homogenization method by deriving the effective material properties for porous finite 

elements. Figure 2.2 showed the assumption of  holes by rectangular shape, the porous 

- Design area - 

Design area 
discretized 

with FE 
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finite elements can be formulated based on three parameters of  the rectangular geometrical 
of  sizes and direction which represented by a(x), b(x) and , respectively. All 

parameters were assigned to design variables and the density were varying from 0-1 on the 

porous region. The homogenization method has a rigorous theoretical basis which can 

provide a mathematical bound to the theoretical performance of  the structures and faster 

to converge. On the other hand, a determination and evaluation of  the optimal 

microstructures is cumbersome, and the solutions cannot be built directly since no definite 

length scale is associated with the microstructure [2]. 

 

 

Figure 2.2 Rectangular microstructure [40]. 

  

2.3.2 Evolutionary Structural Optimization 

Evolutionary structural optimization (ESO) is an optimization method that 

combines heuristic methods and gradient based approaches [41]. The ESO scheme is 

classified into the soft-killed method for topology optimization due to the varying density 

value of  each design variable. This method started by finding the optimal solution from a 

bigger design space, which expected to obtain the final layout by removing an inefficient 

stress material. The ESO method was initially introduced an evolutional algorithm with two 

forms. The first form allows removal of  the material from the surface or part; this produces 

a Min-Max situation where the maximum surface stress is reduced to a minimum. The 

q( )x
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second form was the under-stressed material could be removed from anywhere in the 

allowable design space, and with compensation for checker-boarding; this produces an 

optimum topology under the prescribed environments. On the contrary, the element of  

the discretized design domain can be added to the structure where they are needed by using 

an additive evolutionary structural optimization (AESO) [42]. The AESO method was the 

opposite procedure from the original ESO, while the evolutionary process is similar. 

Moreover, a bi-directional evolutionary structural optimization (BESO) [42-44] was 

presented by combining the AESO and ESO to improve results and convergence time of  

both AESO and ESO. The BESO was an effective method for removing an unwanted 

design element in which stress was not affecting the design criteria from the structure 

iteratively and added the efficient material to the design area where the high stress occurred 

simultaneously. 

The advantages of  the ESO, AESO, and BESO are a reasonable computational cost 

and high quality of  the solutions after the optimization process. The optimization 

algorithms of  these schemes are also easy to implement and understand [45]. However, the 

evolutional methods are complicated to apply with the optimization problem for other 

constraints, such as displacement constraint, or multiple loading conditions. An 

investigation of  the evolutionary methods [46] showed the BESO method resulted in a 

local optimum rather than non-local optimum, while the same results can be achieved by 

employing the density method, only using the high value of  penalization factor and 

changing the initial density of  the design domain. 

 

2.3.3 Genetic Algorithms. 

One typical method for a stochastic based approach in topology optimization 

problem is the genetic algorithms. The genetic algorithm operates by generating the 

population of  potential solutions toward better solutions, rather than improving a particular 

solution. An evolutionary survival-of-the-fittest mechanism [47, 48] is used in the genetic 

algorithms for allowing the designs in a population to compete with each other to become 

parent designs. A swap portion of  the generic code is then used to create the child 
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generation from the parent design. The child generation mutates until it reaches the limits 

of  a random number, which expected to be a higher quality of  the parent design and 

replaces the parent generation. This evolutionary process is repeated until the optimal 

design is reached [49, 50]. 

 

 
Figure 2.3 Overall process of  the genetic algorithms (a) a chromosome  

(b) chromosome substitution in mesh (c) layout generation from the chromosome  

(d) an optimal layout from topology optimization. 

 

Design variables in the genetic algorithm are expressed in a digital code (figure 2.3a), 

which is a character of  a string and represented a gene of  a chromosome. The new design 

variables can be generated by undergoing a genetic crossover, and the child generations 

have traits from both parents. To investigate a performance of  the new design variables, a 

merit function is used to evaluate by giving a higher chance of  creating offspring to the 

designs with higher merit and surviving into the next generation. Then, the new design 



Chapter 2: Theoretical Issue   
_______________________________________________________________________________ 
 

18 
 

variables are substituted into the mesh for representing the structural layout with solid 

(equal to 1) and void (equal to 0) elements (figure 2.3b and 2.3c). The optimal layout (figure 

2.3d) will obtain after a connectivity analysis, which expecting the result to void all 

unconnected elements [51, 52]. A single point crossover for the chromosome is the most 

basic method by selecting and the segments of  the code after that are swapped randomly 

(figure 2.4). By the way, there are other methods that also possible for crossover the 

chromosome during the optimization procedure [52]. 

The genetic algorithms have disadvantaged by the high computational cost due to a 

large number of  design variables and function evaluations. So, this method is suitable for 

optimizing the problems with little knowledge about the nature of  the design domain [53]. 

However, the genetic algorithms are less chance to meet the local optimum by comparing 

to the gradient based methods. 
 

 
Figure 2.4 Crossover of  the chromosomes based on the genetic algorithm. 

 

2.3.4 Level Set Method 

The first application of  the level set method was introduced for tracking moving 

interface [54]; then, the level set method has been introduced and developed to many 

physical problems. This method is quite different from the other techniques of  topology 

optimization for finding the final layout by removing or adding material. Nevertheless, the 

level set method uses an implicit description of  boundaries to parameterize the geometrical 
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layout during the optimization process [55-60]. Thus, the level set function is necessary for 

the level set method because it uses to define the interface between material phases 

implicitly. 

The two-phase material-void problem is the simplest for the level set method and 
often used for treading the case in structural optimization. The design domain , void 

area , and the interface area  usually relate to the level set function  as 

follows: 

 

   (2.1) 

 

where X is a point of  design domain and c is a constant value [55, 58]. For the level set 

function, most studied have been concerned the concerned the constant value (c) of  

equation 2.1 equal to zero. Changing of  the level set function adjusts the level of  design 

domain and possibility to topology the design material during the optimization process. To 

change the level set function, the Hamilton-Jacobi equation was frequently proposed for 

the level set method as follows: 

 

  (2.2) 

 

where vn(x) is a normal velocity by obtaining from the sensitivity analysis of  the objective 

function with respect to the boundary variation. Thus, an updating of  the level set function 

by moving the boundary along the normal direction is necessary to solve the equation 2.1. 

Moreover, the level set method requires a regularization technique to obtain a well-posted 

optimization problem to remove numerical instabilities and improve convergence behavior. 

The level set method is close to the shape optimization because the shape-sensitivity 

analysis is possible to apply with the level set method and alter only the boundaries of  the 
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design domain [55, 56]. In the other hand, regularization technique [8] were also used for 

controlling the geometrical properties of  the final design. 

 

2.3.5 Solid Isotropic Material with Penalization 

The Solid Isotropic Material with Penalization (SIMP) was introduced to the 

topology optimization process shortly after the homogenization method has been 

proposed. The SIMP or power-law approach suggested to be an easy optimization 

algorithm but can be artificial for reducing the complexity of  the homogenization 

approach. Furthermore, the SIMP method also aimed to improve the convergence of  the 

solutions by relaxing to the continuous problem, available the results vary in a range of  0 

and 1 (not only 0 and 1) or material density from 0% to 100%, respectively.  

 A small lower bound of  the element density  is usually imposed as 

 for avoiding a singular finite element method problem. The relationship 

between element density and Young’s modulus in the equilibrium calculation can be shown 

as follows: 

 

  (2.3) 

 
where E is the elastic properties, p is the penalization factor that is always greater than 1 
and E0 is initial stiffness matrix. The relationship between the relative stiffness (E/E0) and 
the volume density or element density ( ) was shown in figure 2.5 with various the 
penalization factor, and it can be illustrated for recommendation the suitable value of  the 
penalization factor. There were some studies applied the penalization factor (p) equal to 1, 
that optimization problems corresponds to the so-called “variable-thickness-sheet”. The 
variable-thickness-sheet problems usually are the convex problem with the unique solution 
[61, 62]. Selecting the penalization factor (p) too law or too high effects to the too much 
gray scale or too fast convergence of  the optimal layout. Therefore, the recommendation 
of  the penalization factor (p) is equate to 3 [63] as the magic number to ensure physical 
realizability of  elements with intermediate densities. Microstructures of  material and void 
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realizing the material properties of  the SIMP model was shown in figure 2.6 by applying 3 
for the penalization factor (p).  
 

 
Figure 2.5 Relationship between the relative stiffness and the volume density [63]. 

 

  
Figure 2.6 Microstructures of  material and void realizing the material properties of  the 

SIMP model with the penalization factor equal to 3 [64]. 
 

The element densities usually are assumed to the constant value on each design 

variable. Thus, a relationship of  the density-stiffness can be simply implemented by scaling 
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the element stiffness matrices before assembling them into the global stiffness matrix as 

written as follows:   

 

  (2.4) 

 
where Ke is stiffness matrix and Ke0 represents real element stiffness matrix with initial 

stiffness matrix E0 before assembling to global stiffness matrix. For the application to 
reduce the volume of  the design area , the total volume (V) of  the design area can be 

determined by: 
 

                                     (2.5) 

 
In recent years, a numerical implementation of  the SIMP method was developed by 

assigning the lower bound on element density value of  the design variables as  
where  to avoid singularity of  the stiffness. Moreover, these conditions can be 

ensured unique displacement vector for every state of  the design variables in the design 

space. So, a modified SIMP method has been alternatively formulated as: 

 

  (2.6) 

 

where  is a small lower bound on the stiffness. Element density can be varied 

in the range of   by following the modified SIMP approach. Both the SIMP 

model and the modified SIMP model, void regions are represented by very compliant 

material. The advantages of  the SIMP method (or density method) are any combination of  

the design constraints can be used. Furthermore, this method does not require too much 

extra memory for calculation. Only one free variable is needed per design element.  
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2.4 Mathematical Formulations for Structural 

Optimization 

For the general problem of  the structural optimization, the final layout is expected 

to search the minimum or maximum value of  the objective function (f(x)). There are 

common three components for constructing the optimization problem: design variable, 

objective function and optimization constraint. The design variable (x) for the general 

optimization problem can be defined as: 

 

  (2.7) 

 

where X is an N-dimensional vector of  the total number of  design variable. The design 

domain usually discretized to each design element (meshing) by using finite element 

method. So, one element in the finite element model is assigned to one design variable. The 

optimization constraint usually defines for two types: inequality type and equality type. Both 

types of  the optimization constraint can be generally written as: 

 

  (2.8) 

 

where gj(X) represents the optimization constraint for the inequality type and hj(X) 
represents the optimization for the equality type. The number of  constraints m and t and 

the number of  design variable N are not needed to relate in any way. If  the optimization 
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problem can be constructed with all three components, the problem so-called a constrained 

optimization problem. Some optimization problems do not involve any constraints, this 

case so-called an unconstrained optimization problem, and it can be state as only: 

 

 Find  which minimizes or maximizes f(x) (2.9) 

 

As mentioned in the chapter 1, the most general problem for topology optimization 

based on static and linear load cases generally defined for two types of  the problem: 

minimize compliance or volume of  the design structure. So, the mathematical formulation 

of  that two problems were showed in this dissertation as following the sub-section. 

 

2.4.1 Mass Constrained with Compliance Minimization 

This type of  optimization problem is the most common for constructing the 

optimization problem based on the static load case with elastic structure. The objective is 

to minimize the compliance of  the structure subject to a mass constraint. The goal of  this 

formulation has distributed the material inside the design for maximizing the stiffness of  

the structure. The problem can be mathematically written as: 

 

 Minimize:  (2.10) 

 Subject to:  (2.11) 

 

1

2

3

n

x
x

X x

x

ì ü
ï ï
ï ïï ï= í ý
ï ï
ï ï
ï ïî þ

!

( ) TC X d Kd=

0
1

min

( )

0 1

N

i
i

m mr r

r r
=

= £

< £ £

å



Chapter 2: Theoretical Issue   
_______________________________________________________________________________ 
 

25 
 

where d is the global displacement vector and K is the global stiffness matrix. m0 is the 

maximum allowable of  weight on the final layout as define as the optimization constraint. 
 is the minimum allowable for the relative density of  each design variable. This value 

typically set nearly to zero. The design element will be voided if  the element density  

equal to the minimum allowable value ( ). Otherwise, the solid element will be appeared 

in the given design domain.   

 

2.4.2 Stress Constrained with Mass Minimization 

The optimization of  stiffness maximization was occasionally not representative of  

practical structural design requirements. Therefore, an implementation of  the mathematical 

formulation in the sub-section 2.4.1 was required. One more useful problem for 

optimization is to determine a lightweight structure, and it does not fail. The essential 

criteria for investigating the failure of  the structure is the Von Mises stress. The stress 

distribution inside the structure should not exceed the yield stress for the elastic structure 

and avoiding the permanent deformation. So, the optimization problem for minimizing the 

mass of  the structure with stress constraint can be mathematically formulated as: 

 

 Minimize:  (2.12) 

 Subject to:  (2.13) 

 
where  is an elemental stress at element ith and  is the allowable stress of  the 

structure. Value of  the allowable stress depends on the problem and goals of  that 

optimization case. For linear structural design, the yield stress is assigned to this parameter. 

For the nonlinear problem, this value is depended on the characteristic of  the material 

behavior and material properties.  
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2.5 Numerical Instabilities  

For topology optimization with continuum structures, there are commonly three 

types of  numerical instabilities associated with the calculation process. That is local optima, 

mesh-dependence, and checkerboard [65]. The following sub-section will describe the 

effect of  each case on numerical instability for the topology optimization process. 

 

2.5.1 Local Optima 

The final layout from topology optimization can be differently obtained, depending 

on the optimization approach and initial parameters [66]. The difference between local and 

global optimum point for the optimization process was shown in figure 2.7 where a and b 

are the lower bound and upper bound of  the design variable, respectively. Therefore, it can 

be concluded that there exist many local optima for the topology optimization problem of  

a continuum structure. The topology optimization with a single optimization formulations 

that produce a result in 0 or 1 (void or solid element, respectively) design are nonconvex 

and subject to converge into a local optima [65].  

 

 
Figure 2.7 Local and global optima. 
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2.5.2 Mesh-dependence 

The design domain has to discretize by using the finite element method (meshing) 

for assigning the design variable. The size of  the meshing also affects the shape of  the final 

layout. Thus, the mesh-dependence refers to the problem when achieving the different 

optimal layout from the topology optimization process because the size of  the mesh is the 

difference. Figure 2.8a and 2.8b showed the example of  the final layout from topology 

optimization by discretizing 600 and 5,400 finite elements, respectively.  

 

 

(a) 600 finite elements model 

 

(b) 5,400 finite elements model 

Figure 2.8 Optimal solutions from the SIMP method [65].  

 

The final layout obtained in much more detail by using a higher number of  elements 

in the finite element model. Nevertheless, the high number of  finite elements also requires 

high computational costs in both the analysis and optimization process. By using the finer 

mesh in the finite element, the model is expected to obtain the same optimal results ideally. 

However, implementation on the finer mesh of  the topology optimization increases the 

complexity of  the final solutions such as more members in the given design domain when 

the smaller size of  mesh is used. In the additive manufacturing process, the complex layout 

may affect the production cost. However, high-performance solutions with more 

complexity are also preferred sometimes. 
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2.5.3 Checkerboard 

The checkerboard problem is the most common type of  the numerical instability on 

topology optimization, which usually occurs when optimizing the structure with 

homogenization, ESO/BESO and SIMP approaches. The checkerboard problem causes 

the final layout in formation of  alternating void and solid elements, seem like a block 

pattern and it looks like a checkerboard (figure 2.9). However, it found that the optimal 

structure with the checkerboard configuration had artificially high stiffness values when 

compared with the normal structure [67]. Even though the high stiffness of  the structure 

can be acquiring from the checkerboard layout, it was terrible for the numerical calculation 

based on the finite element analysis. There are many techniques such as patch technique, 

perimeter control, higher-order finite element method, which proposed to prevent the 

checkerboard pattern from topology optimization technique.   

 

 

Figure 2.9 An example of  the checkerboard pattern [67]. 

 

One technique based on image processing filtering techniques also proposed to 

prevent the checkerboard pattern by using the sensitivity filtering scheme. An estimation 

of  the design sensitivity of  specific elements from the weighted average of  the element 

itself  and the neighboring elements was an idea for suggesting this technique. In this 

technique, the sensitivity of  an element was being modified by weighted averaging of  the 

sensitivities of  the elements in a fixed neighborhood of  minimum radius of  the neighbor. 
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2.6 Crashworthiness Design for Nonlinear 

Material Structure 

In the crashworthiness design, an absorb maximum energy while keeping the peak 

loads is usually defined as the goal of  the optimization process for transmitting minimum 

damage to occupants. This is a common objective function that automotive manufacturers 

require for imposing as part of  government regulations for the crashworthiness design. 

Structural integrity can be measured in terms of  total deformation, and it should show as 

well as characteristics of  energy absorption. To maximize both energy absorption and 

structural integrity, maximizing an area under the load-displacement curve (an example was 

showed in figure 1.2) is the most common way for increasing the characteristics of  the 

structure. 

Metal is usually used as the main material for producing many types of  vehicles in 

automotive manufacturers. An energy absorption achieves the metal by permanent 

deformation. As a design domain has to discretize before doing the topology optimization, 

the energy absorbed by each design variable (each element) can be measured by integrating 

the load transmitted based on the resulting displacement. When the structure under applied 

loading reaches the yield stress, the plastic strain (plastic deformation) will occur on that 

structure. The total strain of  the structure can be determined by summation of  elastic and 

plastic strain. An equation for calculating the total strain can be expressed as following in 
equation 2.14 where  is the total strain,  is the elastic strain, and  is the plastic 

strain. 

 

                   (2.14) 

 

The energy absorption can be calculated by considering only the elastic strain, and it 

occurs only elastic deformation (structure can recover by itself) in case of  a purely elastic 
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structure. The elastic strain energy is used to measure the energy absorption in case of  the 

purely elastic structure which is expressed by 

 

                          (2.15) 

 

where  is the elastic strain energy and  is the elastic strain based on applied loading 
with subscript i and f mean the initial and final elastic strain, respectively.  

The structure under high external loading or impact loading is involved in a large 

displacement, the behavior of  plastic material properties is necessary to consider during 

analysis and optimization process. In this case, the plastic strain energy or plastic work is 

used for calculating the energy absorption during the permanent deformation. The 

equation of  plastic strain energy is expressed as follows: 

 

  (2.16) 

 

where  is the plastic strain energy and  is the plastic strain based on applied loading 
with subscript i and f mean the initial and final plastic strain, respectively. Therefore, the 

total energy absorption including elastic and inelastic deformations can be calculated based 

in the internal energy density which is expressed as follows: 

 

                            (2.17) 

 

where  is the stress which is integrated since the undeformed shape before applied 

loading until occurs the final deformation (final strain state).  
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In the state of  crashworthiness, the energy absorption can be represented by work 

done due to the deformation of  the structure after it deformed. Thus, maximizing the area 

under the force-displacement curve effects by increasing the energy absorption directly 

(figure 2.10).  

 

 

Figure 2.10 Area under force-displacement diagram represents the energy absorption. 

 

2.7 Nonlinear Finite Element Analysis 

The finite element method is widely used for solving many physical problems in 

engineering analysis and design. Initially, the finite element method was developed on a 

physical basis for analyzing the problems in the field of  structural mechanics. After that, it 

was recognized for applying to heat transfer, and fluid flows problems. The finite element 

analysis solves the mathematical model which it requires the certain assumption that lead 

the differential equation for governing the mathematical model.  

When the structure causes a small displacement and that material is linear elastic, the 

problem is assumed to a linear finite element analysis. In addition to the linear finite element 

analysis, the problem can be assumed that the nature of  boundary conditions are not 
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changed during the analysis procedure. For this assumption, the equilibrium equation for 

linear finite element analysis with applied static load is expressed as follows: 

 

  (2.18) 
 

where d is a displacement vector and F is the applied load vector. If  the applied load is  

instead of  F, which  is the constant load, and the structure causes a high deformation 

with the corresponding displacement vector is . When this case happens, the nonlinear 

analysis is performed to the finite element problem. 

Types of  nonlinear analyses can be classified in Table 2.1, and figure 2.11 illustrates 

the classification of  analyses that are encountered as a list in Table 2.1. In the case of  

materially-nonlinear-only, the nonlinear behavior of  the structure causes based on the 

nonlinear stress-strain relation. The displacements and strains are infinitesimally small. 

Thus, the engineering stress and strain can be employed in this type of  nonlinear analysis. 

When the large displacements or large rotations are considered, but the strains are subjected 

to infinitesimally small strain, a body attached coordinate frame x’, y’ is used to measure the 

strain of  the structure. Furthermore, this frame undergoes a large rigid body for 

displacements and rotations. The relationship between stress and strain can be linear or 

nonlinear material behavior. For the large displacements or large rotations, this is the most 

general problem and conditions for the nonlinear finite element analysis that in essence the 

material is subjected to large displacements and large strains. The stress-strain relation is 

usually nonlinear behavior. 

In addition to nonlinear analyses which categorized in Table 2.1, there are another 

type of  nonlinear analysis which displayed in figure 2.11 by changing the boundary 

conditions during the motion of  body. This situation arises in the analysis on contact 

problem which occurs from two objects or more (figure 2.11e). The material can be linear 

or nonlinear properties which depending on the conditions on each problem.   

In actual finite element analysis, the user needs to decide whether a problem falls into 
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one or another type of  analysis. It is necessary for dictating the formulation to describe the 

actual physical problem. The large strain formulation will always be correct for the 

nonlinear analysis surely. However, the practical and compatible formulation can reduce the 

computational costs and also provide more insight into the response prediction.   

 

Table 2.1 Classification of  nonlinear analyses [68]. 

Type of  analysis Description 
Typical 

formulation used 
Stress and strain 

measured 

Materially-

nonlinear-only 

Infinitesimal 

displacements and strains; 

the stress-strain relation is 

nonlinear 

 

Materially-nonlinear-

only (MNO) 

 

Engineering stress 

and strain 

Large 

displacements, 

large rotations, but 

small strain 

Displacements and 

rotations of  fibers are 

large, but fiber extensions 

and angle changes 

between fibers are small; 

the stress-strain relation 

may be linear or nonlinear 

 

- Total Lagrangian 

(TL) 

- Updated 

Lagrangian (UL)  

- Second Piola-

Kirchhoff  stress, 

Green-Lagrange 

strain 

- Cauchy stress, 

Almansi strain 

 

Large 

displacements, 

large rotations, and 

large strain 

Fiber extensions and 

angle changes between 

fibers are large, fiber 

displacements and 

rotations may also be 

large; the stress-strain 

relation may be linear or 

nonlinear 

- Total Lagrangian 

(TL) 

- Updated 

Lagrangian (UL)  

- Second Piola-

Kirchhoff  stress, 

Green-Lagrange 

strain 

- Cauchy stress, 

logarithmic strain 
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(a) Linear elastic (infinitesimal displacement) 

 

 
(b) Materially-nonlinear-only (infinitesimal displacement, but nonlinear material) 

 
(c) Large displacements and large rotations but small strains, linear or nonlinear material 

behavior 

Figure 2.11 Classification on analyses. 
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(d) Large displacements, large rotations, and large strain, linear or nonlinear material 

behavior 

 

(e) Change in boundary conditions 

Figure 2.11 Classification on analyses (continued). 

 

2.7.1 Nonlinear Analysis 

A problem in nonlinear analysis generally aims to find an equilibrium equation of  the 

body corresponding to the applied load. There is one assumption for the nonlinear analysis, 

that is an external load, which is described as a function of  time t. Thus, the equilibrium 

equation of  the nonlinear finite elements representing the body under loading condition is 

expressed as follows [68]: 

  

 Rt – Ft = 0 (2.19) 
 

where Rt is a vector of  externally applied nodal point forces which is configuration at the 

F/2 

F/2 
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time t and Ft is a vector of  nodal point forces that corresponding to the elemental stress in 

the configuration at time t. According to equation 2.19, some nonlinear static analyses by 

this equilibrium equation and can be calculated based on the load level. However, when the 

problem includes path-dependence of  nonlinear geometric or material geometry, or time-

dependent, the equilibrium equation (equation 2.19) needs to calculate for complete in a 

range of  the time interested. Therefore, a step-by-step incremental solution can carry out 

this nonlinear response, which reduces to a one-step analysis. 

An approach of  the incremental step-by-step solution aims to assume the solution 

for the calculation time t to the discrete time t + ∆t, where ∆t is the suitable time increment. 

Since the discrete time t + ∆t is considered, the equilibrium equation for nonlinear finite 

element analysis is modified as follows: 

 

 Rt +∆t – Ft +∆t = 0 (2.20) 
 

where Rt +∆t is assumed to independent of  the deformation at time t + ∆t. Since the solution 

is known at time t, the vector of  nodal point forces can be written as: 

 

 Ft +∆t = Ft + F (2.21) 
 

where F is the incremental nodal point forces corresponding to the increment in elemental 

stresses and displacements from time t to time t + ∆t. The tangent stiffness matrix Kt is 

used to approximate the vector of  incremental nodal point forces corresponding to the 

nonlinear geometric and material at time t as shown in equation 2.22 and 2.23 where d is 

the incremental nodal displacements. 

 

  F = Ktd (2.22) 
 

   (2.23) t

t
t

d
FK
¶
¶

=
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As following the above equations, the equations 2.21 and 2.22 can substitute in 

equation 2.20, and it is modified as equation 2.24 and the incremental nodal displacements 

can be calculated by using equation 2.25. 

 

 Ktd = Rt +∆t - Ft (2.24) 

 
 dt +∆t = dt + d (2.25) 

 

An approximation procedure is necessary to employ to the nonlinear analysis for 

evaluating the displacements corresponding to time t + ∆t and then proceed to the next 

incremental calculation. The Newton-Raphson approach is widely used for iterative 

calculation process in finite element analysis. This method is an extension for the simple 

incremental technique, which calculated an increment nodal displacements. The process 

can repeatedly calculate the incremental solution based on the currently known 

displacements at time t. An iterative calculation based on the Newton-Raphson approach 

is shown as follows: 

 

                           (2.26) 

 

in which j = 1, 2, 3, … is the iteration index for the iterative calculation process under the 

Newton-Raphson approach. 

 

2.7.2 Overview on Stress Update for Elastoplastic Materials 

In the uniaxial tension test, the relationship between an engineering stress against 

uniaxial strain can generate as the curve in figure 2.12 under the applied load P and cross-

sectional area A [69]. 
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Figure 2.12 Plastic behavior is demonstrated from the uniaxial test. 

 

Figure 2.13 illustrates a simple Von Mises stress model, and it shows the pressure 

independent and yield surface of  yield stress, which is a space of  cylindrical principal stress. 

The pressure independent of  the yield surface can be categorized in term of  a function of  

deviatoric stress tensor (sij) and yield stress function. So, the equation of  the pressure 

independent yield surface (P) can be given in equation 2.27, where f(sij) is the function for 
determining the shape and  is the function for determining the translation and size. 

 

 
Figure 2.13 Yield surface in principal stress space in pressure independent [70]. 
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            (2.27) 

 

The plastic potential (g) is the existence of  the potential function. The plastic 

potential can be assumed as in equation 2.28 and the stability and uniqueness is required in 

equation 2.29, which λ is a proportional constant.  

 

   (2.28) 

   (2.29) 

 
The incremental plastic strains ( ) are normal to the plastic potential function as 

illustrated in figure 2.14. This is the normality rule of  plasticity. The assumption of  the 

plastic potential is identical with the yield condition as in equation 2.30. So, the incremental 

plastic strains can be rewritten as following in equation 2.31. 

 

 

Figure 2.14 Plastic strain is normal to the yield surface. 
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     (2.30) 

                     (2.31) 

 

Moreover, the incremental stresses (dsij) are also normal to the plastic flow  

Pg º

fgrad
s
fd
ij

p
ij ××=

¶
¶
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Chapter 3 

 

OPPORTUNITY FOR 

NONLINEAR DESIGN 

 
This chapter describes on an opportunity for doing nonlinear structural optimization. 

An example of  a bus rollover test according to ECE-R66 regulation is mentioned through 

the application of  an automotive manufacturer for structural design process. The bus 

structure is led to the nonlinear design due to structural deformation behavior. 

 

3.1 Problem Signification 

Bus transportation is common for short and long-distance in worldwide. Although 

the bus transportation is not a primary and common vehicle for road traffic, the bus 

accident caused a high number of  injuries and fatalities compared to other types of  road 

accidents. National Highway Traffic Safety Administration (NHTSA) reported the bus 

accident of  the United States of  America on 2012 [71]. The bus rollover accidents occurred 



Chapter 3: Opportunity for Nonlinear Design  
_______________________________________________________________________________ 

 

42 

 

only 2.2% compared with non-rollover accidents (Fig. 3.1a), but the number of  fatalities 

showed one-third of  all fatalities caused by the bus rollover accidents (Fig. 3.1b). Therefore, 

United Nations Economic Commission for Europe (UN/ECE) has been enforced 

regulation for the strength of  the large bus structure: Economic Commission for Europe 

Regulation 66 (ECE-R66) [72] due to the serious status of  rollover accidents. After the 

rollover test, the bus structure shall not be intruding into the residual space as defined by 

ECE-R66 regulation during and after the rollover test. To design with efficient process for 

the bus structure, the final bus model should pass all of  the normal operation conditions, 

including to rollover test according to ECE-R66 requirements by taking into costs 

consideration, materials, and production processes. 

 

 

Figure 3.1 Bus accident in United States of  America on 2012 

(a) types of  bus accident (b) number of  fatalities from bus accidents. 

 

3.2 Loading Conditions for Bus Optimization 

Vehicle structural design is a process to determine an appropriate configuration and 

dimensions of  members supporting the vehicle components such as occupant seats, air 

conditioning and lighting systems, power transmission, engines, etc. The bending stiffness 

condition concerns the strength of  superstructure to carry passenger and facility loads. 

Torsion stiffness ensures the bus structural integrity when a torque occurs to the bus 

structure traveling on rough surface.  

2.2 %
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Rollover No Rollover

34.6 %
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3.2.1 Bending Stiffness 

The bending stiffness is the condition that required the bus structure should support 

and no failure occurs under the body weight. Furthermore, the bending stiffness analysis 

can be used to analyze the structural behavior for other cases as follows: 

- Towing is a case which the support point is not the vehicle's axle but change to 

the end of  front or back of  the vehicle. This case is considered to be a severe case for the 

passenger since cause the maximum moment is higher than normal condition. Although 

this case may not be the general case but can be proof  confidence to the passengers that 

the vehicle will not fail if  this case is occurred. 

- Dynamic loading is a case that caused by vehicle components are operated over 

the static condition. This case can simplify to static problem by using dynamic factor that 

equal to 2 times of  gravitational load (2g) multiplied by the force and the moment that 

occur in the static state. 

 

3.2.2 Torsion Stiffness 

The torsion stiffness represents the condition where one-wheel falls into a ditch and 

become unsupported. The structure should recover its shape without plastic deformation 

at any parts of  the structure. Structural investigation based on the torsion stiffness 

requirement is analyzed by applying the maximum torque to the structure in the part of  

chassis. So that the structure of  the vehicle can be restored to its original state. A 

recommendation of  the torsion stiffness of  the bus structure ranges from 18,000 to 40,000 

N.m/deg [73]. 

 

3.2.3 Rollover Test According to ECE-R66 

The ECE-R66 regulation intends to ensure the strength of  bus superstructure for 

protection of  occupants with the condition that none of  the bus structural parts intrudes 

into the residual space both during and after rollover test. For the testing process, the 
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complete vehicle is located on the tilting platform (Fig. 3.2) with blocked suspension. The 

bus structure is tilted by applying an angular velocity to the tilting platform slowly until its 

unstable equilibrium position. The rollover process starts when the vehicle is on the 

unstable position with zero angular velocity, and the axis of  rotation runs through the 

wheel-ground contact points. To pass the requirements of  this regulation, the structure 

should not intrude into the residual space during and after the rollover process. 

 

 

Figure 3.2 Specification for bus rollover test according to ECE-R66 [72]. 

 

 

Figure 3.3 Specification of  residual space [72]. 

 

The ECE-R66 rev. One allows five methods of  rollover test, i.e., rollover test of  the 

complete vehicle, rollover test of  body sections, quasi-static loading test of  body sections, 

quasi-static calculation based on testing of  components and an additional test by using 

computer simulation of  rollover test on the complete vehicle. Computer simulation allows 
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the manufacturers to significantly save time and money as it allows designs to be tested 

virtually, and modifications of  various parts of  the structure can be made early in the design 

process. This method is thus the main interest of  this work. 

 

3.3 Topology Optimization of  Bus Structure 

The current status of  the research on bus optimization was concerned and combined 

all three loading conditions (described in Section 3.2) into the optimization process. The 

topology optimization technique was first employed to determine the optimal material 

distribution for the bus structure, which represents the members of  the superstructure. 

Areas of  the pillar, roof, side, and floor structures were assigned to the design 

variables and created based on the finite element model by using shell element (green areas 

in Fig. 3.4). A distributed load was applied at the roof  and floor structures for representing 

the weight of  air-conditioning and lighting systems and the weight of  seats and passengers, 

respectively, in case of  the bending stiffness. For torsion stiffness, a torque was applied at 

a shaft of  chassis structure. Both bending and torsion stiffness were analyzed and 

investigated the optimal structure under static analysis with elastic material properties. 

 

 

 

Figure 3.4 Bus structural model for topology optimization. 
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A real condition for the rollover test according to ECE-R66 concerns the permanent 

deformation of  the bus structure during the test procedure. Therefore, a nonlinear analysis 

with material plasticity has to consider for the rollover problem by using dynamic analysis 

of  finite element. Since dynamic rollover involves nonlinear geometric and material 

behaviors of  the structure, finite element analysis of  rollover process demands high cost 

of  computation time and resource. To include the rollover evaluation as one of  the design 

constraints of  the optimization problem, an equivalent quasi-static load test is necessarily 

implemented in place of  a complete dynamic analysis.  

The result of  topology optimization shows the material distribution of  structure, 

which represents the locations and dimensions of  the required members. Each 

optimization iteration stipulates the results for each part of  the bus frame. An iterative 

optimization achieved the optimal structure for all design areas. The first optimization loop 

clearly shows the recommended positions of  the pillar and the necessity of  longitudinal 

beams along the bus length on top of  the floor beam (figure 3.5). The upper parts of  the 

bus structure were then modified with the location of  pillars and longitudinal beams for 

reducing the number of  design variables in the next optimization loop. The optimization 

process was continued with the same loading conditions. The locations of  the side structure 

obtained in the second loop of  the optimization process (figure 3.6), and the roof  and floor 

structures displayed from the final optimization loop (figure 3.7). The final model of  the 

bus structure (figure 3.8) was created based on all the results from the iterative topology 

optimization. 

 

 

Figure 3.5 The first topology optimization loop with the results of  pillar. 



Chapter 3: Opportunity for Nonlinear Design  
_______________________________________________________________________________ 

 

47 

 

 

Figure 3.6 Optimization results for side structure. 

 

 

Figure 3.7 Optimization results for roof  and floor structures. 

 

 

Figure 3.8 Proper model of  bus structure from topology optimization. 
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The preliminary bus model from topology optimization was investigated the 

structural stiffness and strength under all safety requirements, including the rollover test 

according to ECE-R66. It found that the preliminary bus model passed the requirements 

of  bending and torsion stiffness due to the deformation after the analysis was lower than 

the baseline model. Next, the full explicit dynamic rollover analysis considering nonlinear 

material and geometry was performed. The bus frame did not pass the requirement of  the 

ECE-R66 regulation due to some of  the pillar structure intruded into the assigned residual 

space during the rollover procedure (figure 3.9). Therefore, size optimization needs to 

employ for the current bus frame for implementing the structural performance. 

 

 

Figure 3.9 Rollover analysis of  the preliminary bus frame. 

 

3.4 Future Recommendations 

Nonlinear topology optimization is an opportunity to design the bus frame under 

the rollover condition directly. The advantage of  the nonlinear design for this problem is 

for optimizing the bus structure without any simplification on dynamic or nonlinear 

problems. Commercial software for analysis and design requires a high computational cost 

for the nonlinear geometrical structure and dynamic problem. Moreover, the optimization 
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steps can be reduced from the current process. If  the nonlinear design is performed based 

on the topology optimization process, the size optimization does not need to employ for 

implementation of  the structural performance in advance. 

Other than those mentioned above, there are several problems that should consider 

the nonlinear material properties, such as crashworthiness or metal forming. Thus, this 

dissertation proposes a topology optimization technique, which includes nonlinear 

behavior into the optimization process. Furthermore, a new update procedure for nonlinear 

topology optimization is also introduced in the next chapter. 



Chapter 4 

 

PROPORTIONAL 

METHOD 

 
The proportional method is used for updating the density value of  each design 

variable during the optimization. The process and algorithm of  this method are explained 

in this chapter. The criteria of  fully stressed design for topology optimization also was 

merged for formulating the proportional algorithm. 

 

4.1 Overview 

The updated function is necessary through the topology optimization procedure due 

to the material interpolation of  element densities needs to be intermediate updated in each 

iteration. Thus, there are many algorithms of  the updated function proposed and adopted 

for the gradient based method for topology optimization such as Method of  Moving 

Asymptotes (MMA) and Sequential Convex Programming. Among these methods, the 
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optimality criteria method [74-77] is the most common for updating the element density, 

which combines with the SIMP method. The sensitivity analysis is also required for utilizing 

the optimality criteria on the topology optimization process. Most topology optimization 

problems based on the gradient method for the linear structure have been employed the 

optimality criteria method to update the density of  the design variable [2-4]. The sensitivity 

information of  the objective function and optimization constraints is usually required by 

the derivation method to provide for the numerical algorithms when solving the topology 

optimization problem with the aforementioned algorithms. The sensitivity information is 

easily obtained for the general continuous differentiable function. However, for stress 

constraint problems, a calculation may bring an additional computation burden when theses 

sensitivities are required and are analytically complicated to derive. Thus, the optimization 

problem is challenging to obtain the derivation of  these sensitivities without simplification 

for more complex problems such as mechanism synthesis using nonlinear analysis or 

crashworthiness design using dynamic analysis. For instance, a large number of  stress 

constraints are imposed due to the calculation of  sensitivity analyses that may become 

infeasible in practical applications. In another example, a structural analysis is always carried 

out the results in every iteration, and it causes computationally intensive when sensitivity 

analyses are concerned [31]. 

Since this dissertation aims to optimize the structure under the stress constraint 

problem (which describes in chapter 5), the non-sensitivity approach is necessary to apply 

with the optimization procedure. There are many algorithms on the non-sensitivities that 

have been introduced for topology optimization such as genetic algorithm, simulated 

annealing algorithm, and proportional topology optimization algorithm. These methods do 

not require the sensitivity information of  the correlation functions in the design problem. 

Therefore, the complications associated with the sensitivity information can be avoided 

during the computational process. Moreover, an efficient of  the non-sensitivity algorithms 

also has been verified in numerous published literature. To optimize the nonlinear material 

structure, the proportional topology optimization method is introduced in this research. It 

is an efficient non-sensitivity method for solving and updating the element densities 
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through the topology optimization with a stress constraint problem. The proportional 

topology optimization method is highly heuristic and searches for optimized solutions, and 

its performance is much better than stochastic methods [31]. In particular, it imposes 

constraints only globally on the entire system. Furthermore, the proportional topology 

optimization possesses some advantages in case of  considerable efficiency and accuracy of  

solutions, no-requiring sensitivity information, and simplicity. It also possesses some 

disadvantages that relatively poor ability to approach the results of  element density in 0-1 

solution, poor robustness, and poor topology structure. Nevertheless, a new formulation 

of  the proportional topology technique for updating the element densities in this work is 

also newly proposed by combining with the criteria for fully stressed design for topology 

optimization for performance improvement. The process and formulation of  the 

proportional method are described in the following context of  this chapter. 

 

4.2 Updating Procedure 

The proportional method proceeded with the updating procedure of  the element 

density by concerning each design variable. This method requires an iterative calculation 

until the value of  element densities converges to the termination criteria. The overall of  

the optimization process is illustrated in figure 4.1, in which the proportional technique is 

a sub-optimization loop for determining the element density only. 

Every iteration of  the optimization process starts from the finite element and stress 

analyses of  an initial model. The results of  each design element are then transferred as the 

input values for the optimization process. Material interpolation schemes are operated 

during the optimization process. After that, the proportional method is performed for 

investigating the element densities and checking with the sub-termination criteria. The 

element densities of  the whole design area were compared with the convergence value, and 

the proportional process will be done if  the results are convergence with the designated 

termination criteria. Otherwise, the proportional algorithm will be iteratively calculated and 
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updated the element densities until the convergence.   

 

Figure 4.1 Overall process for structural topology optimization. 

 

4.3 Proportional Algorithms 

This research proposed the new proportional technique for topology optimization 

under stress constraint problem. So, an elemental stress of  all design variables was 

salubrious for starting the updating process by this method. Target material amount 

)( arg ett  is first determined by investigating the elemental stress of  all design variables. The 

value of  the target material amount, which calculates by using equation 4.1 where i  is 

element density at element ith and N is a total number of  design variables. This value 

represents the target of  the total density value that should be involved in the final layout 

of  the current optimization iteration. In other words, the current material amount will be 

updated to the target material amount. 
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            ( )elementsofnumbertotal
N

i

iett =
=1

arg   (4.1) 

The valve of  the target material amount depends on and investigates from the 

elemental stress ( )i  when compared to the allowable stress ( )all  of  the design 

variables (figure 4.2).  

 

  

      
i all  

(a) All elemental stresses are lower than the allowable stress 

  

       
i all  

(b) Some of  elemental stress is higher than the allowable stress 

Figure 4.2 Investigation of  the target material amount. 
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If  the maximum elemental stress in the design area is lower than the allowable stress 

limit (figure 4.2a), then the current material amount is decreased by a material move amount 

(based on equation 4.1). Otherwise, the current material amount is increased by the same 

material move amount (figure 4.2b). The material move amount scales with the number of  

elements (0.002 x total number of  elements) and, it fixes to be a constant value for all of  

the optimization process. 

Next, the target material amount is distributed to the elements. The target material 

amount can be distributed iteratively because of  this iterative procedure performs for the 

proportional algorithm. The material amount, which is distributed to the element, called 

the remaining material amount )( rem . For each proportional optimization loop iteratively, 

the target material amount is assigned to equate to the remaining material amount. 

To perform the proportional algorithm, the process is going to the inner loop for 

updating the optimal density value. The updated function for the proportional technique 

(equation 4.2) is employed for determining the optimal density value of  each design variable 

)( opt

i . The current element density of  previous iteratively proportional optimization )( prev

i  

is a based value for evaluation of  the new value of  the element density. For the first iteration 

of  the inner loop for the proportional process, the current element density of  previous is 

set to be zero. 
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 (4.2) 

A ratio of  the elemental stress and allowable stress is a criterion of  the fully stressed 

design [78] for the topology optimization process, and it is combined to be one factor of  

the updated function for the proportional algorithm. An internal energy density (will be 

described in chapter 5) is also included to evaluate the optimal density value of  each design 

variable. The above relation distributes the remaining material amount regardless of  density 

limits. As a result, the actual material amount is different than the target material amount. 



Chapter 4: Proportional Method  
_______________________________________________________________________________ 

 

56 

 

This difference is the reason for distributing the remaining material amount iteratively in 

an inner loop until the target material amount is reached. Every iteration of  the inner loop 

starts with distributing the remaining material amount. It is followed by the application of  

filtering ( 𝜂𝑖 ) for smooth material distribution and density limits. The proportional 

exponent (q) is recommended by the nonlinear optimization software [79] based on 

the q value should be 2.666 for suitable nonlinear optimization. 

The new optimum density value is rechecked based on equation 4.3 by comparing to 

the first target of  the material distribution )( arg ett , which is evaluated in the first iteration 

of  each inner loop. The total optimal densities value of  the current iteration should be a 

difference from the target material distribution, should not exceeded 0.001 as specified for 

the convergence criteria of  the proportional method. The updating process of  each design 

variable will be done if  the difference value in equation 4.3 is less than the convergence 

criterion; if  not, an iterative proportional calculation will be required until the total optimal 

densities value reaches the convergence. To calculate the optimal material density of  the 

next inner loop, a new remaining material amount of  the current iteration )( new  is 

assigned to equate the remaining material amount )( rem  of  the next iteration. In the same 

way, the current optimum density )( opt

i  is also assigned to be the element of  the previous 

iteration )( prev

i . After all the parameters were assigned, the iterative calculation performs 

again based on the propose update function (equation 4.2) until the optimal density value 

is converged.  

 

 001.0
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arg −= 
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i

opt

iettnew   (4.3) 

 

4.4 Procedure Summarization 

The overall process and updating details based on the proportional topology 

optimization method is illustrated in figure 4.3 with step by step. To find the optimal density 

of  each design variable, the target material amount is necessary to determine for setting up 
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the target of  all material distributions. The optimal density value is then calculated based 

on the updated function. All material distributions are rechecked by comparing to the first 

target of  material for the current iteration. If  the convergence is reached, the proportional 

topology optimization is done for the current main optimization loop. 

 

 

Figure 4.3 Step-by-step of  the proportional topology optimization process. 
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The iterative calculation is performed again in case the optimal densities are not 

converged. The remaining material amount and the current optimal densities are 

transferred to be the new input parameter for the next inner loop optimization. The 

equation 4.2 is employed for evaluating the new value of  each element density. This process 

repeats until all material distributions are reached to the defined convergence. 



Chapter 5 
 

MODEL VALIDATION 
 

The validation process is used for investigating an efficiency of  the proportional 

optimization method under nonlinear material structure. The optimal layout under the 

topology optimization by using the proportional technique is compared to the conventional 

gradient based method to evaluate the performance of  this algorithm. 

 

5.1 Optimization Model 

 A mechanical structure, which shown in figure 5.1, was expected to optimize under 

nonlinear topology optimization. This optimization process aimed to investigate the 

performance of  the proportional algorithms when it was applied to the nonlinear material 

properties. This optimization model was fixed at the end of  the left and right sides (cannot 

translation and rotation for all directions). An external load was applied at the center-top 

of  the structure, which represented as the distributed load for 15 mm. The whole body of  

the structure (a gray area) was assigned to be the design domain in this problem. 
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Figure 5.1 Design domain for verification model. 

 

The discretization of  the design domain performed based on LS-DYNA (a 

commercial finite element software). This process divided the whole design area into each 

element (meshing) and assigned to be the design variable. Figure 5.2 showed the finite 

element model for the initial design domain of  the validation process. The model was 

created by using shell element; four nodes per one element, and each node has 6 degrees 

of  freedom (3 translations and 3 rotations). The model consisted of  50 elements and 150 

elements in the vertical and horizontal lines, respectively. Therefore, there are a total of  

7,500 elements in this model as the first design variable, as implied for the total design 

variables. 

 

 
Figure 5.2 Finite element model of  the initial design domain. 

 

5.1.1 Characteristic of  Material Property 

To include the nonlinear behavior into the analysis and optimization process, the 
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characteristic of  bilinear elastoplastic material properties was considered for the 

deformation behavior of  the structure in the verification process. A relationship between 

stress and strain according to the bilinear elastoplastic material was displayed in figure 5.3 

by excluding an unloading behavior. The behavior of  the bilinear elastoplastic material 

shows a linear relationship between stress and strain after the yielding point until the end 

of  ultimate tensile stress. Accordingly, 285 MPa of  yield stress, 600 MPa of  ultimate tensile 

stress, 0.3 of  Poisson’s ratio, and 207 GPa for Young’s modulus were defined to the 

structure.  

 

 
Figure 5.3 Bilinear elastoplastic material properties. 

 

5.1.2 Analysis on Initial Design Model 

The external load of  18 kN was applied to the structure as the static load case; it 

means the load value is not changed and varies by time during the analysis. The analysis 

procedure performed based on the finite element with the solver of  LS-DYNA. This model 

sets the analysis conditions for the implicit static analysis problem for investigating the 

deformed shape within 1 seconds. All input and keyword commands have been done by 

LS-PrePost, which is a pre-processing software of  the LS-DYNA. The results of  

deformation in the vertical direction and stress of  the structure after the analysis was shown 

in figure 5.4 and 5.5, respectively. 
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Figure 5.4 Deformation in the vertical direction of  the initial design model. 

 

 
Figure 5.5 Von Mises stress in the vertical direction of  the initial design model. 

 

The maximum deformation of  the initial design domain was 1.6 mm and caused 367 

MPa for the maximum stress. These results implied the structure under the external load 

occurred the permanent deformation because the maximum stress was over the yield stress. 

In other words, the structure cannot be recovery its shape after the external load acted to 

the structure. For the application of  nonlinear analysis and design, an internal energy is one 

parameter that indicates an ability for absorbed energy. The result of  the global internal 

energy was displayed in figure 5.6, with the highest internal energy was 1,459 mJ. The result 

of  internal energy showed the behavior of  characteristic of  nonlinear material by increasing 

in linear relation when the structure still was an elastic material. After the structure 

transformed into the plastic deformation, the internal energy kept the constant value until 

the end of  the analysis procedure.  
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Figure 5.6 Internal energy of  the initial design domain. 

 

5.2 Filtering Density 

Since the topology optimization for nonlinear mechanical structures is presented in 

this dissertation by using the SIMP method. The density approach or the SIMP method is 

usually prone the checkerboards and mesh-dependency to the problems if  there is no 

regularization scheme. For example, four elements were considered by the surrounding one 

node in the finite element model. Two opposite elements were designated for the solid 

material, and the other two elements were a void material (circles, figure 5.7).  

 

 

Figure 5.7 Element pattern by one-node connectivity for checkerboarding. 
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The element pattern arranged in the finite element model seemed to be a block 

pattern building. This pattern of  element led to the checkerboarding problem for the design 

model, and it affected the numerical instability (which explained in Chapter 2) for the 

analysis process, which is not an obvious material distribution for the final layout. The 

numerical instabilities also effect to the analysis process and cannot get the results of  the 

current model for preparing the input parameters of  the next optimization loop. So, the 

checkerboards and mesh-dependency problems are also a big issue for the topology 

optimization process. 

To reduce and protect the checkerboard pattern problem, there were many kinds of  

research have proposed and suggested different regularization schemes. The techniques for 

reducing the checkerboards problem were presents to use for connecting the elements with 

the topology optimization problem such as patch technique, perimeter control, higher-

order finite element method, and filtering technique. The most popular method due to their 

ease of  efficiency and their implementation is the density filters technique. Therefore, this 

dissertation also applied the filtering density technique to the nonlinear topology 

optimization with the proportional method. 

A common filtered density for topology optimization [80] was employed for finding 

an optimal layout in the current process. The filtering density equations of  design element 
ith , which used for the nonlinear topology optimization with the proportional method 

in this dissertation, are shown as follows: 
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                 (5.3) 

 

where wij is a weight filtering factor of  element ith and jth, dj is the non-filtering density of  

element jth, r0 is the prescribed filtering radius and rij is a distance between element ith and 

jth. For the validation process, the prescribed filtering radius (r0) is defined to for 

determining the size of  the sphere of  influence (as illustrated in figure 5.8). The distance 

between element ith and jth always automatically calculates by applying equation 5.3 based 

on center-to-center distance between centroid of  elements ith (xi, yi) and jth (xj, yj). 
 

 
Figure 5.8 Prescribed filtering radius. 

 

5.3 Optimization Problem 

There are many types that have been introduced the problem of  nonlinear topology 

optimization problem. Stiffness of  a structure is represented by strain energy, compliance, 

or complementary work (figure 1.2) due to nonlinear behavior. A different function is used 

through the nonlinear topology optimization will be obtained different results due to the 

value of  three parameters are unequal along with the geometrically nonlinear structure. 

Most studied focused on minimizing compliance for maximizing the stiffness of  the 

structure. Meanwhile, minimizing the strain energy or the complimentary work is also 

performed to optimize the structure under nonlinear material geometries. 
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The aim of  the topology optimization in this dissertation is to represent the nonlinear 

problem of  material properties. Thus, an application of  the automotive manufacturer was 

focused on the optimization problem for acquiring an optimal layout of  the structure. In 

crashworthiness design, the internal energy is expected to increase for absorbing ability 

while keeping the loads transmitted to the occupants. This is the most common method to 

ensure passenger safety when it occurs an accident with the vehicle, such as a frontal crash 

accident. Therefore, the internal energy density of  each design element was expected to 

maximize and defined as the objective function. A mathematical formulation of  the 

objective function can be written as follows: 

 

  (5.4) 

 
where  is the objective function of  this optimization problem, N is total numbers of  
design variable, Ee is the material properties of  the structure, ui the elemental internal 
energy density and  is the element density at element ith. The vector of  all design 
variables is shown as follows: 
 

  (5.5) 

 
The element distortion is one more problem when highly nonlinear behavior appears 

during the finite element analysis. In this case, elemental stress was used to be the criteria 

for investigating the failure of  the element. Each design element should not exceed the 

allowable stress through analysis and optimization processes, and it was assigned to be the 

optimization constraint. Moreover, the element density value for topology optimization is 

acceptable in the range of  zero to one, which represents void and solid elements, 
respectively. So, all optimization constraints for the elemental stress  and the element 

densities  can be written in mathematical formulations as follows:  

( )r r
=

=å
1

( )
i

N

e i
i

U E u

( )U r

ri

{ }r r r r r= !1 2 3, , , , N

r( ( ))g

r( ( ))p



Chapter 5: Model Validation  
_______________________________________________________________________________ 
 

67 
 

 

  (5.6) 

  (5.7) 

 
where  is a minimum allowable element density as 0.3 that defined for this value. The 
optimal results have to satisfy all conditions of  the optimization constraint. If  the results 
are not satisfactory, either one or all the optimization constraints, the optimization process 
will be termination. 
 

5.4 Optimization Procedure 

The whole process for doing a numerical example consists of  two sections: analysis 

procedure and optimization procedure. Both two procedures were merged into one process 

for calculation and optimization automatically. For this dissertation, LS-DYNA solver 

performed all the nonlinear numerical analyses, while all optimization algorithms operated 

and executed through coding on MATLAB. To convey all analysis results from LS-DYNA 

to MATLAB, the coding of  LS-PrePost Scripting Command Language was also employed 

to support the transferring results during the optimization procedure. 

 

5.4.1 LS-DYNA Operation 

The initial design model was created based on LS-PrePost and discretized the design 

domain into each design variable. Firstly, all design variables were assumed to be a solid 

element for evaluating structural performance. The material properties of  bilinear 

elastoplastic (figure 5.3) assigned to all design elements. Due to LS-DYNA was used for 

structural analysis in every iteration of  the optimization process, the material properties for 

the void element are also necessary to assign during the model file preparation. The void 
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element should not affect any results during the analysis procedure, so, the material 

properties in Table 5.1 was assigned for the void material. Boundary and loading conditions 

were also constructed to the initial design model in the LS-PrePost for combining all 

components to create the model file (input file). The model file was analyzed by LS-DYNA 

and collecting all the necessary results. 

 

Table 5.1 Material properties for void material. 

Mechanical Properties Value 

Young’s Modulus 0.001 GPa 

Density 1 × 10-6 kg/m3 
Poisson’s Ratio 0.3 

 

Results after the analysis procedure have to convey for preparing the input parameter 

of  the optimization process. Since the automatic calculation requires for every optimization 

iteration, the LS-PrePost Scripting Command Language (SCL) used in this dissertation for 

performing data manipulation between LS-DYNA and MATLAB smoothly. The LS-

PrePost SCL is likely a C computer language that is executed inside LS-PrePost. The results 

from the analysis, model data, and additional operations of  LS-PrePost can retrieve and 

execute by applying the LS-PrePost SCL. So, the user needs to define the target for 

retrieving and coding the computer language by themselves. The structural layout for 

coding the LS-PrePost SCL script is shown in Table 5.2 as follows: 

 

Table 5.2 Coding structure for LS-PrePost SCL. 

Basic structure of  the LS-PrePost SCL script 

Definition section → Void func() 
    Global declaration section → int a =… 

        Main () function section → define the types of  result 
            Subprogram section → define the time interval for getting the results 
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5.4.2 MATLAB Operation 

All processes until acquiring an optimal layout (structural analysis and optimization) 

were controlled and coding based on MATLAB programming. The coding structure for 

merging operation between LS-DYNA and MATLAB is shown in Table 5.3 with an 

overview process. MATLAB reproduced the layout of  the design variable based on the 

finite element model to imitate the design domain. The element density was then initialized 

to each design variable for initiating the topology optimization process. The results of  

internal energy density and elemental stress were extracted based on the LS-PrePost SCL 

and rearrange data by MATLAB to calculate the objective function and investigate the 

optimization constraints. After finished the updating process through the proportional 

algorithm, the structural model was analyzed to examine all the optimization conditions 

based on controlling by MATLAB code. If  the new structural model does not satisfy, 

MATLAB will update the element type (solid or void element) and rewrite the new finite 

element input file according the format of  LS-DYNA. Iterative calculation and 

optimization are required by MATLAB until the all conditions are satisfied. And the new 

layout and stress distribution of  structure after optimization process are displayed by 

MATLAB.    

 

Table 5.3 Overview process for coding on MATLAB. 

Coding structure on MATLAB programming 

Define initial parameters for optimization 

  Analyze the model → using LS-DYNA solver 

    Import and arrange the analysis results → using LS-PrePost SCL 

      Optimize the structure using the SIMP 

          Update element using element density using proportional technique 

          Create a new model file  

          Analyze the structure from new model file → using LS-DYNA solver 

          Display the optimal layout 

          Check the optimization criteria 
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The overview process for nonlinear topology optimization in this dissertation was 

illustrated in figure 5.9, with step by step until the optimal layout is obtained. Every step 

during the optimization process has to generate the results and transfer to the next step for 

analysis or optimization automatically. Therefore, the flow of  coding in MATLAB needs 

to be careful. The process of  rewriting the new model file according to the format of  LS-

DYNA is also the most important section for doing the iterative optimization process. If  

the format of  the model file is wrong, the process will be termination. 

 

 

Figure 5.9 Overview the topology optimization process.  
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5.5 Optimization Results 

The optimal layout was acquired by using the topology optimization technique with 

the proportional method. The objective function and optimization constraints followed 

equation 5.4, 5.6, and 5.7, respectively. The optimization and optimal layout are divided into 

two parts: linear and nonlinear material properties. Design variables were defined as in 

question 5.5, which is the whole area of  the design domain (figure 5.2).  

 

5.5.1 Linear Material Property 

Linear analysis with elastic material properties (figure 5.10) was considered in this 

section. Therefore, the structure is allowable to recover to the initial shape after 

deformation under applied the external load. The topology optimization with the 

proportional technique based on a characteristic of  linear material aims to compare the 

optimal layout with the analytic results. The yield stress is assigned to the structure as 285 

MPa with 207 GPa of  Young’s modulus. The optimization results expected to observe on 

material distributions of  the structure during the optimization process. An iterative optimal 

layout on linear material structure showed in figure 5.11. 

 

 
Figure 5.10 Characteristic of  elastic material. 
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Figure 5.11 Iterative material distribution for the validation process based on  

linear material structure. 

Iteration 1 Iteration 2 Iteration 10 

Iteration 20 Iteration 25 Iteration 35 

Iteration 41 Iteration 53 Iteration 68 

Iteration 85 Iteration 88 Iteration 94 

Iteration 96 Iteration 95 Iteration 97 

Iteration 106 Iteration 107 Iteration 108 

Iteration 111 Iteration 124 Iteration 117 



Chapter 5: Model Validation  
_______________________________________________________________________________ 
 

73 
 

The optimal layout obtained at iteration 124 (figure 5.12) with stress distribution does 

not over the stress limit (figure 5.13). During the optimization process, the layout changed 

slowly since the process started until iteration 93. After that, the major change of  the design 

domain displayed from iteration 94 by removing the unnecessary elements from the design 

domain. The maximum stress occurred at the bottom part of  the structure (right and left 

sides) with 123 MPa and the stress distributed at members of  the structure around 73 MPa. 

The structural layout of  the optimal design showed the proportional technique performed 

to optimize the structure based on the linear material properties because the final layout 

acquired as same as the analytic results. 

 

 
Figure 5.12 Final layout on linear structure for the verification model. 

 

 
Figure 5.13 Stress distribution of  the final layout for the linear verification model. 

 

5.5.2 Nonlinear Material Property 

The characteristic of  bilinear elastoplastic material (section 5.1.1) was assigned to the 

structure for validating the topology optimization method. For nonlinear topology design, 

the stress limit (equation 5.6) was assigned to 600 MPa for the optimization constraint. The 

material and stress distributions of  the optimal structure during the nonlinear design were 

shown in figure 5.14 and 5.15, respectively. 
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Figure 5.14 Iterative material distribution for the validation process based on  

nonlinear material structure. 
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Figure 5.15 Iterative stress distribution for the validation process based on  

nonlinear material structure. 
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The final layout based on nonlinear topology optimization acquired at iteration 141, 

with the result showed fully stressed distribution inside the members of  the structure 

(figure 5.16). The top and bottom areas were removed since iteration 1. The end left and 

right sides of  the structure were also deleted around iteration 80. The hollow area occurred 

by eliminating the un-want design variables at the center of  the structure around iteration 

100, and the layout changed until it obtained the final layout continuously. The maximum 

stress of  the final layout was 490 MPa, which is not over limit of  the stress design. The 

material distribution of  the final layout will be compared to the layout from the gradient 

method in the next section for investigating the performance of  this algorithm. 

 

 
Figure 5.16 Stress distribution of  the final layout for the nonlinear verification model. 

 

5.6 Results Comparison 

The optimal layout based on nonlinear topology optimization will be compared only 

in this section due to the linear topology optimization acquired the final design as same as 

the analytic result. The final design of  the gradient method [81] was employed to compare 

with the result from topology optimization with the proportional method. The final layout 

from the gradient and proportional topology method were compared by displaying in figure 

5.17a and 5.17b, respectively. The results showed that the optimal layout from the 

proportional technique was similar to the gradient method. The material distributions after 

the topology optimization process were similar to obtain the layout of  each member and 

can predict the same real model. There are some limitations in this dissertation to verify 

this model to be the exact results with the gradient method based on dimensions of  the 
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design domain, material properties, and the objective and optimization constraint. This 

dissertation defined the object function and optimization constraints which differed from 

the reference model. But the characteristic of  material properties was the same. So, it is not 

easy to verify the same optimization conditions due to the optimal layout based on 

nonlinear topology optimization are sensitive to an external response. 

 

 
(a) Topology optimization with gradient method [81]. 

 

 
(b) Topology optimization with proportional method. 

Figure 5.17 Comparisons on the optimal layouts for the bilinear elastoplastic material. 

 

5.7 Conclusion 

The nonlinear optimization with the proportional topology method was performed 

for acquiring the final layout, both linear and nonlinear material properties. The 

proportional algorithm formulated by combining the criteria of  topology optimization on 

fully stress design for updating the element densities in each optimization iteration. 

Collaborative action between the analysis process under LS-DYNA solver and optimization 

procedure by coding on MATLAB was implemented to move the whole process smoothly. 
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The optimization of  the linear material structure showed the final layout could be obtained 

as same as the analytic problem. To verify the optimization of  the nonlinear problem, the 

main limitations are objective function and optimization constraints due to there are various 

types to define the problem, and it is sensitive to the material properties. The final layout 

from topology optimization, according to bilinear material properties, showed material 

distribution inside the design domain similar to the result from the gradient method. 

Moreover, the stress of  the final model fully distributed on structural members. Thus, the 

proportional technique can be performed the topology optimization on the nonlinear 

mechanical structure. 

 



 

 

Chapter 6 
 

OPTIMIZATION ON 
STATIC LOADING 

 
This chapter investigates numerical examples for both linear and nonlinear structural 

designs by topology optimization based on the proportional method. Over-relaxation 

factor is applied for improving the convergence of  the updated function during the 

optimization procedure. The numerical examples on the over-relaxation are also examined. 

 

6.1 Optimization Model 

 An imitation of  a cantilever beam (figure 6.1) was defined to be the design model 

for nonlinear topology optimization problems. A dimension of  50 mm high and 150 mm 

wide constructed the initial design model with applied a downward direction of  the external 

load. The structural model was fixed at the end left side of  the structure for all directions 

(cannot translation and rotation for all directions). 
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Figure 6.1 Initial model for nonlinear topology optimization with static loading. 

 

The design domain was focused on the two-dimensional model, which assuming the 

shear stress was minimal and assigned 5 mm for the thickness. The model created by using 

shell element, which is four nodes per one element; one node has 6 degrees of  freedom (3 

translations and 3 rotations). The model creation was according to the dimension of  figure 

6.1. The design area was created and discretized to assign the design variable by using LS-

PrePost. The element size of  the design area was specified to 1 mm per each side, 100 

elements along the vertical line, and 50 elements along the horizontal line (figure 6.2). 

Therefore, the finite element model totally consisted of  5,000 elements, and it assigned to 

be all the design variables during the topology optimization process.  

 

 
Figure 6.2 Finite element model of  the initial design on static loading. 
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The finite element model of  the initial design domain (figure 6.2) was firstly analyzed 

to investigate the structural performance with 8 kN of  the external load. The bilinear 

elastoplastic material properties (figure 5.3) was considered for structural behavior after 

deformation. The problem also analyzed based on implicit static. The material properties 

were defined as the same as the optimization process in section 5.5.2. Analysis procedure 

performed by using LS-PrePost and LS-DYNA solver. The results were displayed in figure 

6.3 and 6.4 for displacement in the y-direction and von mise stress, respectively. The 

maximum displacement occurred 0.28 mm, while 320 MPa caused for the maximum stress. 

From these results, the structure after the external load acted to the model became the 

permanent deformation period, which cannot recover to the initial shape, because the 

maximum stress was over the yield stress.  

 

 

Figure 6.3 Vertical displacement of  the initial design model on static loading. 

 

 
Figure 6.4 Stress distribution of  the initial design model on static loading. 
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6.2 Optimization Results 

The topology optimization performed with an updated function based on the 

proportional method (in chapter 4). All element densities of  the design area updated their 

density values according to the update function in equation 4.2 by applying equation 5.1 

and 5.2 for the filtering density technique. The structures were expected to maximize 

internal energy (equation 5.4) as defined as the objective function. There are two sections 

for investigating the optimization algorithm performance: linear and nonlinear material 

models. Analysis and optimization procedures operated based on the overview of  the 

topology optimization process, which described in section 5.4.2 (figure 5.9). The 

optimization results and conditions are shown in the following section. 

 

6.2.1 Linear Material Model 

A characteristic of  the linear material model, which showed in figure 5.10, was 

employed for the topology optimization process with linear static analysis. The elemental 

stress of  all design variables should not exceed 285 MPa as assigned as the optimization 

constraint (equation 5.6). According to 207 GPa of  Young’s modulus and 0.3 of  Poisson’s 

ratio were also assigned to each design element. Iterative optimization results were shown 

in figure 6.5 and 6.6 for material and stress distributions during the optimization process, 

respectively. 

The optimization process started to remove the design variables in the low-stress area 

of  the design domain (middle-left and top-right areas). After that, the design elements at 

the center area were eliminated since iteration 30. The pre-layout of  the structure was 

displayed around iteration 80. At iteration 126, the optimal layout acquired based on the 

elastic material model and linear static analysis. The maximum stress occurred at the top-

left and down-left side of  the structure with 220 MPa. This value can be confirmed that 

the optimization process is a convergence problem because the maximum stress of  the 

stress is not over the stress limit during the optimization process. 
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Figure 6.5 Iterative material distribution for static loading on linear analysis. 
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Figure 6.6 Iterative stress distribution for static loading on linear analysis. 
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6.2.2 Nonlinear Material Model 

The topology optimization proceeded to find an optimal layout based on the 

nonlinear behavior of  the characteristic of  bilinear elastoplastic material property (figure 

5.3). The maximum stress of  600 MPa was also assigned to be the optimization constraint 

(equation 5.6) for all design variables during the optimization process, as same as the 

verification procedure.  

The maximum stress during the topology optimization process (measured from the 

maximum element in each iteration) was displayed in figure 6.7 for investigating the 

convergence. The stress history led to the stress limit (600 MPa) and not over the limit. 

Therefore, the optimization process was the convergence problem for nonlinear material 

property. An iterative material and stress distributions for nonlinear topology optimization 

were shown in figure 6.9 and 6.9, respectively. The optimization process also started by 

removing a low-stress area from the design domain until obtained the final layout at 

iteration 151. Moreover, the final layout showed fully stressed distribution in all members 

and no failure occurred during the optimization procedure. 

 

Figure 6.7 Maximum stress during the optimization process. 
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Figure 6.8 Iterative material distribution for static loading on nonlinear analysis. 
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Figure 6.9 Iterative stress distribution for static loading on nonlinear analysis. 
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Nonlinear analysis requires high computational costs to solve the nonlinear equation 

of  each time increment and affects to calculation time for each iterative optimization 

process. To reduce the computational costs, the over-relaxation factor is proposed for the 

optimization process by expecting to reduce the number of  iteration and computational 

time for the nonlinear problem. 

 

6.3 Over-relaxation Factor 

The over-relaxation factor is a technique for expediting the global convergence of  

the topology optimization problem according to the objective function and optimization 

constraints. As mentioned above, the aim of  the over-relaxation factor is to reduce the 

computational cost by relating to the number of  optimization iteration and global 

convergence. Therefore, this dissertation proposed the over-relaxation technique based on 

the over-relaxation factor and applied it to the process of  the proportional algorithm. 

According to the proportional method for updating the element densities, the criteria of  

fully stressed design based on topology optimization was newly implemented to formulate 

the update function for nonlinear topology optimization in this dissertation. So, the over-

relaxation technique indicated the update function for all design elements based on the 

value of  stress ratio in equation 4.2 by applying the over-relaxation factor. The new update 

function based on the over-relaxation factor was re-formulated as follows:  

 

  (6.1) 

where v is the over-relaxation factor which applied to the stress ratio. The value of  the over-

relaxation factor (v) should assign to be higher than one ordinally. Thus, the numerical 

examples are necessary to investigate the performance of  the over-relaxation factor (v) 
when it applied to the update function based on equation 6.1. 
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6.3.1 Optimization Results with Over-relaxation Factor 

This section investigated the performance of  the over-relaxation factor for nonlinear 

topology optimization. The optimization model was created and defined based on the 

mechanical structure, which shown in figure 6.1 and discretized to each design variable by 

using the finite element method (as illustrated in figure 6.2). The objective function of  the 

optimization problem is to maximize the internal energy with assigned 600 MPa of  the 

stress limit to be the optimization constraint.  

The numerical examples evaluated the performance of  the over-relaxation factor by 

varying the value from 1.0 to 1.8, and the results of  the number of  iterations and 

computational time were displayed in figure 6.10 for each case. For the over-relaxation was 

equate 1.0 means the optimization process, the element densities were updated by using the 

regular update function (equation 4.2) of  the proportional technique. Histories on 

optimization results showed that the number of  iterations decreased when the value of  the 

over-relaxation factor was increased until value 1.7 of  the over-relaxation factor. The high 

computational costs were required when applied the value 1.8 of  the over-relaxation factor. 

So, the value of  the over-relaxation factor from 1.1 to 1.7 was considered to determine the 

optimal layout. 

 

 
Figure 6.10 Histories on topology optimization with the over-relaxation factor. 
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The optimal layouts and stress distributions were shown in Table 6.1 for each over-

relaxation factor from 1.0 to 1.7. All layouts have to compare to the baseline model (which 

the over-relaxation factor is 1.0) for investigating the optimization performance. The results 

showed the value of  over-relaxation factor effects to improve the convergence and the final 

layout of  the structure. Actually, the over-relaxation factor of  1.6 should be the best results 

and layout due to acquiring the minimum number of  the optimization iteration. However, 

the final layout on value 1.6 of  the over-relaxation factor was completely different from the 

baseline model. On the other hand, the over-relaxation of  1.5 obtained the final layout, 

which is the most similar to the final layout from the reference model when compared with 

the other over-relaxation factors. So, the over-relaxation of  1.5 was suitable for this 

dissertation to employ the over-relaxation technique. 

 

Table 6.1 Comparisons on optimal layout based on the over-relaxation factor. 

Over-relaxation factor Optimal layout Stress distribution 

1.0 

  

1.1 

  

1.2 

  

1.3 
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Table 6.1 Comparisons on optimal layout based on the over-relaxation factor (continued). 

Over-relaxation factor Optimal layout Stress distribution 

1.4 

  

1.5 

  

1.6 

  

1.7 

  

 

The final layouts and stress distribution of  the over-relaxation factor 1.0 and 1.5 were 

shown in figure 6.11 and 6.12, respectively, for comparing the optimization results. The 

final layout from over-relaxation faction 1.0 obtained at iteration 151, while the final layout 

can be obtained at iteration 131 when the over-relaxation factor 1.5 was applied.  

 

         

          (a) over-relaxation 1.0                (b) over-relaxation 1.5 
Figure 6.11 Comparisons of  the final layout for over-relaxation factor. 
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(a) over-relaxation 1.0                (b) over-relaxation 1.5 

Figure 6.12 Comparisons of  the stress distribution for over-relaxation factor. 

 

Moreover, the maximum stress inside the final layout from the over-relaxation factor 

is lower than the reference model, and even the layout is similar. The baseline model (over-

relaxation factor 1.0) caused the maximum stress of  560 MPa, while the final layout from 

the over-relaxation factor showed 455 MPa for the maximum stress. Stress distribution can 

be an implied safety factor of  the structure. So, the over-relaxation can increase the safety 

factor by decreasing the maximum stress. Comparisons on internal energy and maximum 

stress during the optimization for each over-relaxation factor was shown in figure 6.13 and 

6.14, respectively.  

 

 
Figure 6.13 Comparisons of  the internal energy for over-relaxation factor. 
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Figure 6.14 Comparisons of  the maximum stress during the optimization process 

for over-relaxation factor. 

 

Iterative internal energy and maximum stress during the optimization process of  the 

over-relaxation factor 1.5 were higher than the normal update function. However, the final 

layout acquired both values smaller than the 1.0 of  the over-relaxation factor. Therefore, 

the user has to concern the purpose of  each optimization procedure. There are some 

contrasts for applying the normal and over-relaxation factor to the update function. Both 

techniques can generate an optimal layout based on the topology optimization process with 

results that are also quite different. 

 

6.4 Conclusion 

The performance of  nonlinear topology optimization was investigated by using 

numerical examples. The final layout can be obtained based on the update function of  the 

proportional technique. The objective function is to maximize the internal energy and 
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linear and nonlinear material properties showed differences in material distribution inside 

the design domain. The layout from linear and nonlinear optimization procedures showed 

the convergence to the optimization problem because the maximum stress of  each 

optimization iteration is not over the stress limit. The over-relaxation factor was proposed 

to reduce the computational costs and expedite the global convergence of  the optimization 

process. Thus, the over-relaxation factor (v) was included in the update function of  the 

proportional technique for indicating the stress ratio. The numerical examples were also 

examined for investigating the performance of  the over-relaxation factor. Finally, the final 

layout which applied the over-relaxation factor can be reduced the maximum stress inside 

the structure; in other words, this technique increases the safety factor into the design 

process. 



Chapter 7 
 

OPTIMIZATION ON 
CYCLIC LOADING 

 
This chapter described a structural behavior when applied an external cyclic load. 

Moreover, a new weight filtering equation is proposed for optimization process under the 

cyclic loading. The results on analysis and optimization under the cyclic loading are showed 

different layout under both bilinear elastoplastic and isotropic and kinematic hardening 

materials.  
 

7.1 Optimization Model 

The initial design domain for analysis and optimization under cyclic loading used the 

model as same as the optimization under static loading (figure 6.1) and discretized the 

design area by using the finite element method based on LS-PrePost (figure 6.2). Firstly, the 

model is analyzed to investigate the difference of  the stress distributions inside the 
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structure between static and cyclic loads. The material behavior of  bilinear elastoplastic 

(figure 5.3) is assigned to the structure for investigating process with 285 MPa of  yield 

stress, 600 MPa of  ultimate tensile stress, 207 GPa of  Young’s modulus, and 0.3 of  

Poisson’s ratio. The behavior of  the bilinear elastoplastic material shows a linear 

relationship between stress and strain after yielding. This effect of  load behavior should 

effectively show the stress distribution distinction. 

 

7.1.1 Cyclic Loading 

The behavior of  cyclic load is demonstrated in figure 7.1, and it is applied as the 

external load to the structure for utilizing the analysis process. The characteristic of  the 

cyclic load behavior indicates both tension and compression loads through the analysis 

procedure. A negative factor of  the cyclic loading means the upward direction of  the cyclic 

loading, while a positive factor denotes the downward direction of  the cyclic loading. The 

unloading point is represented when the load factor equals to zero. For comparison, the 

stress distribution of  the structure under the cyclic loading should show similar results with 

the static loading at the time instance 2.5 seconds because the load factor equals to one 

represents the load value as same as the static load case. 

 

 
Figure 7.1 Cyclic loading behavior. 
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7.1.2 Analysis Results on Initial Design Domain 

The analysis procedure is performed based on the LS-DYNA solver by interesting 

for 3 seconds throughout the process. There are two cases for this analysis: static load and 

cyclic load cases. The bilinear elastoplastic material behavior was assigned to both cases and 

similarly defined all boundary conditions. The results are focused on elemental stress, which 

measured at the same element number for both cases in the comparison process. The 

analysis results of  the static and cyclic loads were displayed in figure 7.2 based on the 

maximum elemental stress. 

 

 

Figure 7.2 Maximum stress based on the static and cyclic load cases. 
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static load case; even the load factor is equal to one, and it equal to the static load value. 

Therefore, the cyclic load behavior affected the stress distribution when the structure 

becomes the permanent deformation (inelastic period) even though the load value and 

material properties are similar to the static load case. 

 

7.2 Weight Filtering Factor for Optimization under 

 Cyclic Loading 

As described in chapters 2 and 5, the filtering technique is used for avoiding the 

numerical instability, which causes by the checkerboard pattern based on the topology 

optimization process under the SIMP approach. A common filtered density equation for 

the topology optimization process was shown in equations 5.1 and 5.2, which used by many 

pieces of  research. However, those researches have been focused on the static load case as 

applied as the external load. As this chapter of  this dissertation investigates an optimal 

layout of  the structure under topology optimization with the cyclic loading. Thus, a new 

wight filtering factor is proposed for the optimization process to gain a smooth density of  

the design variables. The new weight filtering factor (wij) for topology optimization under 

the cyclic loading is shown as follows: 

 

  (7.1) 

 

where r0 is the prescribed filtering radius and rij is the distance from center-to-center 

between element ith and jth, which automatically measured from centroid of  each element 

based on equation 5.3. The performance of  the new weight filtering factor in equation 7.1 

will be discussed in Section 7.5 based on the results of  numerical examples. The optimal 

layout from the new weight filtering factor is also compared with the other weight filtering 

factors under the optimization on the cyclic loading and material nonlinearities. 

( )0,1max 0 ijij rrw --=
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7.3 Isotropic and Kinematic Hardening Material 

The characteristic of  bilinear elastoplastic material (which describe in chapter 5) was 

employed to optimize the structure for the nonlinear problem. Besides, the characteristic 

of  isotropic and kinematic hardening material also used and assigned to the structure for 

topology optimization with nonlinear material behavior in this dissertation. The stress-

strain relation based on the characteristic of  isotropic and kinematic hardening material is 

illustrated in figure 7.3 with differed from the bilinear elastoplastic material. 

 

  

Figure 7.3 Isotropic and kinematic hardening material properties. 

 

The unloading effect is concerned in this material property, which shows by stress 

reduction after the unloading point. The stress interval after the unloading point of  two 

times of  yield stress (2Y) represents kinematic hardening. Meanwhile, isotropic hardening 

behavior is showed by two times of  ultimate tensile stress (2H) for the stress interval after 

the unloading point. In this dissertation, the behavior of  kinematic hardening properties 
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was considered for investigating the optimal layout under nonlinear topology optimization 

with cyclic loading. Furthermore, the kinematic hardening also used for investigating the 

performance of  the new weight filtering factor. 

 

7.4 Optimization Results 

The topology optimization under cyclic loading was investigated to acquire an 

optimal layout in this section. The proportional techniques (as explained in chapter 4) was 

also used to update all element densities according to equation 4.2 during the nonlinear 

optimization process. For the optimization problem, the objective function is defined for 

maximizing the internal energy of  the whole design domain (equation 5.4), and it is 

subjected to the stress limit for avoiding the failure of  the structure during the analysis 

process (equation 5.6). All analyses and optimization procedures were operated by 

following the process in figure 5.9 (as described in section 5.4.2). The process of  nonlinear 

analysis was performed based on LS-DYNA solver, while the optimization procedure was 

operated by coding on MATLAB. As the aim of  this section is to investigate the 

performance of  the new weight filtering factor. So, there are three weight filtering factors, 

which used for comparing the optimal layout based on nonlinear topology optimization.  

The first weight filtering factor depicted the standard weight filtering factor for 

topology optimization and was applied in [17]. The second weight filtering factor was 

defined as a ratio of  the prescribed filtering radius (r0). The last weight filtering factor is the 

new weight filtering factor, which proposed for optimization under cyclic loading (equation 

7.1). The first, second, and third weight filtering factors were supposed to model A, model 

B, and model C, respectively for the simplification. The weight filtering factor of  the model 
A and B are expressed in equation 7.2 and 7.3, respectively. The filtered density ( ) in 

equation 5.1 were used for investigating with all weight filtering factors (wij).  

 

   (7.2) 

ih

( )ijij rrw -= 0,0max
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   (7.3) 

 

The numerical examples were divided into two sections: bilinear elastoplastic material 

and isotropic and kinematic hardening material. Accordingly, 285 MPa of  yield stress, 600 

MPa of  ultimate tensile stress (as assigned to be the optimization constraints for both cases 

of  material properties), 0.3 of  Poisson’s ratio, and 207 GPa for Young’s modulus were 

defined for both cases of  material properties. Each section will investigate an optimal layout 

for all wight filtering factors under topology optimization with the characteristic of  cyclic 

loading (figure 7.1). 

 

7.4.1 Bilinear Elastoplastic Material 

The characteristic of  bilinear elastoplastic material (figure 5.3) was employed to 

optimize the structure under cyclic loading for three weight filtering factors. An optimal 

iterative layout and stress distribution were illustrated for each model (on each weight 

filtering factor).  

The results on optimal iterative layout and stress distribution of  model A, model B, 

and model C were shown in figure 7.4 to 7.9, respectively. Model A obtained the final layout 

at iteration 138 with 592 MPa for the maximum stress of  the design structure. Iteration 123 

displayed the final layout in case of  model B with stress distribution 519 MPa for the 

maximum stress. While the model C, which is the new weight filtering factor, the final layout 

was obtained at iteration 134 with the maximum stress was 557 MPa. As observed in the 

stress distribution of  all models, the maximum stress caused at the top and bottom of  the 

left-side structure, which is the point for causing the stress concentration of  the cantilever 

beam model. Therefore, this is one point for confirming the optimization algorithm and 

optimization procedure. 
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Figure 7.4 Iterative material distribution on bilinear elastoplastic material with  

cyclic loading of  Model A.  

 

Figure 7.5 Iterative stress distribution on bilinear elastoplastic material with  

cyclic loading of  Model A.  
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Figure 7.6 Iterative material distribution on bilinear elastoplastic material with  

cyclic loading of  Model B.  

 

Figure 7.7 Iterative stress distribution on bilinear elastoplastic material with  

cyclic loading of  Model B. 
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Figure 7.8 Iterative material distribution on bilinear elastoplastic material with  

cyclic loading of  Model C.  
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Figure 7.9 Iterative stress distribution on bilinear elastoplastic material with  

cyclic loading of  Model C. 
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During the optimization process, stress histories of  each weight filtering factor were 

illustrated in figure 7.10 for comparing the three optimization models. The results were 

plotted based on the elemental stress, which caused the maximum value at each iteration 

of  each optimization model. The stress distribution of  all three models showed the 

maximum stress increased for each iteration since the first iteration until terminated into 

the parabolic tendency by removing the material amount of  the design area. Moreover, the 

optimization process terminated when the stress on each model closed to the stress limit 

(600 MPa), which assigned as the optimization constraint. According to the application of  

crashworthiness design, a deformation of  the whole model increased to maximize the 

internal energy density, which defined to be the objective function. Therefore, the stress 

value is increased to converge the optimization constraint and not over the stress limit for 

avoiding the failure of  the structure.  

 

 

Figure 7.10 Maximum stress of  the three models during the optimization process based 

on the bilinear elastoplastic material. 

 

The internal energy at each iteration during the optimization process was also plotted 
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during the optimization until causing the termination. Furthermore, the internal energy of  

all optimization models was increased to converge the optimization problem corresponding 

to the assigned objective function for maximizing the internal energy.  

 

 

Figure 7.11 Internal energy of  the three models during the optimization process based 

on the bilinear elastoplastic material. 

 

The optimal layout of  the three models was compared, as showed in Table 7.1, for 

investigating the performance of  the weight filtering factor. The result of  Model A showed 

the complicated structural members, and it was quite challenging to predict the real 

structure by observing from this structural layout. The weight filtering factor of  Model B 

caused the checkerboard pattern of  the optimal layout, which was not efficient for 

designing the structure. Model C acquired the clear optimal layout by comparing it with the 

other two models, even though the internal energy was only 9% lower than Model A. The 

material distribution of  Model C was removed 33% from the initial design domain. In this 

case, the proposed weight filtering factor was effectively performed to obtain the final 

layout under the cyclic load, which is the clearest layout. Furthermore, the results showed 

that stress was not affected by the cyclic load behavior. 
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Table 7.1 The optimal layout of  structure based on the bilinear elastoplastic model. 

Model 
Weight Filtering 

Factor 
Final Layout 

Stress Distribution of  
Final Layout 

A  

 
Iteration 138 

 
Max. stress 592 MPa 

B  

 
Iteration 123 

 
Max. stress 519 MPa 

C  

 
Iteration 134 

 
Max. stress 557 MPa 

 

7.4.2 Isotropic and Kinematic Hardening Material 

The characteristic of  isotropic and kinematic hardening material properties (figure 

7.3) was assigned to the initial design structure for acquiring the optimal layout under cyclic 

loading. This material behavior differs from the bilinear elastoplastic material in case of  the 

effect of  unloading is considered. Three weight filtering factors were similarly investigated 

as the bilinear elastoplastic material based on the nonlinear topology optimization. 

An iterative on material and stress distributions of  optimization results on Model A, 

Model B, and Model C was illustrated in figure 7.12 to 7.17, respectively. The final layout 

of  Model A acquired at iteration 187, which caused 492 MPa for the maximum stress. 

Iteration 164 showed the final layout of  Model B with the maximum stress of  414 MPa. 

Finally, the proposed Model C was obtained from the final layout at iteration 184, and it 

caused 499 MPa inside the optimal structure.  
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Figure 7.12 Iterative material distribution on isotropic and kinematic hardening material 

with cyclic loading of  Model A. 

 

Figure 7.13 Iterative stress distribution on isotropic and kinematic hardening material 

with cyclic loading of  Model A. 
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Figure 7.14 Iterative material distribution on isotropic and kinematic hardening material 

with cyclic loading of  Model B. 

 

Figure 7.15 Iterative stress distribution on isotropic and kinematic hardening material 

with cyclic loading of  Model B. 
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Figure 7.16 Iterative material distribution on isotropic and kinematic hardening material 

with cyclic loading of  Model C. 
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Figure 7.17 Iterative stress distribution on isotropic and kinematic hardening material 

with cyclic loading of  Model C. 
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The internal energy at each iteration for all three models was plotted as figure 7.18 

to investigate the convergence of  the optimization problem. A tendency of  all three models 

had increased the internal energy when the optimization iteration was increased. Only the 

proposed Model C was increased the internal energy smoothly, while Model A and C caused 

a fluctuation at iteration instance 160 due to the effect of  unloading behavior. From these 

results, the optimization process for three models was preliminary confirmed the 

convergence under cyclic loading. 

 

 
Figure 7.18 Internal energy of  the three models during the optimization process based 

on the isotropic and kinematic hardening material. 
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usually indicates zero. On the other hand, the weight filtering factor of  Model A and Model 

C are positive values and higher that zero. Therefore, the equation of  Model B was not 
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properties. The final layouts of  Model A and Model C obtained were quite similar lay-outs, 

and both layouts were not complicated to conjecture the real structure. Thus, the stress 

constraint of  each model during the optimization process was crucial with further 

considerations to decide on a more effective weight filtering factor. 

 

Table 7.2 The optimal layout of  structure based on the isotropic and kinematic hardening 

model. 

Model 
Weight Filtering 

Factor 
Final Layout 

Stress Distribution of  
Final Layout 

A  
 

Iteration 187 
 

Max. stress 492 MPa 

B  

 
Iteration 164 

 
Max. stress 414 MPa 

C  

 
Iteration 184 

 
Max. stress 499 MPa 

 

The maximum stress during the optimization process, which measured maximum 

elemental stress at each iteration, was displayed in figure 7.19 for comparing all three weight 

filtering factors. The stress constraint of  the three models was the similar tendency at the 

beginning of  the optimization process. Moreover, the stress histories were divergent from 

the bilinear elastoplastic material model due to the effect of  cyclic loading and unloading 

point of  the isotropic and kinematic hardening material. These effects caused a high 

interval of  stress during the optimization process. 
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Figure 7.19 Maximum stress of  three models during optimization process based on 

isotropic and kinematic hardening material. 

 

The fluctuation of  the stress occurred at the iteration instance 150, and the stress 

histories were plotted in figure 7.20 until the termination process. Model A and Model B 

occurred the swing effect of  stress during the optimization process due to the cyclic load 

that forces the problem into tension and compression loads, and the unloading point of  

kinematic hardening material. The unloading point of  the external load appeared when the 

load factor was equal to zero. The stress fluctuation of  Model A and B obviously showed 

the high-stress interval between the maximum and minimum peaks, while Model C was 

optimized without the swing effect. The final layout of  Model A and Model C occurred 

the maximum stress of  429 MPa and 414 MPa, respectively, which was lower than the 

maximum peaks of  the optimization constraints. Model C caused the maximum stress of  

499 MPa on the final layout, which is the maximum peak of  the optimization constraints 

because Model C did not fluctuate. Moreover, the stress distribution on the final layout of  

Model C clearly demonstrated the fully stressed distribution when compared with the other 

two models. Therefore, the proposed weight filtering factor (Model C) was suitable for 

nonlinear topology optimization under the cyclic loading. Finally, 54% of  the material 

amount can be removed from the initial design domain on Model C.   
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Figure 7.20 Stress fluctuation during the optimization process based isotropic and 

kinematic hardening material. 

 

7.5 Conclusion 

The nonlinear topology optimization was performed by applying an external cyclic 

loading. The proportional method was also employed to update an element density on each 

optimization iteration. An optimization process was investigated for acquiring an optimal 

layout on two material models: bilinear elastoplastic and isotropic and kinematic hardening 

properties. The characteristic of  the cyclic load was specified based on the load factor value, 

which forced the problem into both tension and compression external loads. The objective 

of  the optimization process is to maximize the internal energy of  the whole design area 

and specified the allowable stress for the optimization constraint.   

To acquire the optimal layout based on nonlinear topology optimization with cyclic 

loading, the new weight filtering factor was proposed to avoid the effects of  cyclic loading, 

which increased the elemental stress of  the plastic deformation period and were not 

constant throughout the analysis. The final layout was clearly obtained in the case of  
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bilinear elastoplastic material properties, with 33% removing the material from the initial 

design domain. While the isotropic and kinematic hardening material behavior, a stress 

fluctuation was observed during the topology optimization process. The new weight 

filtering factor can reduce the effect of  stress fluctuation, and the final layout remained 

46% of  the material distribution of  the design area. 



Chapter 8 

 

SUMMARY AND 

RECOMMENDATIONS  

 

8.1 Summary 

The aim of  this dissertation is to implement and develop the algorithm for topology 

optimization with nonlinear material behaviors. The whole process to acquire an optimal 

layout consists of  two subsections: structural analysis and optimization processes. An 

analysis by using LS-DYNA software and the optimization algorithm by coding on 

MATLAB were merged as illustrated in figure 8.1 to perform the problems on topology 

design smoothly. An application of  crashworthiness design was concerned for nonlinear 

topology optimization. Thus, maximizing the internal energy of  the design model was 

defined as the objective function of  the optimization problem. Likewise, the optimization 

constraint was specified by allowable stress, which assigned for avoiding structural failure 

during the analysis process. 
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Figure 8.1 Summarization on the topology optimization process. 

 

An updated procedure is necessary and important for the topology optimization 

process. This study proposed the proportional method, which is a non-sensitivity method 

and employed the update procedure during the nonlinear topology optimization process. 

Moreover, the criteria of  fully stressed design for topology optimization were combined 

and formulated the update function based on the proportional technique. Firstly, the 

proportional method has verified the accuracy of  the optimization algorithms by 

comparing the results with the conventional gradient-based method. The results from the 

optimization process showed that the final layout from the proportional procedure is 

significantly effective by comparing it with the sensitivity method. After that, the topology 

optimization was performed with applied external static loading to the structure based on 

the characteristic of  bilinear elastoplastic material properties. The difference between the 

optimal layouts from linear and nonlinear material behaviors distinctly acquired based on 

the updating process of  element densities with the proportional technique. Furthermore, 

the cyclic loading, in which the load value is not constant through the analysis procedure, 

was applied to optimize the structure under nonlinear topology design. The effects of  cyclic 

Preparation the model file 

Nonlinear analysis 

Execution the results by “SCL” 

Optimization procedure 

Converge? 

Optimal layout 

Rewrite the new model file No 

Yes 



Chapter 8: Summary and Recommendations  

_______________________________________________________________________________ 

 

120 

 

loading caused stress fluctuation during the optimization process when the unloading 

behavior was concerned with isotropic and kinematic hardening material properties. Finally, 

the new weigh filtering equation was proposed to optimize the structure under cyclic 

loading, and it can reduce the effects of  stress fluctuation. The optimal layout with 

employing the new weight filtering factor was clearly obtained with the fully stress 

distribution inside the final structure. In summary, this dissertation provides the major 

contributions as following subsection. 

 

8.1.1 Major Contributions 

1. This study presented the nonlinear topology optimization based on the nonlinear 

material behaviors. A structure was analyzed by using the nonlinear analysis, and 

structural behaviors in permanent deformation (stress after the yielding point) were 

included in the optimization procedure. Stress distribution of  the final layout 

demonstrated that the problem becomes a nonlinear problem. To support this 

contribution, numerical examples in chapter 5-7 showed findings for the nonlinear 

topology optimization. 

2. This dissertation proposed an update function for nonlinear structural design by 

using the proportional method, which is a non-sensitivity method and formulated by 

combining the fully stressed design criteria. The elemental stress of  the structure in 

the current optimization iteration was used to investigate and update the element 

densities of  each design variable. The following information is finding to support this 

contribution. 

2-I) Chapter 5: The validation process of  the proportional algorithms confirmed the 

accuracy of  the update function and the updated procedure for nonlinear topology 

optimization problems. Furthermore, the optimal layout obtained a similar material 

distribution with a sensitive method. 

2-II) Chapter 6 and Chapter 7: Numerical examples were examined to confirm that 

the final layouts were acquired based on the proportional method.  
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3. This study investigated the nonlinear topology optimization process when the cyclic 

load was applied as an external load. Optimal layouts were differently obtained 

between applying the external static and cyclic loads. However, the cyclic loading 

caused the stress fluctuation during the optimization process when the unloading 

point was concerned with the optimization problems (chapter 7). 

4. To reduce the stress fluctuation from the effects of  cyclic loading, this dissertation 

proposed the new weight filtering equation for designing the structure under 

topology optimization. Numerical examples in chapter 7 were also examined the 

performance of  the proposed weight filtering factor by comparing it with other 

filtering equations. Finally, the new weight filtering equation showed it was suitable 

for optimization with the cyclic load. 

 

8.2 Future Recommendations 

In addition to this dissertation, there are various points to develop and implement 

the performance for optimization on nonlinear topology design. So, several suggestions for 

implementing the nonlinear topology optimization are described as follows: 

1. An optimization model can implement to three-dimensional model for the 

designing process. Due to this dissertation focused on optimizing the two-dimensional 

model only. So, this is one recommendation to carry out this study and examining the 

optimal layout under the nonlinear topology optimization process. 

2. An optimization method can define by using other approaches, such as the level 

set method or evolutionary algorithm. If  the different optimization approaches are applied 

to the nonlinear topology optimization process, there are other points to develop for 

increasing the performance. For example, the level set method is used for optimizing the 

structure, an implement on a level set function should be studied and proposed instead of  

the update function for nonlinear problems. 
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3. The development of  the update function is one choice for implementing this 

dissertation. A characteristic of  nonlinear material properties is very complex to anticipate 

a behavior on plastic deformation. So, an implementation of  the update function should 

be interested in finding a suitable solution for each nonlinear optimization problem. 
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