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Abstracts

Renewable energy becomes an emerging trend in many countries.

Photovoltaic (PV) technology has been gaining an increasing amount

of attention due to unlimited power resources, unpolluted operation,

and installation flexibility. Irradiation and temperature are the two

main factors which impact on PV system performance. Diminishing

of irradiation from weather conditions reduces the generated power.

Shading also reduces the e�ciency of the maximum power point track-

ing system by distributing non-uniform irradiation, leading to more

than one power peak on the PV characteristic curve.

Designing the e↵ective maximum power point tracking algorithm is

a promising solution for enhancing the e�ciency of the PV system.

To overcome the problem of the multiple power peaks existence, the

solution is to locate the local and global maximum power points in

the characteristic curve. Therefore, the proposed algorithm is de-

signed to track accurate global MPPT under shading conditions. The

algorithm is distributed into three parts, (1) the Main Program (2)

Shading Detection and Irradiance Estimation, and (3) Global MPPT

using Slope Calculation. Details of the algorithm are shown by the

full mathematical equations. The performance is verified by the sim-

ulation tests with the real weather data. Graphical and numerical

results from the dynamic case study prove the e↵ectiveness of track-

ing time within 3.40 seconds and the accuracy of 98.62%. Also, the

long-term test results show an accurate tracking result, and the sys-

tem can enhance the total energy generated by 8.55% compared to

the conventional scanning method. The experimental test using the

DC-DC boost converter proves the success of the proposed algorithm.



In consequence of partial shading, a problem of the hotspot is inves-

tigated. Hotspot takes place with the mismatch in the irradiation

of the cells in the PV module. Under this condition, the unshaded

part of the module operates at a current level higher than the shaded

cells. As a result, the a↵ected cells start to dissipate power leading

to an increase in the temperature. Hotspot reduces performance and

brings damage to the PV module. Conventionally, the detection uses

the infrared camera to detect the hotspot; however, the high cost and

workforce are necessary.

The algorithm is designed based on the simplified PV module struc-

ture, before improving by the practical PV cluster model. The method

uses the concept of characteristic curves analysis and the rate of cur-

rent changes under reversed bias condition to detect the hotspot.

Apart from detection, the algorithm presents the status indicator to

show the PV system’s status after detection completes. Not only de-

tecting the hotspot but the proposed algorithm can also di↵erentiate

the hotspot from the shading conditions. The proposed method pro-

vides collaboration between the detection and proposed global MPPT

into one system. The implementations in di↵erent cases, including siz-

ing, irradiation levels, and defection rates, prove the e�ciency of the

hotspot detection algorithm. Results confirm the performance of the

proposed algorithm, showing the accuracy with fast detection. Fur-

thermore, the discussion of temperature estimation is shown for rep-

resenting the potential step after detecting the hotspot, also providing

further understanding of the thermal model from material science’s

perspective.
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Chapter 1

Introduction

1.1 Introduction to the Photovoltaic System

Renewable energy is currently at the main concern in the less carbon-intensive

situation. The installation of renewable energy systems such as photovoltaic,

wind, and bioenergy has grown rapidly in recent years. Due to the expansion,

researches in renewable energy have been received great attention, especially in

the past ten years.

Renewable power lead by photovoltaic (PV) technology has gained popularity

as one of the potential avenues. PV’s expansion increases due to unlimited power

resources from the sunlight and unpolluted operation with no emission. Moreover,

the technology is also capable to use in wide ranges of applications for both

residential and commercial infrastructures, providing energy to the areas where

the grid is di�cult to access. According to the report by the International Energy

Agency (IEA) [1], in 2017 the cumulative PV capacity reaches approximately 398

GW and generated over 460 TWh. The calculation represents the ratio of 2% of

PV generation over the global power output. PV is expected to lead the growth

of renewable electricity capacity and to reach 580 GW over the next five years.

Figure 1.1 shows the graph of solar PV generation and cumulative capacity by

region, which occurs between 2017 and 2023.

1



1.2 Basic Principle of the Photovoltaic System

Figure 1.1: PV generation and cumulative capacity by region from 2017 to 2023

[1]

Focusing on Japan, the country continues to move toward a low-carbon so-

ciety. Reported by New Energy and Industrial Technology Development Orga-

nization [2], PV cell production has increased significantly at the annual rate of

30%-50% since 2003. Japanese government continuously supports the PV instal-

lation on large-scale, commercial and residential areas since 2009. Furthermore,

Asian Insider [3] reports that Japan’s renewable energy will increase to approx-

imately 40 % in 2030 compared to 2017. Observing the status of each power

generation facility, PV is planned to be increased by approximately 25 GW, from

39.1 GW of 2017 to 64 GW of 2030, and further expanding the market size is

expected. The statistic data supports the potential of PV as a strong rebound in

renewable capacity additions.

1.2 Basic Principle of the Photovoltaic System

Researches in renewable energy receive great attention. Since PV has dynamic

performance depending on the weather condition, it is vital to understand how

2



1.2 Basic Principle of the Photovoltaic System

PV operates. In fundamental, PV can generate electricity using the photon from

sunlight. As the photon knocks the electron inside the Silicon layers inside the

PV cell, the electric field will push that electron out of the Silicon junction [1].

The generated power from the PV has a proportional relationship to the solar

irradiation level; the more irradiation incidents to the PV cell, the higher the

generated power can achieve.

The main electrical characteristics of PV cell are represented by the current,

voltage, and power, in the form of PV’s current-voltage (I-V) and power-voltage

(P-V) characteristic curves. Figure 1.2 presents the example of I-V and P-V

curves under di↵erent irradiation and temperature conditions.

(a) I-V curve at di↵erent irradiation (b) P-V curve at di↵erent irradiation

(c) I-V curve at di↵erent temperature (d) P-V curve at di↵erent temperature

Figure 1.2: Example of the I-V and P-V curves at di↵erent irradiation and tem-

perature

The highlighted circles indicate the maximum power point (MPP) for each condi-

tion. The condition includes the power at standard test condition (STC) (under

3



1.3 Problem Statements

1000 W/m2 of the irradiation and 25 �C of the temperature), and at other levels

shown.

As shown in figure 1.2, the irradiation and temperature have an impact on

the PV’s output power. From figures 1.2(a) and 1.2(b), each irradiation (consists

of 250, 500, 750 and 1000 W/m2) presents the di↵erent levels of generated power

in a directly proportional relationship. On the other hand, figures 1.2(c) and

1.2(d) present the temperature impact on the PV’s performance. The curves

present the reduction of PV’s voltage when the temperature keeps increasing,

in consequence, the generated power decreases. Because the suitable irradiation

and temperature are available on short-timescales and depend on the weather

conditions, it is important to investigate the enhancement of PV to achieve its

highest potential.

1.3 Problem Statements

In this thesis, the considered problems related to the PV system are divided

into two main points.

The first problem is how to determine the maximum power when

the PV system operates under partial shading conditions. As stated

in section 1.2, the irradiation and temperature are the two main parameters

that a↵ect the PV-generated power [4]. If shading from the environment or

surroundings occurs on the PV panel’s surface, not only the generated power

reduces, shading also increases the di�culty level for the system to track the

accurate maximum power. Figure 1.3 shows the example of characteristic curves

under no shading and partial shading conditions.

From figure 1.3(a), if the irradiation across the PV array is equal and uniform,

the curve shows one maximum power point and capable for normal maximum

power point tracking (MPPT) system to locate. However, as shown in figure

1.3(b), when there’s the non-uniform irradiation occurs across the array, the

curve then shows more than one maximum power points. Because of this, the

normal MPPT could not confirm the accuracy to allocate the correct maximum

4



1.3 Problem Statements

power. Therefore, this thesis focuses on the analysis and design of the MPPT

algorithm under shading conditions with high e�ciency and low cost.

(a) Characteristic curves at no shading condition

(b) Characteristic curves at partial shading condition

Figure 1.3: Example of the characteristic curves during no shading and partial

shading conditions

The second problem is how to detect the occurrence of the hotspot

on the PV panel. The hotspot is defined as the fault formed on the panel’s

5



1.3 Problem Statements

surface due to the high temperature, which happens from the consequence of

shading on the PV panel’s surface. Mentioned in IEC 61215 (the universal stan-

dard stated the design qualification and type approval of the manufactured PV

module), the main cause of hotspot occurs when a PV cell’s operating current

exceeds the level of short-circuit current of normal condition cells [5]. The ex-

ceeded current induces the temperature in a cell, later on, reduces the generated

power.

With clear observation, the form of hotspot presents as the burnt on the PV

cell surface. Figure 1.4 shows the example of the hotspot on the PV panel’s

surface [6].

Figure 1.4: Example of the hotspot presence on the PV panel’s surface [6]

Although IEC 61215 states the cause of hotspot and the testing standard of the

manufactured panels, the standard does not specify the proper hotspot detection

method. In the conventional process, the hotspot is detected using the infrared

camera, which captures the thermal image of the hotspot. The captured result

shows the acceptable detection accuracy; however, the main disadvantages include

the high equipment cost and workforce. The hotspot is also considered as the

hidden fault, which can reduce the generated power level of the PV system. In a

real installation, the hotspot generally decreases the system’s e�ciency, shown by

the performance ratio. The statistical data of the hotspot existence in PV site is

shown by case studies and surveys [7, 8]. According to the e↵ect of the hotspot,

it is important to analyze the e↵ects and design of the method to detect the

6



1.4 Study Contributions

hotspot in the PV system. The model should be capable of the existed practical

PV model.

1.4 Study Contributions

Study contributions arranged by chapters are shown as follows;

1. Chapter 2: Partial Shading Detection and Global Maximum Power Point

Tracking Algorithm for Photovoltaic with the Variation of Irradiation and

Temperature.

This chapter presents the analysis of partial shading towards the di↵erent

specifications of PV array. The main contributions consist of the proposed

mathematical expressions for detecting the occurrence of shading and irra-

diation estimation. The ideas do not require either the irradiation sensor

or the historical weather data, making the simple implementation. The

proposed MPPT algorithm uses the concept of slope calculation on the PV

characteristic curve. The method provides the accuracy for tracking the

maximum power under shading conditions, with fast response and simple

implementation.

2. Chapter 3: Simplified Hotspot Model and Proposed Hotspot Detection Algo-

rithms for Photovoltaic Systems.

In this chapter, the hotspot detecting algorithm is proposed. The algorithm

is integrated with the proposed MPPT method in chapter 2, contributing

not only to the algorithm’s performance to track the maximum power but

also it can accurately identify whether the hotspot is present in the PV sys-

tem. The implementation in several hotspot cases confirms the e↵ectiveness

of the detection method.

3. Chapter 4: Hotspot Model in Cluster’s Structure with Hotspot Detection

Algorithms and Temperature Estimation for Photovoltaic Systems.

This chapter presents a more detailed analysis of PV cell scale on the power

dissipation of the hotspot. The detail shows the improvement of the hotspot
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detection algorithm in chapter 3 to make the functional level compatible

with the practical PV model. The chapter contributes to the successful

hotspot detection in di↵erent weather scenarios. The improved method

presents higher e�ciency, which shows more compatibility with the practical

PV module’s structure.

1.5 Thesis Outline

In order to answer the questions stated in the problem statement, this research

is divided into topics which arranged in chapters format. The followings are the

outline of this thesis.

• Chapter 2: Partial Shading Detection and Global Maximum Power

Point Tracking Algorithm for Photovoltaic with the Variation of

Irradiation and Temperature.

The main objective of this chapter is to analyze the e↵ect of partial shad-

ing on the PV system. The study of characteristic curves is used to design

the tracking algorithm, mainly divided into three parts; the main program,

shading detection and irradiation estimation, and global MPPT using slope

calculation. This chapter starts with the problem statement in section 2.1,

together with the literature review in section 2.2. Section 2.3 shows the

characteristic curve’s analysis use for implementing the slope calculation

method. Afterward, the system’s description and the full algorithm is pre-

sented in section 2.4. The system implementation and results are shown

in section 2.5, in which the results are achieved from the simulation and

experiment.

• Chapter 3: Simplified Hotspot Model and Proposed Hotspot De-

tection Algorithms for Photovoltaic Systems.

This chapter presents a description of the hotspot in the PV system. The

DC circuit model is used to represent the hotspot’s characteristics in a PV

module. The chapter begins with the problem statement in section 3.1, in-

troducing the occurrence of the hotspot, the degradation to the PV system
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proved by the survey data, and the standard. Details are followed by the

literature reviews of the hotspot modeling techniques and detection meth-

ods, including the advantages and disadvantages discussion in section 3.2.

In addition, section 3.3 shows the simplified hotspot’s modeling method and

fundamental analysis using the characteristic curves; following by section

3.4 for the proposed hotspot detection algorithm. The tests of the proposed

method are performed in section 3.5.

• Chapter 4: Hotspot Model in Cluster’s Structure with Hotspot

Detection Algorithms and Temperature Estimation for Photo-

voltaic Systems.

The main context of this chapter is to present the improvement of the

hotspot model and detection algorithm to continue from chapter 3. The

improved model shows more capability to match with the practical PV

standard, importantly the IEC 61215. The chapter starts with section 4.1

for the problem statement. This section includes the explanation of the

hotspot in reversed bias conditions with the involved challenges and factors

result in the acceleration of the hotspot in PV system. The chapter contin-

ues with the analysis of the improved hotspot model in section 4.2. Con-

sequently, the improved hotspot detection algorithm using inclined current

changes calculation is shown in section 4.3. The system’s implementation

and results are presented in section 4.4, dividing into several cases. The

chapter ends with the discussion of temperature estimation in section 4.5

for indicating the damage level of the hotspot.

• Chapter 5: Conclusions and Future Works.

Section 5.1 concludes the studies and contributions in this thesis. The main

future works include the extension works of the MPPT tracking algorithm,

hotspot’s damage level identification, and maintenance are shown in section

5.2.
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Chapter 2

Partial Shading Detection and

Global Maximum Power Point

Tracking Algorithm for

Photovoltaic with the Variation

of Irradiation and Temperature

Global climate change is considered as the biggest problem facing human-

ity. Dealing with climate change, clean energy technologies have been studied

and developed to reduce pollution and protect the environment. Photovoltaic

(PV) technology, as one of the renewable energy sources, achieves great interest

especially in this decade due to the nonpolluting operation and good installa-

tion flexibility. There are various types of installation di↵er in size and location;

starting from residential areas, commercial and industrial sectors, then expand

to utility-scale for providing the electrical power.

To enhance the e�ciency of PV, the e↵ect of weather condition must be con-

sidered. There are two main parameters which a↵ect the PV-generated power,

irradiation and temperature; varies from location where the PV is installed. Since

it is not possible to control these two parameters, the generated power then di↵er
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from the expected value; therefore, the problem of PV mismatch can occur.

It also causes the di�culties for PV system to generate the maximum potential

power. In this chapter, the mismatch by external factor mainly the changes of ir-

radiation and temperature from surroundings is the main consideration. Hence, it

is necessary to determine the solution to enhance the e�ciency of the PV system

when operating during changes of irradiation and temperature. Researches ex-

plain the e↵ect of mismatch towards the PV system that significant power losses

occur if the maximum power is not tracked accurately [9, 10, 11, 12].

Published works also verify that the conventional MPPT methods cannot

ensure successful and precise of the maximum power under changes of irradiation

and temperature [13, 14, 15, 16]; consequently, the di�culties in implementing

MPPT still exist. The challenges include the complexity of the algorithm, cost,

and failure while operating in shading conditions [17]. Therefore, the preferences

of the proposed method are to achieve the tracking method with high tracking

accuracy, less power loss, simple and low cost.

The main objective of this chapter is to propose the new global MPPT under

shading conditions, with the simple concept of searching the mountain’s peak.

The expected results consist of accurate global MPP in various irradiation and

temperature conditions. Also, a further objective is to evaluate the performance

of the proposed method under di↵erent weather conditions with real weather

data. From the short and long term testing results, the proposed method can

locate the maximum power in various irradiation and temperature conditions.

This chapter proposes the original idea of characteristic curves studies to design

the new MPPT method, representing in algorithm format. The algorithm mainly

consists of three parts (1) the main program (2) Shading Detection and

Irradiation Estimation and (3) Global MPPT Using Slope Calculation.

The highlighted point is the proposed algorithm uses the simple concept of moun-

tain climbing to search the mountain’s peak, to locate the local and global power

peaks without searching through the whole curves. This idea is new and has not

been shown in other papers.

This chapter is outlined as follows. Firstly, section 2.1 states the problems

of PV mismatch partial shading towards the PV system; continuing with the

11



2.1 Problems Statement

literature reviews of selected published works about the global MPPT in sec-

tion 2.2. Moreover, section 2.3 describes the analysis of the PV model and its

characteristic curves, with section 2.4 presents the system‘s model, the proposed

global MPPT algorithm and implementation details. For the results, section

2.5.1 shows the simulation results tested by dynamic, short-term and long-term

cases; with section 2.5.2 presents the experimental results. Finally, the analysis

in grid-connected system is shown in section 2.5.3.

2.1 Problems Statement

Stated in the introduction, shading causes significant power losses for the

installed PV system. For example, studies by [11] show the practical case study

through the PV rooftop systems installed in Germany. The installed panels had

been a↵ected by shading at 41%, with energy losses up to 10%. Hence, remarkable

reduction of power generated is observed. In additional, research by [12] presents a

case study of 13 di↵erent PV’s power tracking systems operating under a shading

condition, where the result shows up to 70% of power is a loss due to not detecting

the correct maximum power.

As explained in section 1.2, electrical characteristic of PV cell can be modeled

as the non-linear relationship of the I-V and P-V characteristic curves. In the case

of PV mismatch, due to shading condition, more complexity can be observed using

the characteristic curves. Figures 2.1(a) and 2.1(b) present the series-connected

PV array with the bypass diodes. The standard test condition (irradiation of

1000 W/m2 and temperature of 25 �C) is assigned for figure 2.1(a), while the

partial shading with di↵erent irradiations level is assigned for figure 2.1(b). The

P-V characteristic curve corresponding to each condition is shown in figure 2.1(c).
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2.1 Problems Statement

(a) PV array at normal irradi-

ation at 25
�
C

(b) PV array at partial shad-

ing condition at 25
�
C

(c) P-V characteristic curves for normal and partial shading

condition

Figure 2.1: Example P-V characteristic curves for normal and partial shading

condition

We can observe the significant di↵erence between the two conditions from the

curve. From the mismatch of irradiations in the array, clearly by observation,

shading exhibits three maximum power points aligned in di↵erent PV’s voltage

values, while the normal condition distributes only a unique maximum power

point. From figure 2.1(c), the partial shading distributes three peaks while the

highest is at approximately 630 W, compare to the normal condition with the
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highest power of 1020 W.

In this chapter, the highest maximum power of the entire P-V curve at each

irradiation and temperature is called as the global maximum power point

(Global MPP) [18, 19, 20]. With more than one MPP in the curve, the chal-

lenge raises for the MPPT system to track and indicate the highest power that

PV array generates. Supported by Patel and Agrawal [4], irradiation and tem-

perature are the two main parameters which a↵ect the PV-generated power. It

is obvious we cannot control the two aforementioned parameters. For example,

the generated power cloudy day is found less than the sunny day due to lower

irradiation level from blockage of the cloud. In additional, the heavy rain and

snow are significantly reduce the generation. As majority of the commercial PV

inverter, the programmed MPPT algorithm embedded to the system does not

have the function to support the MPPT under shading condition. In this case,

the research of the MPPT algorithm under shading condition has become the

interest for researchers and engineers. The designed algorithm named Global

Maximum Power Point Tracking (Global MPPT) is used to emphasis the MPPT

method that the MPPT is designed to track the highest power of the PV system

according to the irradiation and temperature levels.

2.2 Literature Reviews

Mentioned in section 1.1, as the PV system receives great attention, researches

in MPPT have been shown especially in the last decade. There are several pro-

posed algorithms published. Mainly the algorithm can be distinguished into two

categories, di↵erentiated based on the method of implementation.

2.2.1 First Category: Conventional MPPT Algorithms

with Modifications

The first category originates from the improvement of the existing conven-

tional tracking method; these include the well-known MPPT techniques but with
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further modification. The algorithm is designed based on the existing conven-

tional MPPT with modifications. The conventional MPPT techniques include

the perturb and observe (P&O) and incremental conductance (InC) . Research

works propose the e↵ectiveness of the first category methods in order to locate

the correct global MPP [21, 22, 23].

Work performed by [24] introduces the conventional scanning method, which

is one of the classical MPPT algorithms. The fundamental concepts for scanning

are to scan through the whole P-V characteristic curves starts from zero to the

PV’s total open-circuit voltage (VOC). By searching at the whole range of PV’s

voltage, the scanning has high global MPP locating accuracy. Figure 2.2 presents

the conventional scanning for the example P-V characteristic curve.

(a) Example of the P-V curves under partial shading

(b) Proposed scanning algorithm

flowchart

Figure 2.2: Example of the conventional scanning algorithm reported in [24]
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The algorithm uses the scanning method to scan the curve periodically to the

curve in order to track the global MPP. Although the algorithm is capable to track

the power, the drawbacks still occur. The main disadvantages of conventional

scanning include

1. Processing time consumption: Since scanning requires every value sam-

pling from the P-V curve in the whole voltage region, based on the sampling

rate, many sampling data are necessary. The smaller the sampling rate, the

more accuracy achieves. In this case, the algorithm requires more processing

time to record the sampling data, also causes more tracking time.

2. Loss of power during tracking: Also, the consequence of the time con-

sumption, whenever the algorithm tracks the power, there is a small quan-

tity of power loss. This disadvantage is considered to be a minor for short-

term tracking. However, for the long-term (in this case, whole operating

day) small power loss can combine into the significant power loss.

3. Mismatch scanning period setup in di↵erent weather conditions:

According to the technical specification of PV inverters, scanning is set

to be every 15 minutes of the time interval [25, 26]. The mismatch setup

interval is not matched with all types of weather conditions. By choosing a

long scanning interval on the day with the rapid change of weather, tracking

error may occur due to the mismatch of the selected interval. Additionally,

by choosing a short scanning interval on the day with a steady change of

irradiation and temperature, the power loss from the unnecessary tracking

is achieved.

Apart from conventional scanning, researches propose global MPP algorithms

using the improvement of the existing conventional tracking method. Research

by Eftichios et al [11] shows how the global MPPT methods work by distributing

PV load lines on the characteristic curve and reference points are indicated along

these lines. The result shows the complete tracking results with higher e�ciency

compared with the PV scanning and particle swarm optimization (PSO) , which

is one of the optimization methods that can be a solution for the optimization
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problem using the concept modeled after bird folk’s behavior. Nonetheless, the

work does not provide the time response result, and the implementation requires

additional switching circuits, such as a flip-flop and a comparator.

Another interesting research by Hiren [27] shows the algorithm by setting

the threshold to detect changes of power when shading occurs. Also, using the

change of power to determine tracking direction. The algorithm confirms the

e↵ectiveness; however, the results only present in the short-term (less than 30

seconds). The practical long-term result for more than 30 seconds which is more

surreal to the practical PV system operating time is not indicated. Researches

by Jubaer [28] discussed the disadvantage of the P&O algorithm due to its oscil-

lating response when operating in rapid irradiation change. This paper proposes

mathematical equations to detect power deviation, which is used together with

the tracking algorithm. The drawbacks are the complexity in calculation due to

many parameters and programming.

Further research by Korey [29] presents the global MPPT based on the P&O

algorithm, experimented with three series-connected PV panels. The result shows

successful tracking; however, it still contains the oscillation and the power gen-

erated quantity was not realized. Also, work developed by Kobayashi et al. [30]

and Irisawa et al. [31], two-stage MPPT is proposed. Consists of the first stage,

the PV’s optimum operating point is controlled to converge the MPP; afterward,

the second stage operates to move closer to the MPP. The idea still faces the ac-

curacy problem when operating under some non-uniform irradiation conditions.

Also, the implementation requires an additional control circuit.

Research by Bekker [32] shows the optimal MPPT algorithm using the open-

circuit voltage sweep along the P-V characteristic curve, but the loss from track

still exists. The method by Nguyen and Gules [33, 34] proposes the adaptive re-

configuration scheme and control topology for the bidirectional DC-DC converter

to decrease the shading e↵ect. Both methods confirm the success under real-

time operation; however, the method requires additional hardware and sensors in

proportion to the size of the PV array, increasing in the cost.

In conclusion from the reviews, the major drawbacks from the first category’s
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topology are the requirement of many parameters which is hard to determine;

also the requirement of hardware and complexity of programming.

2.2.2 Second category : Intelligence MPPT Algorithms

The second category is topologies based on the intelligence computing method.

Since 2015, artificial intelligence methods have been used to solve the MPPT

problem under the shading condition. The popular methods include the fuzzy

logic based MPPT, ANN , and PSO algorithm. Examples of published work

include as follow;

Research by Yuan [35] proposes the adaptive inertia weight particle swarm op-

timization (AWIPSO) based on the original PSO method. The method has the

flexibility to adjust weight coe�cient parameters, which can increase the speed of

tracking. The algorithm is confirmed using the simulation; however, the experi-

mental results are not included. Works by [14] and [36] states the di�culties of

PSO including calculation complexity for related variables, also setting precision

and requirement of cooperative agents and learning factors. Similarly, the work

by Miyatake et al. [18] implements the PSO based method to track the power.

The drawback is the requirement of a separate converter per one PV module,

causing more extra cost.

In addition, another intelligence method called fuzzy logic is also integrated

with the MPPT. Proposed by Alajmi et al. [37], the research presents the modi-

fied fuzzy-logic controller. The design is based on a diode model equation of the

PV panel, with the modified fuzzy-logic from the hill-climbing method. However,

the system requires thirty-two fuzzy control rules, adding more complexity to the

system.

It is observed from two reviewed topologies of the proposed global MPPT

performed by several articles, the common disadvantages for both tracking cate-

gories are the requirement of additional circuits, complexity and implementation

cost. The disadvantages become the gap which motivates the research in global

MPPT under shading condition.
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2.3 Analysis

2.3.1 Partial Shading Condition for PV Systems

An ideal PV module can be modelled as a single diode equivalent circuit [38].

Figure 2.3 shows the single diode equivalent circuit, including a current source

Iph connected antiparallel with a diode, a series resistor Rs and a parallel resistor

Rp .

Figure 2.3: PV module equivalent circuit

Equation 2.1 represents the mathematical relationship between the PV mod-

ule current IPV and other related parameters [39].

IPV = (IPV,STC +KI�T )
G

Gn
(2.1)

From equation 2.1, IPV,STC is the PV’s current of the module in standard test

conditions (STC) , KI is the temperature coe�cient of current , G is the solar

irradiation measured in W/m2 and Gn is the nominal solar irradiation (1000

W/m2) .

The equation shows the directly proportional relationship between G and

IPV,STC that the higher the irradiation, the more PV’s current is measured. How-

ever, when irradiation decreases due to shading, the current reduces.

In addition, equation 2.2 represents the calculation of the PV module’s open-
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circuit voltage (VOC) [27]:

VOC = VOC,STC +KV (T � TSTC) + aVT ln(
G

GSTC
), (2.2)

where VOC,STC is the PV module’s open-circuit voltage at standard test condition,

KV is the temperature coe�cient of voltage, T represents temperature and TSTC

is the temperature at STC (25�C). Additionally, a is the diode ideality constant

and VT is voltage constant.

Equation 2.2 shows that the open-circuit voltage varies with both irradiation

and temperature; by assuming the last term of the equation to be very small,

the temperature level is the primary cause for the variation of PV’s open-circuit

voltage value. Likewise, both equations 2.1 and 2.2 explain that the operation of

PV varies with irradiation and temperature [40].

2.3.2 P–V Characteristic Curve Analysis

From the review in section 2.2, conventional MPPT algorithms cannot con-

firm the global MPP tracking accuracy under shading conditions, contributes to

the complexity in tracking the correct maximum point. In order to design an

e↵ective MPPT algorithm, more than 20 samples of P–V characteristic curves

are analyzed. Figure 2.4 shows series-connected PV modules with di↵erent pat-

terns of irradiation and temperature, specified as patterns A and B, where the

temperature for each pattern is 25�C and 30�C, respectively.
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(a) Pattern A at 25
�
C (b) Pattern B at 30

�
C

Figure 2.4: Example of the case study patterns for P-V curve analysis

PV module’s specifications from the manufacturer consist of Canadian Solar

Cs5C-90M, Guelph, Canada; Trina Solar TSM-170D, Changzhou, China, and

Jinko Solar JKM310M-72, Shanghai, China) using pattern A and B in figure 2.4.

Studies can be distinguished into six cases. Figure 2.5 presents P–V curves in six

cases with three di↵erent PV modules, varying the irradiation and temperature.

The local and global MPPs exist in the highlighted searched regions.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5: P–V characteristic curves for cases 1 to 6

The highlighted information obtained from the samples is that although the

P–V curve has more than one maximum power point, each power peak, including

local and global maximum points, exists at multiples of 70% to 85% of the PV

module’s open-circuit voltage (except for two rightmost sections of the curve,

where the peak exists between 75% and 95%). Summarized information is shown

in table 2.1.
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Table 2.1: Summarized information of the P-V curve analysis cases 1 to 6

Case PV module specification Irradiation pattern VOC per module (V)

Case 1
Canadian Solar Cs5C-90M

A 22.20

Case 2 B 21.24

Case 3
Trina Solar TSM-170D

A 43.60

Case 4 B 41.72

Case 5
Jinko Solar JKM310M-72

A 47.10

Case 6 B 44.90

The value of VOC per PV module at di↵erent temperatures is shown in table

2.1. The increase of temperature brings less measured VOC , which verifies the

explanation from equation 2.2. Therefore, the proposed algorithm should deal

with the temperature changes since it causes e↵ects to the PV’s voltage. Con-

tinuously, although the location of global MPP varies in each pattern, the peaks

still exist within the searched region (at approximate multiples of PV module’s

open-circuit voltage). Therefore, it is possible to estimate the searched region of

the P-V curve. The information achieves from the analysis is combined and used

to design the new global MPPT algorithm, shown in section 2.4.

2.4 System Description and Proposed Global

MPPT Algorithm

2.4.1 System Description

Generally, for the PV system, a DC-DC converter is implemented together

with the MPPT controller to control the input voltage and current from PV to

reach its maximum power point. It is assumed that the PV system connects

to the constant DC load voltage. In this section, the DC-DC boost converter

is used to test the proposed method due to its robustness and simple switching

control with only one duty cycle value (d). As for other converter topology (i.e.,

a buck-boost converter, single-ended primary-inductor converter (SEPIC)), the

proposed algorithm can also be integrated; however, additional switching control
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is required since the number of switches adds and the converter operates in both

buck and boost mode. Figure 2.6 shows the basic block diagram of the PV system

integrated with the boost converter [41, 42].

Figure 2.6: Basic PV system with the DC-DC boost converter

After measuring the PV’s voltage and current, the MPPT controller deter-

mines the maximum power point according to the level of irradiation and temper-

ature. By tracking, the controller outputs the duty cycle to control the PV system

to operate at its maximum power. Equation 2.3 demonstrates the mathematical

relations between PV voltage VPV , load voltage VO, and duty cycle d.

VPV = (1� d)VO (2.3)

From equation 2.3 d is used to generate the pulse width modulation (PWM)

switching signal to control the MOSFET. The switching frequency of the tested

PWM signal is set at 10 kHz. For the sampling period of the sensors and con-

verter, the period must be set in the suitable ranges. If the setup is too small, it is

unnecessary and may cause the slow system response for the converter to operate.

On the other hand, if the sampling period is too large, the system does not have

enough data from the sensors to track the accurate MPP and may cause the error.

In the proposed system the sampling period should be set as approximately 0.1

ms, in order to achieve the high tracking e�ciency.
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2.4.2 Proposed Global MPPT Algorithm

Figure 2.7 shows the flowchart of the proposed global MPPT algorithm, de-

scribing how the proposed algorithm operates. The algorithm mainly divides

into three parts; including (1) the main program (2) Irradiation Estimation and

Shading Detection, and (3) global MPPT tracking using slope calculation.

(a) Main program and Shading Detection Algorithm
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(b) Global MPPT using Slope Calculation Algorithm

Figure 2.7: Full flowchart of proposed global MPPT algorithm

2.4.2.1 Main Program

The first part of the algorithm is the main program; consists of two functions

including the parameters’ initialization and power changes detection.
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Parameter’s Intialization: In this part, the process is to input the fundamen-

tal parameters related to the PV module and the dimension of the PV system.

Parameters include;

• PV module’s open-circuit voltage (VOC)

• PV module’s short-circuit current (ISC)

• PV module’s current at the maximum power point (IMPP )

• Number of series-connected PV modules (N)

• Number of PV string in the array (M)

Power Changes Detection: When the program starts the first time opera-

tion, the scanning is performed to determine the initial maximum power point.

After the point is found, the system maintains tracking at the point with the

conventional Incremental and conductance method (InC). The tracked power is

assigned as the reference point PREF [k] at the duty cycle DREF . As shown in the

flowchart, the value of the maximum power point is updated every one second

and assigned as PREF [k+1], which is the next time sample. The reason for the

update is to detect the changes in irradiation that possibly occurs from sudden

shading or weather changes. The ratio of power di↵erence, calculated as PDIFF ,

is shown in equation 2.4.

PDIFF =

��PREF [k+1] � PREF [k]

��
PREF [k]

(2.4)

To identify if the value of PDIFF is suitable for starting global MPPT tracking,

as mentioned by Ahmed [43], the threshold needs to be chosen suitably. If the

threshold is too large, the system then cannot initiate the global MPPT algorithm.

But if the threshold is too small, the algorithm could perform a false trigger with

unnecessary global MPPT, leading to the wastage of tracking time and power. In

reference [44], if the setup threshold is set to 15% of power change, this condition

does not guarantee the detection for all shading cases. Moreover, mentioned in
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[45], the threshold is set up to 5%. There is no evidence of how e↵ective this

value is, but in practice, it is considered to be too small. Also, referring to [46],

the studies use the standard formula’s review to set up a threshold. According

to the reviews, the threshold value of 0.1 (10%) is in popular use when assuming

the average change of weather condition is assigned. In this case, as the weather

in Tokyo, Japan does not change rapidly, the threshold of 0.1 is used.

The algorithm calculates whether or not PDIFF exceeds the threshold. If the

value exceeds, the program enters the next part of the algorithm, which is the

Irradiation Estimation and Shading Detection presenting in section 2.4.2.2.

On the other hand, whereas PDIFF does not exceed the threshold, the program

resumes to the standard InC tracking and maintain until further power change

occurs.

2.4.2.2 Irradiation Estimation and Shading detection

The next part of the proposed algorithm is the shading detection and irra-

diation estimation. The primary purposes are to detect the shading on the PV

array, also estimate the irradiation without using the sensor.

Irradiation estimation : According to other studies on solar irradiation es-

timation, there are several novel techniques of algorithm proposed. Research by

[48] proposes the closed-form expression for solar irradiation with algebraic ex-

pression, with function of temperature, PV’s current, and voltage. Although this

method can estimate irradiation, the additional temperature sensor still needs to

be installed, which increases the cost. This is in the same manner for reference

[49], which proposed the cloud motion estimation for short-term solar irradiation

prediction. The method uses the motion vector of passing cloud with the previous

irradiation monitoring data recorded before the estimation.

For the proposed algorithm, concept from equation 2.1 is used to implement

the irradiation estimation method. It is also confirmed the direct proportional

relationship between PV’s current and irradiation level. Figure 2.8 shows how

irradiation estimation perform using the example I-V curves.
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2.4 System Description and Proposed Global MPPT Algorithm

Figure 2.8: Irradiation estimation method of the example I-V curves

From figure 2.8, two irradiation levels (G1) and (G2) are estimated. G1 locates

at 80% of the PV module open-circuit voltage, whereas G2 aligns at 80% of the

PV’s string open-circuit voltage. The algorithm measures the PV’s current I1

and I2 using the current sensor.

Equation 2.5 and 2.6 present how the irradiation presented in the I-V curve

is estimated.

G1 =
IPV 1

IMPP ·M · 1000 (2.5)

G2 =
IPV 2

ISC ·M · 1000 (2.6)

From the calculation, G1 and G2 can be simplified as the ratio between the

current’s at STC and shading condition. Equations also used the initialized pa-

rameters from section 2.4.2.1 (ISC is the PV’s module short-circuit current, IMPP

is the PV’s module short-circuit current and M is the number of PV string).

Using the ratio between PV measured current with total string‘s IMPP and

ISC , respectively, and multiplying with 1000, which is the irradiation at STC,

the irradiation G1 and G2 can be obtained. After calculating the irradiation, the
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2.4 System Description and Proposed Global MPPT Algorithm

values are used to determine whether shading happens or not. In this case, it is

necessary for the system to setup the appropriate threshold.

Shading Detection : The estimated irradiations are used to detect whether

significant shading occurs in the PV array or not. According to reference [43], the

experiment is performed by testing samples of monocrystalline and polycrystalline

PV panels and determining the threshold of di↵erence between the irradiations.

The determined threshold of 40 indicates the possibility of shading and multiple

MPP exist. Equation 2.7 shows how shading condition is detected.

|G1� G2| > 40 (2.7)

If the di↵erence is greater than 40, the algorithm steps to the next part which

is the proposed global MPPT algorithm using the slope calculation. However,

as stated in section 2.3.1 on the e↵ects of irradiation towards the open-circuit

voltage (VOC); since VOC is used as the indicator to track the global MPP, it is

important to update the value according to the irradiation changes. Equation 2.8

shows the expression for updating VOC .

VOC = VOC U + (0.8 ·N · log( G2

1000
)) (2.8)

Then, the PV’s open-circuit voltage per one module (VOC module) can also be

estimated by dividing VOC with the input number of PV modules N . As shown

in equation 2.9.

VOC module =
VOC

N
(2.9)

The new value of VOC obtained from equation 2.8 and 2.9 contributes to more

precise and accurate tracking for the proposed algorithm. Additionally, the up-

dated values are tested in short-term testing as part of the simulation result so

that the e�ciency can be confirmed.
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To sum up the second part of the algorithm, the equation shows the methods

to estimate the irradiation and detect shading condition without using either

the temperature or irradiation sensors. Also, the irradiation data record is not

required. This makes the method simpler to implement.

2.4.2.3 Global MPPT Using Slope Calculation

The last section of the proposed algorithm is called Global MPPT using slope

calculation, which is published in the authors’ published paper [54]. The concept

of this algorithm is based on the inclined and declined slopes on each section of

the P–V characteristic curve. The curve of the PV array is divided into sections

based on the value of VOC module from the irradiation estimation and shading

detection part.

For easier understanding, a step-by-step procedure of the algorithm is de-

scribed using the example in section 2.4.2.4.

2.4.2.4 Example

The example is set by using 2 PV strings connected in parallel, each of which

has 5 PV panels connected in series, as shown in figure 2.9. Each patterns are

defined for di↵erent irradiation and temperature (25 �C and 30 �C, respectively).
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2.4 System Description and Proposed Global MPPT Algorithm

Figure 2.9: Example case for testing the Global MPPT algorithm

Table 2.2 presents the parameters for a single PV module used in this example.

Table 2.2: Parameters for a single PV module

Parameters Value

Maximum power 425 W

Current at maximum power 5.83 A

Voltage at maximum power 72.9 V

Short-circuit current 6.18 A

Open-circuit voltage 85.6 V

Voltage Temperature coe�cient –0.36 (%/�C)

Current Temperature coe�cient 0.10 (%/�C)

Main program

To explain how the program operates, firstly, the initialization is performed by

inputting the PV array sizing. Including the number of strings and modules

connected in series, also the PV current and voltage at STC indicated in table 2.2.
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2.4 System Description and Proposed Global MPPT Algorithm

Then, first time scanning is performed for pattern C since it is the initialization

of the process. The initial global MPP is tracked and remained at the point using

the conventional InC method. Figure 2.10 presents P–V curve of this example.

Points in the figure indicate the position where the tracking performs.

Figure 2.10: Example of P–V characteristic curves for testing the Global MPPT

algorithm.

After 1 minute, the irradiation and temperature changes (rising from 25 �C to

30 �C) according to figure 2.9. At the same duty cycle, the tracking point moved

from point 2 to point 3. The decrease of tracked power is recognized here, so

the change of power detection algorithm operates. The system acknowledges the

decrease, since the value of PDIFF calculated is 0.40 (PDIFF = |1480�2472|
2472 = 0.40),

in this case, which is greater than 0.1; then, the system can detect the change of

power.

Irradiation Estimation and Shading Detection

Following is the irradiation estimation and shading detection part. The de-

tection can be determined from the I-V characteristic curve, as shown in figure

2.11.
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Figure 2.11: Example of I–V characteristic curves for testing the Global MPPT

algorithm

This part shows the estimation of the irradiation G1 and G2 from the curve. Start

with the measurement of current I1 and I2, the current I1 is measured as 4.32 A,

also I2 presents as 9.92 A. Then using equation 2.5 and 2.6, the irradiation G1 is

equal to 370.5 W/m2, along with G2 as 802.6 W/m2.

The di↵erence between G1 and G2 is calculated and compared with the thresh-

old set in equation 2.7, which equals 432.10 W. Consequently the di↵erence is

greater than 40, the system considers the I-V characteristic curve as shading de-

tection. According to equation 2.8, the value of PV’s open-circuit voltage VOC is

updated.

VOC = 428 + (0.8 · 5 · log 802.6

1000
) = 427.12 V

VOC module =
427.12

5
= 85.42 V

From the calculation result, VOC reduces due to the increase of the temperature.

The updated value of VOC uses in the global MPPT’s part.
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Global MPPT using Slope Calculation

After the system acknowledged that the shading occurs with more than one

power peak located in the P-V characteristic curve, global MPPT uses a slope

calculation, which is the final part of the algorithm performs.

According to figure 2.10, the system starts to track from point 4, which is

the rightmost region of the P-V curve and has the highest percentage of global

power peak to be located. Since the number of PV panels connected in series

is 5 (N = 5), the system calculates the reference point for calculating the slope,

shown as dark blue and light blue points in figure 2.10. The slope calculation

points are assigned based on the test mentioned in the introduction. According

to this information, the slope calculation chooses from the multiples of each open-

circuit voltage in the region deducted by the scaling ratio. Equations 2.10 and

2.11 show the calculation for each slope calculation point on the P–V curve.

VHIGH [n] =

⇢
(VOC module · n)� [(1� 0.46) · VOC module] , n > N � 2
(VOC module · n)� [(1� 0.51) · VOC module] , otherwise

(2.10)

VLOW [n] =

⇢
(VOC module · n)� [(1� 0.51) · VOC module] , n > N � 2
(VOC module · n)� [(1� 0.56) · VOC module] , otherwise

(2.11)

where N is the number of the PV module connected in series, and n is the variable

assigned in the flowchart in figure 2.7. Using equations 2.10 and 2.11, all slope

calculation points can be calculated. For example, the rightmost blue point is

assigned as VHIGH [5], which is calculated from equation 2.10 as:

VHIGH [5] = (VOC module · 5)� [(1� 0.46) · VOC module]

= (85.42 · 5)� [(1� 0.46) · 85.42]

= 381.54 V

The PV’s voltage is controlled by the duty cycle to move to the point; after

that, the reference power (PHIGH [5]) is measured as 8.21 W. Following the next

reference point VLOW [5] determined from equation 2.11 :

35



2.4 System Description and Proposed Global MPPT Algorithm

VLOW [5] = (VOC module · 5)� [(1� 0.51) · VOC module]

= (85.42 · 5)� [(1� 0.51) · 85.42]

= 385.60 V

From the calculation, the negative value of the slope is shown (381.54� 385.60 =

�4.06), so the graph has a trend of decline, and the power peak can exist. Because

of this, the system starts the conventional tracking at the region using InC and

finds point 5 as the local power peak. The value is assigned as PLOCAL and saved

for comparison with tracked powers in other regions. The steps are repeated in

other regions of the P-V characteristic curves from regions 4 to 1. For this part,

VHIGH [n] and VLOW [n] are tracked in each region.

Table 2.3 presents the summarized result of the slope calculation in each region

of the P-V curve. The system finds the power peak in regions 4 and 2 but finds

the decline slope in regions 3 and 1 according to figure 2.10.

Table 2.3: Summarized result for global MPPT using slope calculation for the

example

Region (N)
Reference data

Slope (W/V) Decision Power tracked (W)
PHIGH (W) VHIGH (V) PLOW (W) VLOW (V)

1 527.69 43.56 568.20 47.83 9.48 Not detected -

2 1220.00 128.98 1230.00 138.00 1.11 Not detected -

3 1570.00 215.12 1560.00 219.18 –1.96 Detected 1570.00

4 1700.00 296.30 1680.00 300.36 –5.37 Detected 1710.00

5 8.21 381.54 3.45 385.60 –1.17 Detected 1640.20

From the results shown in table 2.3, the proposed algorithm locates the global

power peak in region 4 (1710.00 W). The result confirmed by figure 2.10 shows

where the maximum power point is located. Overall, this example demonstrates

the operations of the proposed algorithm step by step and verifies the result of

global MPPT.
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2.5 System Implementation and Results

2.5.1 Simulation Results

2.5.1.1 Basic Case Study

Basic case study is shown in figure 2.12(a), assuming the passing cloud which

dynamically changes the irradiation across the small-scale PV system with the

rated power of 1 kW. The test is simulated using MATLAB/Simulink based on

the P-V curve of passing cloud shown in figure 2.12(b).

(a) Basic case study testing condition

(b) P-V characteristic curves under irradiation

changes by a passed cloud

Figure 2.12: Basic case study testing condition and P–V characteristic curves
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The PV’s array circuit implements with the DC-DC boost converter circuit

shown in the system’s description in figure 2.6. The converter is connected to

the 5 PV panels connected in series, with a 220 V DC bus. Tested PV panel’s

specification under standard test condition also shown in table 2.4.

Table 2.4: Parameters for a single PV module for basic case study

Parameters Value

Maximum power 205.80 W

Current at maximum power 7.71 A

Voltage at maximum power 26.60 V

Short-circuit current 8.36 A

Open-circuit voltage 33.20 V

Voltage temperature coe�cient -0.36 (%/�C)

Current temperature coe�cient 0.10 (%/�C)

Figures 2.13(a) and 2.13(b) show the complete results of the proposed method,

including the tracked power and located voltage. The tracking is divided into

three regions, whereas figures 2.13(c) to 2.13(h) magnify the graphical results in

each region for better understanding.

(a) PVs’ power tracking result (b) PVs’ voltage tracking result

(c) PVs’ power region I (d) PVs’ voltage region I
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(e) PVs’ power in region II (f) PVs’ voltage in region II

(g) PVs’ power in region III (h) PVs’ voltage in region III

Figure 2.13: Results from proposed algorithm of the basic case study

Region I

Figure 2.13(c) shows the magnified global MPP tracking in the transition from

the case I to II. Result shows the PVs’ power drops from 1023.5 W (point A)

to 554.4 W (point B). The algorithm tracks the power changes and proceeds to

the irradiation estimation and shading detection part, highlighted in the figure.

After the program acknowledges that shading occurs, the global MPPT starts

tracking from point B onwards.

Begin tracking from the first slope calculation point of the P-V curve (point

C), the tracked slope shows the negative result (represented by the green arrow);

the system records the peak value at point D. Afterwards, the algorithm contin-

ues the same calculation in other regions by shifting to the next searching region

as explained in equation 2.10 and 2.11, as the voltage’s transition, shows in figure

2.13(d). All tracked powers are marked at points D, F, and H. After locating all

the local peaks, the algorithm returns the maximum value which is point F at ap-

proximately 630 W (as shown in 2.13(c)). The tracking time takes approximately

0.77 seconds (0.90 seconds if the detection time is included).

39



2.5 System Implementation and Results

Region II

For the next transition when the cloud covers the panel, similar procedure repeats.

Starts from the voltage pair at point H, the voltage shows the inclining trend

(presented by the green arrow). The algorithm acknowledges the existence of

the peak. Then, the system tracks the peak (at point I). The step repeats by

shifting to the next searching region, at points J, L, N and P. The local peaks

include points I, K, M and O as indicated in figure 2.13(e) and 2.13(f) . At

point P, indicated as the red arrow shows the declining trend of the slope. The

algorithm acknowledges the non-existence of the local peak in the region and

moves to the next region. After locating all the local peaks, the program returns

the maximum power at approximately 400 W. The tracking and detection time

consumes approximately 0.51 seconds.

Region III

After the cloud passes the panel, the system starts to operate at its standard

test condition. From the tracked power at point M, the tracking power resumes

the maximum power at point A onto 1023.5 W. Since the system resumes the

unshaded condition, there’s only one power peak that exists in the P-V curve,

making it’s faster for the algorithm to locate the maximum power. The graph-

ical results is explained in figure 2.13(g) and 2.13(h). In total, the system uses

approximately 0.27 seconds for tracking in this region.

To sum up, this basic case study confirms the accuracy and e�ciency of the

proposed algorithm. The program can locate the global MPP at all transitions of

the irradiations. To conclude the dynamic testing, the result presents the accurate

tracking with an excellent transient response, with a fast-rising and settling time

of approximately 0.51 seconds on average. Furthermore, the results also develop

the stability after achieving the accurate MPP.

2.5.1.2 Dynamic Case Study

In this section, the test involves more dynamic changes of irradiation to

demonstrate the change in real weather conditions. Study divides to short-term
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and long-term test. Figure 2.14 shows the circuit diagram of how the proposed

global MPPT is tested.

Figure 2.14: System diagram for the dynamic case study

The circuit consists of the medium-scale PV system with the rated power

of 40 kW. Components include the PV arrays (ten strings with ten panels con-

nected in series), where each panel has the specification as described in table 2.2,

with voltage and current sensors and a DC-DC converter circuit, which is the

synchronous and interleaved boost converter.

Short-term Test : For a short-term test, the proposed algorithm uses ten

di↵erent P-V characteristic curves case studies to represent irradiation changes.

Figure 2.15(a) shows P-V characteristic curves from patterns 1 to 10, which are

applied to the simulation circuit. Each pattern is set to change to the next

pattern at ten-second intervals. Figure 2.15(b) presents the graphical results of

power tracking using the proposed algorithm compared to conventional scanning.
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(a) P-V characteristic curves for short-term testing

(b) Result of the tracked power over operating time

Figure 2.15: Short-term testing simulation results

The proposed algorithm is compared with the conventional scanning method

which exists in commercial inverters. Table 2.5 summarizes the e↵ectiveness

comparison of conventional scanning and the proposed global MPPT.

42



2.5 System Implementation and Results

Table 2.5: Performance comparison of conventional scanning and proposed global

MPPT (GMPPT) algorithm using short-term testing

Shading pattern
Tracking

method

Tracked

power(W)

Tracking

time(s)

Maximum power

from P-V curve (W)
E�ciency (%)

1
Conventional scanning 41.67 2.35

41.75
99.81

Proposed GMPPT 41.72 2.33 99.93

2
Conventional scanning 25.24 2.49

25.26
99.92

Proposed GMPPT 25.25 0.91 99.96

3
Conventional scanning 34.71 2.57

35.36
98.16

Proposed GMPPT 35.33 0.87 99.92

4
Conventional scanning 17.42 2.06

20.48
85.06

Proposed GMPPT 20.47 0.71 99.95

5
Conventional scanning 21.61 2.79

27.14
79.62

Proposed GMPPT 27.12 0.91 99.93

6
Conventional scanning 30.10 2.41

30.37
99.11

Proposed GMPPT 30.34 0.77 99.90

7
Conventional scanning 19.63 3.39

20.39
96.27

Proposed GMPPT 20.38 0.56 99.95

8
Conventional scanning 8.87 2.65

8.90
99.66

Proposed GMPPT 8.73 0.74 98.09

9
Conventional scanning 10.17 2.10

10.19
99.80

Proposed GMPPT 9.05 0.71 88.81

10
Conventional scanning 8.59 2.60

8.71
98.62

Proposed GMPPT 8.69 0.78 99.77

The focus parameters in the results include tracking time and the e�ciency

to locate the Global MPP. It notices that the tracking time used for the pro-

posed global MPPT method is less than the conventional scanning method. The

algorithm reduces tracking time and consumes less power during the tracking

operation. The loss of power gradually reduces each time tracking is performed.

Long-term Test : To perform the testing as demonstrated in the daytime

operation similar to what the PV system operates in one day, the long-term

test simulates di↵erent weather conditions in 10 hours (36 000 seconds). The

test divides into a steady and rapid change of weather conditions. Moreover, the

information is collected from the real measured data at Shibaura Institute of

Technology, Tokyo, Japan in June 2018. Figure 2.16(a) and 2.16(b) shows the

graphical results of tracking power using the scanning and proposed algorithm.

The scanning is set to be a default every 15 minutes.
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(a) Results of tracked power for long-term testing at steady change

weather conditions

(b) Results of tracked power for long-term testing at rapid change

weather conditions

Figure 2.16: Results of tracked power for long-term testing at di↵erent weather

conditions

Table 2.6 presents the numerical results for long-term testing. The results

show the total power achieved per day, per annum, and estimated revenue achieved

using an energy selling rate in Tokyo, Japan in 2018 (20 JPY per kWh).
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Table 2.6: Performance comparison and revenue of scanning and proposed global

MPPT (GMPPT) algorithm using long-term testing

Weather

condition

Tracking

method

Energy

extracted per

day (kWh)

Annual

energy (kWh)

Revenue

in JPY

Additional income

in JPY

Steady change
Conventional scanning 224.83 82 062 1 641 259 -

Proposed GMPPT 227.18 82 921 1 658 418 17 159

Rapid change
Conventional scanning 206.51 75 376 1 507 520 -

Proposed GMPPT 224.16 81 818 1 636 360 128 840

It is interesting to observe the rapid change condition, the proposed method

can enhance the total energy of 8.55% compared to the conventional algorithm.

Result confirms the advantage of the proposed algorithm, not only the perfor-

mance to operate in both steady and rapid change weather conditions; the track-

ing speed enhancement also reduces power loss. To summarize, the speed en-

hancement is shown in the short-term testing, where each track has less power

loss than conventional scanning. Consequently, the enhancement increases the

energy generated from the PV system when operated in the long-term. Further-

more, the system also show the robust responses according to simulation results.

Both small-scale and medium-scale systems show the stability after reaching the

tracked MPP. The small power fluctuation may cause during the tracking op-

eration; however, the system can recover back to the stability MPP within 5

seconds. Especially in the short-term test, eventhough the rapid change of irra-

diation occurs, the system is capable to response fast for tracking the accurate

power.

2.5.2 Experimental Results

For confirming the e�ciency of the proposed algorithm, the practical exper-

imental is performed. Mainly, the experiment consists of the synchronous and

interleaved DC-DC boost converter, Texas instrument F28335 digital signal pro-

cessor (DSP), the PV simulator circuit and the electrical load. Figure 2.17 shows

the photo of the experiment setup.

45



2.5 System Implementation and Results

Figure 2.17: Photograph of the experimental system

From photo 2.17, the list of the components includes

1. DC power supply

2. PV simulator circuit

3. DC-DC synchronous and interleaved boost converter

4. Voltage and current sensor

5. Electronic load

6. DSP F28335 control card

7. 12V DC power supply
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8. Laptop for data acquisition

Figure 2.18 presents the system’s diagram.

Figure 2.18: Diagram of the experimental system of the proposed global MPPT

algorithm

From figure 2.18, the global MPPT algorithm is programmed using a Texas in-

strument F28335 DSP control card. The input voltage and current are inputted

via the sensor unit to scale down the parameters before inputting to the con-

trol card. The switching control of this converter is performed by setting up the

phase shift, according to figure 2.18. The inverted switching waveform consists

of PWM4 (inverted from PWM1) and PWM2 (inverted from PWM3); the phase

shift is set to be fixed at 180� for PWM3 (shifted from PWM1 which is the

primary signal).

The setup parameters for the experiment include the sampling frequency as

10 kHz for the scanning and proposed method, and the incremental step is 0.2
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seconds, which is the minimum step in which the tested DC-DC converter can

operate e�ciently. The experimental results are achieved from the voltage and

current sensors connected to the converter’s circuit, then evaluated in the control

card and imported to the PC.

Figure 2.19(a) and 2.19(b) shows the graphical results of the tracking algo-

rithm.

(a) Result of conventional scanning

(b) Result of proposed global MPPT algorithm

Figure 2.19: Experimental results of the proposed global MPPT algorithm
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The test consists of two di↵erent short-circuit current values set using the DC

power supply to represent the di↵erent irradiation. The current is set as 1.03 A

for level I of irradiation and 0.89 A for level II. The programs have a task to track

the power changed from level I to II before restoring to level I again. From the

result shown in figure 2.19(a), the conventional scanning takes approximately 4.96

seconds to track the power from level I to level II, which gives the value of 16.3 W

and 12.6 W, respectively. As for the proposed method in figure 2.19(b), it takes

approximately 0.42 seconds. The result confirms the simulation outcome that

scanning consumes more time to scan throughout all values of power, causing less

power loss during each tracking time. The experiment verifies the performance

of the proposed algorithm in which the program can locate the correct MPP

each time the irradiation changes. The results also show the robustness after the

tracking completes.

2.5.3 Grid-connected PV system test

In this section, the proposed algorithm is tested with the grid-connected PV

array for determining the robustness of the system. Figure 2.20 shows the diagram

of the proposed algorithm implemented in the grid-connected PV system.

Figure 2.20: Diagram of the grid-connected system of the proposed global MPPT

algorithm
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The system is implemented based on the average model of a 100-kW Grid-

Connected PV Array, presented by Mathworks [55]. Whole system consists of 100

kW PV array (with 5 series and 64 parallel PV module configuration) connects

to the DC-DC converter with the installed proposed algorithm. The inverter is

connected via the 500 V DC link before connecting to the utility. The simulation

is performed using the referenced system. By applying the decrease irradiation

at 2 seconds of the simulation time, the tracking results are shown. Figure 2.21

presents the simulation results including the tracked power, current, voltage and

the DC link voltage.

(a) Grid-connected PV system tracked power

(b) Grid-connected PV system tracked current and

voltage
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(c) DC link voltage

Figure 2.21: Simulation results of the grid-connected PV system with the pro-

posed global MPPT algorithm

From figures 2.21(a) and 2.21(b) , the result shows the successful Global MPP

tracking of the grid-connected PV system. Firstly at the irradiation of 1000

W/m2, the tracked power reaches the maximum power of 100 kW. The system

maintains the highest power. Continuously, after the irradiation reduces at 2

seconds, the proposed algorithm starts tracking the power by the slope calcula-

tion. Tracked power of 53,300 W is achieved within approximately 0.3 seconds

of tracking time. Also, during the tracking process, the DC link voltage in figure

2.21(c) shows a maximum ripple of 12 V in short-period, after tracking completes

the control system of the inverter controls the DC link voltage to become stable.

2.6 Conclusions

This chapter proposes the new global MPPT algorithm, including the irradi-

ation estimation and tracking method using the slope calculation technique. The

implementation confirms that the proposed tracking algorithm can operate with

high e�ciency and accuracy. Both graphical and numerical results prove the

e↵ectiveness of tracking time within 3.40 seconds and the accuracy of 98.62%.

Moreover, the system was also simulated in the long-term with real weather

data. Result also shows 8.55% total energy enhancement when compared with
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the conventional method. To sum up, the increase in tracking speed shows in

the short-term test that each track has a lower power loss than in conventional

scanning. Consequently, when operating in the long-term, it increases the en-

ergy generated from the PV system. The proposed method can also increase the

revenue benefits in the operating day. The factor a↵ects the robustness of the al-

gorithm mainly includes the precision of the current and voltage sensors, suitable

sampling time and stablility of the DC link voltage if connected to the inverter.

The high robustness can achieve by the well-implemented control system of the

converter and grid-connected inverter.
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Chapter 3

Simplified Hotspot Model and

Proposed Hotspot Detection

Algorithms for Photovoltaic

Systems

According to chapter 2, it is confirmed by the analysis and evaluation that

shading condition causes a significant decrease in the power generation level.

Consequently, to expand the usage of the PV system, improving reliability is

essential. For the PV system, similarly to other power systems, failures can occur

during the period of operation. One of the failure problems that occurs towards

the operation of PV system is the hotspot, which causes the power dissipation

and the physical damage.

A hotspot is defined as the fault formed on the panel’s surface due to the

high temperature, which happens from the consequence of shading on the PV

panel’s surface when a PV cell in a panel generates less current. The fault occurs

when the cell is entirely or partially shaded, cracked, or electrically mismatched.

Hotspot not only causes the generated power reduction, but the severity of the

stored heat could also lead to a dangerous fire hazard.
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Unlike a typical electric circuit, since hotspot is the blind defection and dif-

ficult to access the internal circuits from the PV module, making the detection

di�cult; therefore, special equipment is necessary. Conventionally, the detection

uses the infrared camera to capture a thermal image of objects under inspections.

Figure 3.1 shows the example of hotspot appearance on the PV module captured

by the infrared camera [56].

Figure 3.1: Example of hotspot on PV module captured by the infrared camera

[56]

From figure 3.1, the camera captures the hotspot as the brighten areas formed

on the PV module. Although the thermography detection method’s performance

is e↵ective, the cost of the equipment—especially the infrared camera—is gener-

ally quite high, and a workforce for the routine checkup is also needed. Moreover,

human error could occur involuntarily. Although hotspot happens on a part of

the area on the PV cell, the power dissipation caused by the temperature can be

found. The defected rate can also increase; this has been described in researches

by Pillai et al [7] and Main et al [57] in which both describe the hotspot increases

its degradation level over the operating time. In addition, it is confirmed by

case studies and surveys that hotspot causes the reduction of the performance

ratio, making the generated power of the PV system decreases. Therefore, it is

important for researchers to develop methods for detecting hotspots accurately

and e↵ectively.

The main context of this chapter is to propose the hotspot detection method

for the small-scale PV system, in the form of the algorithm. The method is

designed based on the simplified PVmodule structure. Accordingly, the algorithm
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is designed based on the observation of hotspot characteristic towards the PV

system, using the characteristic curves. The algorithm identifies the hotspot by

calculating the rate of change of PV’s current on the characteristic curve after

locating the searched region, based on the installed array’s dimension. After

detection, the algorithm presents the module’s status using the indicator signal.

The usefulness of this research is the proposed algorithm, which can detect

the hotspot within a short period, contributing the advantage for the PV main-

tenance. The mathematical equations accompanied by the flowchart describe

the algorithm with the case studies for better understanding. The results of the

hotspot detection algorithm are presented in the form of graphics with the indi-

cator signal. This signal shows the presence of the hotspot when the algorithm

detects the fault. Specifically, the contribution of this research is the algorithm,

which can detect the hotspot with fast response and contribute the advantage for

PV maintenance. The detection can perform when PV system is under opera-

tion. Also, the algorithm does not require the infrared camera and the irradiation

sensor; making the low-cost implementation.

Structure of this chapter is arranged as follows. Section 3.1 states the prob-

lem of the hotspot, including the cause of occurrence and consequence of the PV

system. The reviews of previous researches in hotspot modeling and detection

methods are presented in section 3.2. In section 3.3, the analysis of the hotspot

(consists of hotspot modeling and performance analysis) is described, and section

3.4 shows the proposed hotspot detection algorithm. The system’s implemen-

tation and results are discussed in section 3.5 to validate the algorithm under

various PV sizing and conditions.

3.1 Problems Statement

The main cause of the hotspot is formed by the localized heat on the surface

of the PV module [59, 60]. The hotspot cell absorbs the current generated from

the PV cell. Instead of supplying the power, the hotspot forces the cell to absorb

the power and increases the PV cell temperature. Afterward, the PV’s output
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current from cells is reduced from the circulation of the current within the cell,

making the PV’s hotspot cell voltage become reversed bias. In consequence of the

reduction of current, the generated power of the panel reduces accordingly. The

e�ciency degradation of the module has been confirmed by many of the research

works [61, 62, 63]. If the temperature reaches and exceeds the limited threshold,

the hotspot can be formed and bring permanent damage to the module.

Additionally, the survey data set from the installed PV system around the

world proves how e↵ective the hotspot to the PV’s performance. The highlighted

study is presented in [8] about the assessment of the hotspot in the PV sites over

the UK in 2017, in which the majority have been installed for 10 years. Figure

3.2 presents the geographical map for the PV sites located across the UK and the

hotspot probability of occurrence among all tested PV modules. The collected

data shows that after 10 years of installation, 42% of total examined PV modules

contain the hotspot in which varies from cell to string scale. Furthermore, it is

reported from the study that over the operation of 10 years the mean performance

ratio of the PV systems is dramatically reduced due to the existence of hotspot

in the modules. Significantly, the highest percentage of di↵erence compared to

normal condition PV module is calculated at -15.47%.

Another confirmation is confirmed by Pillai et al [7], which describes the

damage from the hotspot towards the solar farm in the US, and shows that

hotspots can cause a reduction of energy yields up to 6%. It was also reported

by Bharadwaj et al [59] that 25% of the short term failure distribution of PV

module installed in the US is due to the hotspot. Moreover, in Japan, hotspot

causes major defection in the PV module and reduction of power. Approximately

15% of reported failures were due to the panel’s malfunction [64].

Additionally, research by Mani et al [57] describes the degradation of the panel

will increase over the operating time. The hotspot will continue to heat up and

thus result in more physical damage to the modules. The work also states the

degradation rate of the hotspot PV module appears to degrade at a higher rate

than the normal condition modules, which could lead to module mismatch issues

in a module-string. The rate for 12-year modules exists between 0.6-2.5% per

year.
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Figure 3.2: Geographical map for the PV sites location across UK and hotspot

probability of occurrence [8]

According to IEC 61215 (design qualification and type approval of PV mod-

ule), the standard states the hotspot endurance testing method to determine the

ability of the module to withstand hotspot heating e↵ects. Figure 3.3 shows the

example of the hotspot e↵ect in PV cell by measuring the I-V curves.

The amount of power dissipated in cell Y is shown in a shaded area, approxi-

mately equal to the product of the module current and the reverse voltage devel-

oped across Y. For any irradiation level, maximum power is dissipated, which the

reverse voltage across Y is equal to the voltage generated by the remaining (s–1)

cells in the module. The standard states the step-by-step testing procedure in

which manufactured PV module needs to pass. By exposing the module in di↵er-

ent shading ratios and enduring the test for 5 hours, the monitoring is performed

by an I-V curve tracer. If the tested module contains no evidence of major visual

defects, the degradation of maximum output power does not exceed 5% and no

change in insulation resistance, the module passes the test and qualified.
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Figure 3.3: Hotspot e↵ect in PV cell by IEC 61215 [5]

3.2 Literature Reviews

This section presents the reviews of previously published works on hotspot

modeling and detection methods, which has di↵erent implementation and varies

by complexity respectively.

As mentioned in section 3.1, the IEC 61215 standard explains the hotspot

characteristic using the I-V curve and evaluate the power dissipation inside the

cell. The dissipation level can be estimated using the area under the I-V curve

where the voltage is negative (highlighted in figure 3.3). The missing description

of the maintenance and detection procedures, again, are not described. Moreover,

research by Qian et al [74] states that IEC 61215 mentions only the hotspot mon-

itoring of the shaded cell; however, the hotspot occurring in unshaded condition

is not specified.

As mentioned in section 3.1, the hotspot can be found by using infrared ther-

mography. The infrared sensors are used to obtain thermal images or thermo-

grams of objects under inspection [58]. The image captured by the camera shows
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the presence of the hotspot as a white spot on the PV panel’s surface. Although

the thermography detection method’s performance is e↵ective, the cost of the

equipment—especially the infrared camera—is generally quite high, and a work-

force for the routine checkup is also needed. In this case, researchers are trying to

develop the topology to detect the hotspot in PV module regardless of the cam-

era for reducing the cost. The following are the reviews of the major proposed

hotspot model.

The first model shows the AC parameter characterization to represent the

e↵ects of the hotspot [66]. Figure 3.4 presents the advanced dynamic PV circuit

model. Apart from the single-diode parameters (current source Iph, forward-bias

conduction diode Df , shunt resistance Rsh, and series resistance Rs), this model

also incorporates AC parameters with a series inductance Ls, variable parallel

capacitance Cp, and reverse-bias conducting diode Dr with a breakdown voltage

o↵set Vbd.

Figure 3.4: PV circuit model with reversed breakdown voltage [66]

From the model, Rs and Ls are associated with the physical length, area,

and shape of the leads. Larger Rs leads to higher conduction losses, particularly

for cells with higher rated current levels. The value of Rsh depends on the PV

material, thickness, and manufacturing quality. The complexity of this model is

that the circuit’s parameters are not treated constantly due to the e↵ects of PV’s

operating point and temperature. Also, it requires many mathematical equations

to fit all the parameters, especially for AC parameters that require frequency

domain characterization.

Research by Yang et al [68] later presents a simpler model of the hotspot

as one of low resistance installed in a circuit equivalent to a single diode. This
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resistance induces the PV’s current to flow back to the PV cell, which generates

the reverse bias phenomenon inside and causes a reduction of the output current.

Another research by Alsafasfeh et al [69] presents the Simple Linear Iterative

Clustering (SLIC) Super-Pixel technique as the technique for hotspot detection.

The topology is to decompose a PV’s thermal image into small homogeneous

regions before applying the SLIC to determine the defected cells. The experi-

mental results confirm its e�ciency; however, several parameters are necessary

to be assigned. Another method is presented by Dong et al [70] using the door

connection method, which utilizes a new PV cell connection pattern that can

detect the hotspot. Along with research by Kim et al [66], the work presents the

novel complex-total-cross-tied array structure and a hotspot detection scheme.

The method is implemented based on current monitoring and comparison with

computational values. However, the precise value is strongly dependent on many

environmental parameters.

Interesting detection method is presented by Rossi et al [67]. By measuring

the PV’s current in each module, the current is compared to the reference PV

cell which operate in normal condition. The system consists of set of current

sensors connected to each module, with the hysteresis comparators to detect the

hotspot. The results confirm the e�ciency of the method under di↵erent levels

of irradiation; however, the reference PV cell needs to be completely undetected

in order to achieve the accurate results.

As mentioned in reviewed works, several hotspot models and detection meth-

ods are presented and confirmed their accuracy and e�ciency. Since hotspot is the

blind fault and has a relationship with PV material property, making the detec-

tion not only depending on electrical characteristics, also the material parameters

need to be considered. Overall, the main problems for the reviewed methods are

the material properties, environmental parameters and the equipment’s require-

ments (i.e. the irradiation and temperature sensors, complex control circuits).

Hence, it is the contribution to implement the hotspot detection together with

the global MPPT algorithm, which is never presented in other published papers.

60



3.3 Analysis

3.3 Analysis

For a better understanding of PV operation, it is important to investigate the

PV cell model under normal and hotspot conditions. In this section, the single-

diode model (described in section 2.3.1) is used. The circuit consists of a current

source Iph connected anti parallel with a diode, including series resistor Rs and

parallel resistor Rp.

According to the literature reviews in section 3.2, several of hotspot models

are presented. The models can e↵ectively present the hotspot condition but still

require complex calculation and implementation. In this case, the author uses

the cited model proposed by Yang et al [68] due to the simplicity and e↵ective-

ness. Also, the model is based on DC circuit in which is capable to the proposed

global MPP algorithm. The proposed work shows the model as the small resis-

tance installed in a PV’s single-diode equivalent circuit. Figure 3.5 presents the

simplified circuit model of a hotspot defected cell.

Figure 3.5: Simplified model of a hotspot defected cell

From the equivalent circuit, the small resistor Rlr presents the resistance of

the defective part of the PV cell. When the PV system operates, Rlr induces

the current Ilr, consequently reduces the output current Ipv. Furthermore, the

increase of Ilr causes the high power dissipation. The defective PV cell heats

up due to the rise of cell’s temperature, if this heat is stored without any fault

detection, damage can occur as the burnt on the PV panel’s surface. Also, more

absorbed temperature achieves.
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In order to support the e↵ectiveness of the model, it has been stated in re-

search papers about the shunt resistance representation in hotspot condition.

Roy et al. [71] describes that the shunt resistance create a mismatch and lead to

hotspot formation that can thermally destroy the module. Resistance are formed

due to several material degradation reasons. Moreover, Rossi et al. [67] confirms

that the existence of shunt resistance leads to the exhibit of a large inverse cur-

rent. Although we acknowledge the cause of hotspot occurrence, the observation

and detection over time are di�cult. Since the circuit inside the PV cell is not

accessible; therefore, direct measurement of the cell’s output current is not appli-

cable [72]. Instead, the indirect measurement is performed by using the I-V and

P-V characteristic curve.

Before analyzing the PV’s characteristics, the simulation of the PV model

in the cell’s scale is implemented. The model is implemented based on the PV

module structure described by PVEducation [73], which consists of many inter-

connected cells connected in series encapsulated into a single stable unit. In

this chapter, the simplified PV model without bypass diode is used since the full

hotspot defected is the main concern. The parallel resistor Rp in normal condition

is equal to 19.5 Ohm, for the hotspot case it is assumed the value of Rlr equals

to 0.1 Ohm which is 0.5% of the Rp in normal condition. Figure 3.6(a) shows

the graphical picture for the PV module with di↵erent levels of hotspots from 0%

to 100% with an increment of 10% by dividing the PV cell into ten groups, and

figures 3.6(b) and 3.6(c) display the I-V and P-V curves for each hotspot levels.

(a) Simulation circuit diagram for di↵erent levels of

hotspots in a PV’s panel
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(b) I-V characteristic curves for di↵erent levels of hotspots

(c) P-V characteristic curves for di↵erent levels of hotspots

Figure 3.6: Diagram for the PV module and characteristic curves at di↵erent

levels of hotspots.

Results observe from the I-V curves in figure 3.6(b) show that the rate of

decrease for the PV’s current varies when hotspot occurs. Especially in the

high percentage of the hotspot, the current drops at a lower PV’s voltage when

compared to the non-defected cells.

The value of PV’s current e↵ects due to the low shunt resistance Rlr. Since Rlr

varies from the impurities of the material, the percentage of Rlr value is assumed.

The occurrence happens from the existence of Rlr, which reduces the current to
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cause them to flow out of the cells. Hence, a linear decrease in the I-V curves’

region can be identified. Furthermore, the decrease of the current consequently

reduces the amount of power generated from the panel, as shown in the P-V curve

in figure 3.6(c). The result from the I-V and P-V curves describes the operation

of PV cells when the hotspot happens.

The analysis concludes as the number of series-connected panel increases, the

more the reverse bias region is divided in the I-V curve. Although the position

of the reverse bias region varies from the di↵erent specification, their trends can

be observed. The hotspot occurrence can be found by detecting this reverse bias

region, using the linear decrease of Ipv. Assuming the certain irradiation and

temperature conditions (from the curve in figure 3.6(b)), when the full hotspot

happens, the linear decrease of the PV’s current can be detected. By designing

the tracking starting from approximately 50% of the whole curve’s voltage range,

the range for detecting the hotspot can be limited. The achieved information can

help to design the hotspot-detecting algorithm.

3.4 Proposed Hotspot Detection Algorithm

In this section, the proposed hotspot detection algorithm is explained. The

algorithm contributes the advantage in terms of the ability to integrate with the

proposed global MPPT algorithm in chapter 2 (section 2.4.2). The algorithm

makes the online detection possible while PV system is under operation, con-

tributing the faster detection.

The flowchart in figure 3.7 and 3.8 show the flowchart of the global MPPT al-

gorithm integrated with the simplified hotspot detection method. The algorithm

consists of three main parts including; (1) the main program (2) the irradiation

estimation, shading detection and global MPPT, and (3) the proposed hotspot

detection. From figure 3.7, the algorithm begins with the main program and the

initialization by inputting PV module parameters and array’s dimension. On-

wards, the program proceeds to the shading detection and global MPP tracking

which follows the same procedures stated in section 2.4.2.
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Figure 3.7: Main program and proposed global MPPT algorithms

Figure 3.8 presents the proposed hotspot detection algorithm integrated into

the global MPPT. The program contains the first and second reference points

measurement and slope calculation.
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Figure 3.8: Proposed simplified hotspot detection algorithm

For the hotspot detection, the algorithm calls for the detection every 1 hr after

the power di↵erence is detected. From the flowchart, the indicators of PV’s status

(Normal and Hotspot) are assigned. The algorithm starts from 50% of VOC , the

voltage assigns as the first reference voltage V1[1] and the current is recorded as

I1[1]. Step repeats after shifting the voltage by 0.5 V to the next point V2[1] and

recording the current I2[1]. Consequently, the algorithm calculates the rate of

change called Slope[m] between two current points with respect to the voltage,
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the calculation shows in equation 3.1.

Slope[m] =
(I1[m]� I2[m])

(V1[m]� V2[m])
(3.1)

Figure 3.9 shows how the example I-V curve used for calculating Slope[m].

Figure 3.9: Slope calculation method for hotspot and normal condition PV array

Presented in figure 3.9, the gray dash-line indicates the slope calculation re-

gion. From the analysis of PV curve in section 3.3, the region starts from 50%

to 80% of the total VOC . The calculation starts from the first two current values

(presented by the yellow rectangles) each 0.5 V apart, the first slope (Slope[1])

is achieved. Then the calculation repeats by shifting to the next 0.5 V until the

algorithm reaches 80% of total VOC , the average slope |Slopeaverage| is calculated.

In order to di↵erentiate the occurrence of hotspot from shading, the algorithm

uses the threshold to compare the calculated |Slopeaverage|. For the hotspot, the

characteristic curve shows the gradual decrease of PV’s current according to low

shunt resistance in the model. On the other hand for the normal condition PV

cell, due to the high shunt resistance value, the current shows low slope value

even though shading occurs. The threshold of 1 is achieved from the simulation

test with more than 15 samples of di↵erent hotspots and shading locations. If

|Slopeaverage| is greater than the threshold, the program estimates the hotspot
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condition occurs and the Hotspot indicator triggers the status from 0 to 1 after

detection completes. On the other hand, if the slope is less than the threshold,

the Normal status remains before proceeding to the global MPPT for tracking

the maximum power.

The idea of slope calculation makes the proposed algorithm can detect the

hotspot that occurs in the PV array, also di↵erentiate the normal condition and

integrated the proposed algorithm to the MPPT. Moreover, the program can

track the global MPP after shading happens.

3.5 System Implementations and Results

The hotspot detection simulation is performed to test the performance of the

proposed algorithm. The system is tested with the medium scale PV array. Figure

3.10 presents the system’s diagram which categorizes according to the number of

the panel containing faults.

The implementation consists of small-scale PV system includes 5 ⇥ 5 PV

arrays with the rated power of 83.28 W per module (Isc of 8.62 A and Voc of 12.64

V). A DC-DC converter is implemented together with the MPPT controller to

control the input voltage and current from PV to reach its maximum power point.

As described in the flowchart in figure 3.7, the duty cycle from the algorithm

indicates the operation of the converter. Only centralized current and voltage

sensors are used. The switching frequency of the PWM signal generated from the

MPPT unit is 10 kHz with the sampling period of the sensors as 0.1 ms.

Cases are divided based on the di↵erent number of faulted panels (2, 3 and 4

panels), as presented in figure 3.10. Highlighted colors indicate the fault locations

for each case. The low shunt resistance is assumed as 0.1 Ohm for the hotspot

condition and the irradiation of 500 W/m2 for the normal condition.

68



3.5 System Implementations and Results

Figure 3.10: Second implementation’s simulation circuit diagram for hotspot de-

tection

Figures 3.11, 3.12 and 3.13 show the graphical results of the proposed algo-

rithm for each number of faulted panels. Parameters include the PV’s current

and voltage, tracked power and status indicators.
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Figure 3.11: Hotspot and normal condition detection for 2 panels case

Figure 3.11 presents the result for 2 panels case. The program starts with

the first MPPT to determine the maximum power, successfully reaches 2049.18

W. This takes approximately 2.30 seconds. Afterward, the hotspot occurs at

10 seconds, the program starts to identify the hotspot by calculating Slope[m]

and compares to the determined threshold. If the hotspot is detected, the status

indicator triggers from 0 to 1 for indication in which the duration takes 3.68

seconds. On the other hand, the program determines the status as the normal

condition in which proceeds to the proposed global MPPT in section 2.4.2 which

takes 0.34 seconds to track the new MPP at 1657.79 W. Therefore, the status

remains at normal condition.

70



3.5 System Implementations and Results

Figure 3.12: Hotspot and normal condition detection for 3 panels case

For 3 panels case in figure 3.12, the proposed detection method succeeds to

detect the hotspot and normal condition. Starting o↵ with the first MPP and

continuing towards the detection, the duration takes 3.70 seconds then the status

triggers. In contrast, when shading occurs, the programs proceed to global MPP

and track the power at 1641.19 W.
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Figure 3.13: Hotspot and normal condition detection for 4 panels case

Accordingly, figure 3.13 illustrates the detection of 4 panels case. Similarly

characteristics to the previous case, the algorithm detects the hotspot with a

duration of 3.73 seconds before the status triggers. The detection confirms suc-

cessful results. Alternatively, the algorithm is capable to detect the shading and

track the new global MPP at 1626.11 W.

Table 3.1 indicates the numerical results of the second implementation includ-

ing value of the averaged slope, detection time used and status indicator.

72



3.6 Conclusions

Table 3.1: Numerical results for the hotspot and normal condition detection at

di↵erent hotspot locations

Case |Slopeaverage| (A/V) Detection time (s) Indicator

2 panels
1.08 3.68 Hotspot

0.59 4.02 Normal

3 panels
1.52 3.70 Hotspot

0.79 4.18 Normal

4 panels
1.93 3.73 Hotspot

0.87 4.24 Normal

The numerical results in the table proves the capability of detecting the

hotspot by using the proposed algorithm. For the normal condition by using

the combination of the global MPPT method, the system provides more function

and allows the power tracking to restore back to the PV’s highest e�ciency. The

robustness of the system is shown by the response after the detection completes.

Although the detection algorithm calls periodically, the system can recover back

to the stable operation with the maximum tracked power. The settling time is

within 5 seconds.

3.6 Conclusions

Hotspot causes not only the decrease of generated power from PV system

but also the damage to the PV material if not detected e↵ectively. This chapter

presents the hotspot detection algorithm in the PV array using the simplified

model. The model is implemented based on the low shunt resistor, which ex-

presses the degradation of the material. Consequently, the proposed algorithm

shows the accuracy and e�ciency to detect the hotspot, confirmed by the simu-

lation in di↵erent PV specifications and hotspot positions. In addition, the algo-

rithm is capable to integrate with the irradiation estimation and global MPPT

algorithm presented in chapter 2, contributing the integrated function to the
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MPPT system. Correspondingly, the algorithm can detect the hotspot and dif-

ferentiate the normal condition from the PV’s current slope calculation in the

specified region. The total detection time takes less than 6 seconds on average

and the indicator shows the accurate status after detection completes.

Further works from this chapter include the improvements of the hotspot

model, which suits the standard PV module with the cluster’s arrangements.

Moreover, the temperature estimation of the PV cell is investigated to clarify the

damage level of the hotspot. The details are presented in chapter 4.
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Chapter 4

Hotspot Model in Cluster’s

Structure with Hotspot

Detection Algorithms and

Temperature Estimation for

Photovoltaic Systems

According to chapter 3, based on published researches, survey data, and the

analysis, hotspot condition causes a considerable decrease in the generated power

by the whole PV system. The simplified hotspot model is used to analyze and

develop the hotspot detection algorithm. The results confirm the accuracy and

e�ciency to detect and indicate the fault in di↵erent PV sizing and locations.

In this chapter, the improvement of the hotspot model and detection method

are presented. The improved model presents higher e�ciency, which shows more

compatibility with the practical PV module’s structure. Since the implementation

of the practical PV module in the real installation is built using the cluster’s

structure; therefore, the proposed model should be more elaborate and capable

to work in practice.

With the information from the IEC 61215 in section 3.1, the hotspot results

75



in the reversed bias problem in a defected cell. Power dissipation generated in

the cell is proportional to the increased PV’s reversed bias current. Two factors

related to power dissipation include (1) the value of shunt resistor and (2) level of

irradiation on the hotspot’s cell. Apart from the hotspot model improvement, the

model also presents a clear reversed bias characteristic of the hotspot in order to

implement an e↵ective configuration. Studies related to material defection (value

of the shunt resistance) and di↵erent irradiation levels are presented.

The main context of this chapter is to improve the hotspot model described

in chapter 3 in order to make the model capable to operate with the practical PV

module’s structure. The model is analyzed and compared to the IEC standard

and other published works to make sure of the highest capability, also identifies

the accelerated factors that generate the hotspot. The improved hotspot detection

algorithm is developed and presented in the form of the flowchart. After detection,

the algorithm displays the module’s status using the indicator signal, giving the

usefulness to display the detection results. Furthermore, not only the hotspot

detection is presented in the algorithm, the second stage which is the temperature

estimation is also shown, since temperature is used as the parameters to determine

the damage level of the hotspot. If the hotspot’s temperature can be estimated,

it is possible for the algorithm not only to detect the hotspot but also to indicate

how severe the hotspot occurs in the cell.

Continuing from chapter 3, the usefulness of this research is the improved

proposed algorithm (implemented from practical three cluster’s model) can accu-

rately detect the hotspot and di↵erentiate from normal and shading conditions.

The algorithm uses mathematical expressions to derive the hotspot model under

reversed bias condition. Graphical and numerical results display the presence

of the hotspot. Importantly, the contribution of the work is practical capabil-

ity. Since most researchers develop the detection method based on single and

two clusters model, the proposed method shows more development and compat-

ibility with the practical PV standard. Significantly, the proposed method uses

the concept of the increased bias current under reversed bias condition to detect

the hotspot. The algorithm estimates the rate of change of PV’s current over the
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operating time to detect the hotspot over the degradation. In terms of implemen-

tation, the design of the system’s implementation is simple with only centralized

current and voltage sensors. Apart from the detection, this chapter also intro-

duces and discusses the hotspot’s temperature estimation method which has the

benefit to indicate how severe the hotspot occurs in the cell, contributing more

advantages to the PV’s maintenance stage.

The chapter is outlined as follows. Firstly, section 4.1 states the problems of

hotspot toward PV system in the reversed bias condition and temperature esti-

mation. The chapter continues with section 4.2, presenting the elaborate hotspot

model in the cluster’s structure using the voltage-controlled current source model

and analysis of factors that accelerate the hotspot condition. The proposed de-

tection algorithm is presented in section 4.3 with the system’s implementation

and results to evaluate the algorithm in section 4.4. The implementation consists

of hotspot detection cases in di↵erent sizing, various irradiation, and material

defection. The chapter ends with the discussion of temperature estimation in

section 4.5 for further understanding of the linkage between electrical engineering

and material science concepts used to develop the estimation method.

4.1 Problem Statement

As explained in chapter 3, the hotspot model is introduced for modeling the

PV module operation. Since it is impossible to extract and access the hotspot

directly from the PV cell, the hotspot is modeled using the electric circuit to

represent the operation.

According to section 3.3, the simplified low shunt resistance model is used

to represent the defective part of the PV cell under hotspot conditions. When

the shunt resistance reduces due to material degradation, the circuit induces

the current which causes the power dissipation. Also, the simplified model is

analyzed and used to design the hotspot detection algorithm. To improve the

existed model, more standards and practical specifications are considered. As

stated in the chapter’s introduction, the practical PV module is implemented
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using the cluster’s structure. Explained by work in [76], most commercial PV

modules are formed by a group of PV cell serially connected and include three

bypass diodes. Some of the PV modules are o↵ered without bypass diodes. Figure

4.1 shows the PV module model in three cluster’s structure.

Figure 4.1: PV module model in three cluster’s structure

From figure 4.1, the standard model consists of 60 PV cells is divided into

three clusters. Each cluster consists of 20 PV cells connected in series and is

separated by the bypass diode. This diode helps to mitigate the exceed current

and prevent from the hotspot. Although most PV installations include the bypass

diode to protect the e↵ects of shading and hotspots, however; the diode is still

insu�cient for hotspot prevention. Work done by Bharadwaj et al [77] states the

cause of hotspots in the presence of large mismatches such as partial shading, and

also shows that the installation of the standard bypass diodes does not eliminate

hot-spotting inside the array. The weakness of bypass diode is also mentioned

by the work in [78] and [79], which describes that the diode helps to reduce

the magnitude of the hotspot. However, a moderate hotspot that accelerates

degradation can still occur.

As a result, the PV module operates as the reverse-bias diode which dissipates

power and consequently heats up. Moreover, according to Rossi et al [67], the
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time required for the heating to generate permanent damage in a PV cell un-

der hotspots strongly depends on two factors—environmental parameters (from

shading and temperature) and impurities in the materials. For this reason, it

is essential to find a practical solution for detecting hotspots to prevent severe

damage.

Furthermore in IEC 61215 standard, although the hotspot e↵ect in shading

condition is explained; the document does not describe the e↵ect of the material’s

property degradation. Since the degradation in the cell can a↵ect the hotspot

model parameter and increase the induced current, the increase of the induced

current can occur. Therefore, the e↵ects of material matters should be considered.

In addition, after the algorithm successfully detects the hotspot, further process in

indicating how severe the detected hotspot is performed. This process is relatively

challenging for researchers due to the requirement of material specification and

several factors.

4.2 Analysis

This section introduces the hotspot model use the cluster’s structure, with the

analysis of hotspot condition under di↵erent material’s defection and irradiation

levels.

4.2.1 PV Cell Hotspot Model

The cited hotspot model used in this section is presented by Rossi et al [67].

The model is implemented based on the single-diode DC model with the addi-

tional voltage-controlled current source (VCCS) connected to the shunt resistance

branch. The reversed bias current IBR is generated.
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Figure 4.2: PV hotspot model with VCCS and shunt resistance [67]

When the cell is exposed to sunlight, the source generates the current is pro-

portional to the irradiation level. Equation 4.1 shows the expression of the cur-

rents in the circuit according to Kircho↵’s current law.

IPV = Iph � ID � IRp (4.1)

The reverse bias of the cell is represented by the polarity of the PV’s output

voltage VPV . During normal condition (VPV > 0), the current source IBR does

not generate additional current; therefore, the circuit operates in normal condition

as the PV single-diode model. The current IBR generated from the additional

VCCS expressed shown in equation 4.2 [67].

IBR =

(
0 , VPV > 0

↵(VPV

Rp

)(1� (VPV

VBD

))�m
, VPV  0

(4.2)

From equation 4.2, ↵ and m are the fitting parameter (↵ =1.93 and m = 1.10

for the crystalline Silicon) and VBD is the cell’s breakdown voltage. When VPV

turns negative, the current source generates IBR in the exponential trends.

Figure 4.3 presents the current-voltage (I-V) characteristic curve of the hotspot

cell, assuming the 500 Ohm shunt resistor Rp with the irradiation at 1000 W/m2.
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Figure 4.3: I-V characteristic curve of the hotspot cell in forward and reversed

bias conditions

As shown in figure 4.3, the curve presents the PV’s current in two operating

regions including forward and reverse bias. When VPV is positive, the cell will

operate in forward bias in which the cell’s diode turn-on when reaching the diode’s

forward voltage VF of 0.6 V. PV’s current increases to approximately 2 A (current

level at 1000 W/m2). In contrast, when VPV turns negative, the reverse bias

condition starts to occur. The graph shows the PV’s current starts to incline

exponentially, especially when reaching the breakdown voltage of 10 V. This sharp

increment causes the overheat inside the cell’s surface and leads to damage.

4.2.2 E↵ect from the Shunt Resistance

As described in section 4.1, since the material’s degradation in the cell can

a↵ect the hotspot model parameter and increase the induced current; therefore,

the analysis considers the e↵ect of the shunt resistance towards the performance

of the PV module. A detailed investigation is performed by considering the value

of shunt resistance (Rp), as shown in the I-V curves in figure 4.4.
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Figure 4.4: I-V characteristic curves of the hotspot cell at di↵erent shunt resis-

tances

From figure 4.4, the curve shows the e↵ect of shunt resistance values on the

reversed bias current in the cell. The result presents the low resistance value

generates a large current. Especially for the lowest resistance value of 10 Ohm,

the current increases significantly at approximately -5 V, which is less than the

value of the breakdown voltage. The low resistance value can be reflected as

the degradation of the material which induces more current and more power

dissipation.

4.2.3 E↵ect from the Level of Irradiation

Due to the dependence of weather, especially irradiation, it is necessary to

evaluate the hotspot e↵ect at di↵erent irradiation levels. By using 500 Ohm

shunt resistance, figure 4.5 shows the e↵ect of irradiation on the PV’s current

during hotspot condition.
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Figure 4.5: I-V characteristic curves of the hotspot cell at di↵erent irradiations

Figure 4.5 highlights the di↵erent levels of current which are in proportional to

the irradiation. The graph shows that the more irradiation inputs to hotspot’s

cell, the more generated current causes a higher power dissipation level.

4.2.4 E↵ect of Hotspot to PV Module in Cluster’s

Structure

In this part, the e↵ect of the hotspot in the PV cell is analyzed with the

cluster’s structure in the single PV module. Figure 4.6 shows the PV module

in three cluster’s structure with one hotspot’s cell highlighted. The hotspot is

implemented with the PV cell VCCS and shunt resistance model.
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Figure 4.6: Hotspot’s cell in PV module model in three cluster’s structure

Table 4.1: Parameters for a single PV cell under STC

Parameters Value

Maximum power 0.76 W

Current at maximum power 1.95 A

Voltage at maximum power 0.40 V

Short-circuit current 2.00 A

Open-circuit voltage 0.50 V

Shunt resistance 35.54 Ohm

Series resistance 0.02 Ohm

Table 4.1 presents the parameters’ specification of the PV cell under STC. By

using the configuration in figure 4.6, the parameters of the hotspot’s cell, also the

PV module under normal and hotspot conditions are displayed. The condition

for the hotspot’s cell consists of the irradiation of 300 W/m2 and shunt resistance

of 35.54 Ohm. Figure 4.7 presents the I-V curves of the hotspot’s cell and the

whole PV module.
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Figure 4.7: I-V characteristic curves of the hotspot’s cell and whole PV module

From figure 4.7, the I-V curves show the PV’s current characteristic under forward

and reverse bias regions. The result shows the capability to match the information

presented by the IEC 61215 standard explained in figure 3.3.

Under reversed bias region, the red graph displays the cell’s current which

increased exponentially from the current value at 300 W/m2 before reaching the

breakdown voltage at -10 V. Moreover, the blue graph displays the linear decrease

on the whole module’s current, existing at cluster’s total voltage (at 20 V). In this

case, although the maximum power of the module is not significantly di↵erent

compared to the normal condition, the high power dissipation can cause the cell

to overheat and bring damage. Figures 4.8(a) and 4.8(b) conclude the e↵ect of

shunt resistance and irradiation toward the module’s current.
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(a) Shunt resistance e↵ect

(b) Irradiation e↵ect

Figure 4.8: PV module characteristic with the e↵ect of shunt resistances and

irradiations

Figure 4.8(a) presents the inverse proportional relationship between the shunt

resistance and power dissipation level. Less shunt resistance shows a higher power

dissipation, observing from the area under the PV’s current. In addition to the
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resistance, the irradiation also a↵ects the amount of power dissipation. Con-

firming by figure 4.8(b), the information presents the directly proportional re-

lationship of the irradiation and power dissipation. The dissipation contributes

to high-temperature rises in the hotspot’s cell. If the cell operates close to the

breakdown voltage, the level of dissipation can increase exponentially, causing

damage to the cell. The achieved information from the analysis is used to design

the hotspot-detecting algorithm presenting in section 4.3.

4.3 Proposed Hotspot Detection Algorithm for

PV Module in Cluster’s Structure

This section presents the general system implementation with the improved

hotspot detection algorithm for PV module in the cluster’s structure. Imple-

mentation shows in figure 4.9. The system is implemented by PV array (two

series-connected modules, one module contains the hotspot’s cell), the boost con-

verter with a duty cycle control and the constant load. The reversed bias voltage

VREV is assumed to decrease over the system’s operating time. This decreased

rate represents the degradation due to the hotspot. In this case, VREV has a

decrease rate of -0.21 V per second. According to the decrease of VREV over time,

the gradual increase of the PV’s current in reverse bias region can be observed

from the whole module’s I-V curve. Therefore, if the system can determine the

increase rate of change of PV’s current, the hotspot can be detected.
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Figure 4.9: System’s implementation of the hotspot detection for PV module in

cluster’s structure

For the converter unit, the sampling frequency and period are set in common

to the simplified hotspot detection system presented in section 3.5 (sampling

frequency is set as 10 kHz from the PWM signal, sampling time for the current

and sensors is set as 0.1 ms.

Figure 4.10 shows the example of the I-V curve of hotspot conditions over the

changes of reversed bias voltage.
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(a) I-V characteristic curves under hotspot condition with the

decrease of reverse bias voltage over time

(b) Magnified inclined current changes detection area

Figure 4.10: PV module characteristic over operating time

As a result of the exponential increase of PV’s current in the hotspot’s cell,

the decrease of reverse bias voltage tends to reach the breakdown. In addition,

the slope calculation in the region can help to detect the dynamic change of

hotspot. The information is used for designing the detection algorithm, in which

the flowchart is shown in figure 4.11 (the algorithm is complemented together
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with the shading detection and global MPP tracking in figure 3.7).

Figure 4.11: Proposed hotspot detection algorithm for PV module in cluster’s

structure

The concept of this algorithm is to improve the simplified detection model

presented in section 3.8 to be compatible with the PV cluster structure. The al-
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gorithm searches the detection every 1 hr after the power di↵erence is detected. In

the same manner as the simplified version, the indicators of PV’s status (Normal

and Hotspot) are assigned.

For indicating the searched region, the hotspot occurrence probability is re-

vised. According to the data survey of the PV sites across the UK [8], the most

found hotspot type belongs to one hotspot’s cell with 41% of the total hotspot’s

percentage, while the second rank belongs to two hotspot cells. From the I-V

characteristic curves, the commonly searched region for all number of defected

cluster locates at the ranges of the knee level of the curve (at 80% of VOC)

The algorithm starts detecting the inclined current from 80% of VOC , the

voltage assigns as the first reference voltage V1[1] and the current is recorded as

I1[1]. Step repeats after shifting the voltage by 0.1 V to the next point V2[1] at

85% of VOC ; afterward, the algorithm records the current I2[1]. Consequently, the

algorithm calculates the rate of change called Slope[m] between two current points

with respect to the voltage points, as shown in equation 3.1. After calculating

all slope in the searched region, the average of the total slope (|Slopeaverage|) is
determined. Importantly, to detect the hotspot, the algorithm calculates whether

or not |Slopeaverage| presents the reverse bias of the cell. If |Slopeaverage| shows the
positive value, the program estimates the status as the hotspot condition, making

the Hotspot indicator triggers from 0 to 1. Consequently, the algorithm proceeds

to the second stage which is the power dissipation and temperature estimation On

the other hand, for the normal condition if |Slopeaverage| is less than or equal to

zero, meaning the PV cell is not a↵ected by the low shunt resistance, the Normal

status remains before proceeding to the global MPPT for tracking the maximum

power.

To sum up, the proposed algorithm presents the hotspot detection method

which can be used with the PV module in cluster’s structure; improving more

practical capability. By using the concept of detecting the increase of reverse bias

current over the operating time, the program is capable to indicate the hotspot

in the PV cell.
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4.4 System Implementation and Results

This section presents the system’s implementation to evaluate the proposed

detection method. Using the module specification from table 4.1, the case divides

by di↵erent values of the shunt resistances and irradiations. One-cell and two-

cell hotspot are used to test the proposed detection algorithm, due to the high

occurrence rate reviewed by the survey data explained in section 3.1. Figure 4.12

shows the system’s implementation of the hotspot detection algorithm.

Figure 4.12: System’s implementation of the hotspot detection in di↵erent cases

The hotspot model with VCCS and shunt resistance explained in figure 4.2 is used

to build the hotspot PV cell. The implementation is divided with five possible

values of shunt resistances with a -20% variation with respect to its nominal
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value, based on [67]. The work considers five possible values of shunt resistance

with the step of -20% reduced with respect to the nominal value at 35 Ohm, to

present various defection levels. Furthermore, each resistance value is tested with

di↵erent levels of irradiation.

4.4.1 One-cell Hotspot Detection

The first part of the implementation is to detect the one-cell hotspot in the

PV array. Mentioned by the data survey in [8], the one-cell is the most-found

hotspot type across the PV sites with the occurrence percentage of 42%, and

yet the most challenging to detect. The test is divided by two irradiations at 10

W/m2 and 100 W/m2. The hotspot’s cell is highlighted in red in figure 4.12.

(a) Irradiation at 10 W/m2

The first case presents the detection at 10 W/m2. Figure 4.13 presents the

results of hotspot detection with di↵erent shunt resistances, including normal

conditions.

(a) 35 Ohm
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(b) 28 Ohm

(c) 21 Ohm
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(d) 14 Ohm

(e) 7 Ohm
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(f) Shading condition

Figure 4.13: Hotspot and normal condition detection for the irradiation at 10

W/m2 at di↵erent shunt resistances

The results in figure 4.13 confirms the e�ciency of the proposed hotspot de-

tection algorithm. The program starts with the first MPPT to determine the

maximum power of the total PV array, detecting at 72.74 W. The process takes

approximately 2.5 seconds. Continuously, when the hotspot occurs at 10 seconds,

the program starts to identify the hotspot by calculating Slope[m] and detecting

any incline of the current from the reverse bias current. According to figure 4.13,

the hotspot at di↵erent shunt resistances is detected. It can be observed the

increase of incline current changes when shunt resistances reduce after the pro-

gram successfully detects the hotspot. Although the resistances vary the changes

of PV cell current; the algorithm is capable to detect the incline change. The

status indicator triggers from 0 to 1 for indication, after the algorithm finishes

the detection. This process takes approximately 2.23 seconds.

On the other hand, the algorithm can determine the normal condition, includ-

ing the low irradiation at 10 W/m2. The program determines the status as the
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normal condition in which proceeds to the proposed global MPPT in chapter 2.

From figure 4.13(f), the program detects the normal condition with the decline

slope at -0.15 A/V. Consequently, the program proceeds to the global MPPT al-

gorithm after completing the detection. The algorithm takes approximately 0.23

seconds to track the new global MPP.

(b) Irradiation at 100 W/m2

Apart from the low irradiation, figure 4.14 shows the hotspot detection at 100

W/m2 to evaluate the proposed algorithm in di↵erent irradiation condition.

(a) 35 Ohm
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(b) 28 Ohm

(c) 21 Ohm
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(d) 14 Ohm

(e) 7 Ohm
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(f) Shading condition

Figure 4.14: Hotspot and normal condition detection for the irradiation at 100

W/m2 at di↵erent shunt resistances

Graphical results in figure 4.14 also confirm the success of the proposed

hotspot detection algorithm. The program starts with the first MPPT to deter-

mine the maximum power of the whole PV array. Afterward, when the hotspot

occurs at 10 seconds, the program starts to identify the hotspot by calculating

Slope[m] and detect any incline of the reverse bias current. The results of the

hotspot detection show successful detection, which indicate the increase of incline

current changes when the shunt resistances decrease. The algorithm is capable

to detect the incline change although the resistances vary the inclined current

changes rate.

Moreover, the algorithm can also determine the normal condition including

the shading irradiation at 100 W/m2. The program determines the status as

the normal condition and proceeds to the global MPPT to track the new MPP.

Confirming by figure 4.14(f), the program detects the normal condition with the

decline slope at -0.056 A/V, proceeding to the global MPPT after the detection
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completes. The algorithm takes approximately 0.27 seconds to track the new

MPP.

4.4.2 Two-cell Hotspot Detection

In this part, the test involves the number of hotspots cells in the PV module.

The test uses the implementation according to figure 4.12 (whereas the hotspot’s

cell is highlighted in orange). The test consists of three categories, categorized by

di↵erent shunt resistances and irradiation. Table 4.2 summarizes the information

of three test categories, dividing into cases 1 to 8.

Table 4.2: Summarized information of the two-cell hotspot detection cases from

1 to 8

Case

catagory

Case

number

First hotspot’s cell Second hotspot’s cell

Irradiation

(W/m2)

Shunt

resistance

(Ohm)

Irradiation

(W/m2)

Shunt

resistance

(Ohm)

Same irradiation

with di↵erent shunt

resistance

1 100 35 100 35

2 100 35 100 21

3 100 21 100 7

Di↵erent irradiation

with same shunt

resistance

4 100 28 300 28

5 100 14 300 14

Di↵erent irradiation

with di↵erent shunt

resistance

6 200 21 500 14

7 10 14 400 7

Category 1: Same irradiation with di↵erent shunt resistance

Figure 4.15 presents the graphical results of two-cell hotspot detection for the

first category, dividing into cases 1 to 3. The hotspot is set to happen at 10

seconds based on the simulation time.
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(a) Case 1

(b) Case 2
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(c) Case 3

Figure 4.15: Graphical results of two-cell hotspot detection (category 1)

According to the results in figure 4.15, it is established the success of the

proposed detection algorithm when the shunt resistance is varied. As shown in

figures 4.15(a) and 4.15(b), the average slope of 0.0329 A/V is achieved. Both

cases present the same slope value due to the same highest shunt resistance value

at 35 Ohm. By tracking the slope starts from 80% of the total open-circuit

voltage, the slope of the highest shunt resistance is estimated. The algorithm

tracks the hotspot and shows the indicator within 5 seconds. Similarly, for figure

4.15(c), the average slope is tracked with a value of 0.0548 A/V. The value is

determined from the highest shunt resistance of 21 Ohm, giving the higher slope

value compared to cases 1 and 2.

Category 2: Di↵erent irradiation with same shunt resistance

Figure 4.16 shows the graphical results of two-cell hotspot detection for the

second category, from cases 4 and 5.
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(a) Case 4

(b) Case 5

Figure 4.16: Graphical results of two-cell hotspot detection (category 2)
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From the graphical results, the proposed algorithm succeeds to determine

the hotspot at di↵erent irradiation levels. Confirming in figure 4.16(a), at the

MPPT period between 0 to 3 seconds, the graph shows the e↵ects of non-uniform

irradiation by representing with the step change of the PV’s current. Although

the shading only applies to the two cells (from a total of 60 in three clusters),

the non-uniform current still can be observed. Apparently, the total maximum

power after MPPT is 56.5 W due to shading conditions. After the hotspot occurs

at 10 seconds, the algorithm starts the detection process, results in the average

slope of 0.0411 A/V. The value is occurred by the lowest irradiation level of 100

W/m2, with the highest shunt resistance of 28 Ohm. Furthermore, figure 4.16(b)

presents the success detection with the average slope of 0.0822 A/V (higher than

case 4), results from the highest shunt resistance of 14 Ohm. The detection in

both cases also takes less than 5 seconds. In comparison, although the same

irradiation levels are established in cases 4 and 5, the average slopes are varied

due to the di↵erence of shunt resistances.

Category 3: Di↵erent irradiation with di↵erent shunt resistance

Figure 4.17 shows the results of the third category, consists of cases 6 and 7.

(a) Case 6
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(b) Case 7

Figure 4.17: Graphical results of two-cell hotspot detection (category 3)

According to results in figure 4.17, the proposed algorithm can detect the

hotspot in the last two cases which the irradiation and shunt resistance are

non-uniform. Between the MPPT, the graph shows the e↵ects of non-uniform

irradiation by representing the step change of the PV’s current. The MPPT

completes the power track, reaching the maximum power of 57.2 W. Observed in

figure 4.17(a), the algorithm detects the hotspot at the average slope of 0.0548

A/V, which generated from the highest shunt resistance of 21 Ohm at the first

hotspot’s cell. Furthermore, figure 4.17(b) shows the success detection with an

average slope of 0.0318 A/V, results from the highest shunt resistance of 14 Ohm.

To conclude the two-cell hotspot detection results, even though the shunt re-

sistance and irradiation do not significantly reduce the maximum power of the

total PV array, it is important to detect the hotspot, especially at the low shunt

resistance. The results from cases 1 to 7 confirm the e�ciency of the proposed

hotspot detection algorithm. The focused parameters in the results include the

accuracy of the detection, average slope and detection time. Furthermore, the

results of hotspot detection develops the robust responses. Results show the de-
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tection time for two PV’s series-connected panels takes within 5 seconds, imply

fast detection. The sudden current and voltage changes can be occured during

the detection; however, the duration is considered to be short within 2 seconds

after the detection completes. Moreover, for the normal condition, the system

can recover back to the stability point by using the proposed global MPPT algo-

rithm, with the maximum time required of 4 seconds. The algorithm can operate

under various conditions of irradiation and shunt resistance. Importantly, the sys-

tem implementation is simple and requires neither the extra current and voltage

sensors, temperature and irradiation sensors, nor the infrared camera.

4.4.3 Detection with Di↵erent Breakdown Voltage Rate

To confirm the slope detection concept to detect the hotspot, figure 4.18

summarizes the average slope results over the decrease of shunt resistances in

di↵erent degradation rates. The results consist of five di↵erent time ranges for

the PV cell to reach its breakdown voltage; including 50, 100, 150, 200 and 250

seconds.

Figure 4.18: Record of the average slopes at di↵erent shunt resistances and rate

of reverse bias voltage changes
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Table 4.3 summarizes the numerical results of the average slope according to

figure 4.18.

Table 4.3: Numerical results of the average slopes at di↵erent shunt resistances

and rate of reverse bias voltage changes

Time reached

breakdown voltage (s)

|Slopeaverage|
35 Ohm 28 Ohm 21 Ohm 14 Ohm 7 Ohm

50 0.015 0.019 0.028 0.039 0.079

100 0.006 0.008 0.011 0.016 0.032

150 0.004 0.005 0.007 0.011 0.020

200 0.003 0.004 0.005 0007 0.015

250 4.312e-4 5.3906e-4 7.1876e-4 0.0011e-4 0.0022e-4

Results from figure 4.18 show that the average slope increases in inversely pro-

portional to the time reached the breakdown voltage, with the decrease of the

shunt resistance. The maximum average slope reaches 0.08 A/V at 7 Ohm for 50

seconds of time to reach breakdown voltage. In summary, due to the low shunt

resistance as long as the defective cell works in reverse bias operation, the cell

experiences more power dissipation and leads to higher temperature rises.

Further discussions of the power dissipation and temperature estimation to

indicate the level of damage of the PV cell is presented in the next section.

4.5 Temperature Estimation

As explained in section 4.2 about the e↵ect of shunt resistance and irradiation

which distributes to power dissipation in the PV cell. In this section, the power

dissipation and temperature estimation are discussed.

Described by IEC 61215 in figure 3.3, the reversed bias I-V curve can represent

the quantity of power dissipation by calculating the area under the curve in the

reversed bias region. Since the power dissipation and the temperature have a

directly proportional relationship, it is possible to use the information to estimate
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the temperature. However, the di�culty is to connect these two parameters

together, because the power dissipation is representing using the electrical term

meanwhile thermal is one of the material properties. The objective is to find the

linkage parameter to connect the dissipation and temperature.

Research by Armstrong et al [80] explains the material composition of the

PV panel. The information states the six main material layers in the panel; the

glass covering, an anti-reflective coating (ARC), PV cells, ethylene-vinyl acetate

(EVA), metal back sheet and Tedlar PVF layer, these layers get embedded in a

metal frame. Furthermore, the thermal transfer can be derived by the RC thermal

circuit, which consists of the thermal resistances and capacitances. Figure 4.19

shows the thermal model of the layers in the PV panel.

Figure 4.19: Photovoltaic thermal resistance network [80]

The thermal model in figure 4.19 describes the heat loss in each layer representing

by the thermal resistances and capacitances. Each component can be evaluated

using the functions of the material’s sizing and thermal properties.

Research by Rossi et al [67] describes the occurrence of the hotspot as the

small area in the cell and proposes the thermal model to represent the hotspot

parameters. Figure 4.20 shows the equivalent thermal model use to estimate the

temperature of the defected area under hotspot conditions.
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4.5 Temperature Estimation

Figure 4.20: Equivalent thermal model to estimate the temperature of the de-

fected area under hotspot condition [67]

From figure 4.20, The lower RC circuit consists of CTHcell and RTHcell, represents

the PV cell temperature as a function of the cell’s irradiation �Girr(t). Moreover,

the upper RC circuit composed by CTH�HS and RTH�HS models the represent of

temperature in terms of power dissipation function Pdiss(t). The power dissipation

can be estimated from the area under the I-V curve in reversed bias condition.

The value of parameters RTHcell, CTHcell, RTH�HS and CTH�HS depends on

the material composing the upper layer of the PV cell. Equations 4.3, 4.4, 4.5

and 4.6 show the calculation of RC thermal properties used in the model. The

equations also present that the property’s value is related to the sizing of PV cell

(including material’s thickness and hotspot area), and the material properties

(such as material’s thermal conductivity, density, and heat capacity).

RTHcell =
l

kAcell
(4.3)

RTH�HS =
l

kAHS
(4.4)
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4.5 Temperature Estimation

CTHcell = Acelll⇢& (4.5)

CTH�HS = AHSl⇢& (4.6)

After calculating the RC thermal circuit parameters, equation 4.7 is used to

estimate the temperature before and after the occurrence of the hotspot.

THS(t) =

8
>><

>>:

Tamb +RTHcellGirr , t < tHS

Tamb +RTHcellGirr(� + (1� �)e
�(

t�tHS

R
THcell

C
THcell

)
)

+PdissRTH�HS(1� e
�(

t�tHS

RTH�HSCTH�HS

)
) , t � tHS

(4.7)

From equation 4.7 assuming before the hotspot occurrence (t < tHS), temperature

estimation can be calculated according to the function of ambient temperature

Tamb, thermal resistance of the defected area RTHcell and cell’s irradiation Girr.

In simplicity, the temperature level mainly depends on the ambient temperature

during operation. However, after the hotspot occurs (t � tHS), there are several

parameters involved in the temperature. The parameters can be explained as the

exponential terms of the thermal RC circuits response. Also, the equation shows

the proportional relationship to the temperature with the levels of irradiation and

importantly, the power dissipation Pdiss related to the shunt resistances value as

explained.

After the estimation, the important point is to identify the degradation level

regarding the hotspot’s temperature. As reviewed, the temperature’s damage

threshold is introduced by the operating standard in each country and publi-

cations. Each work presents di↵erently based on the temperature’s level. For

instance, research in [81] describes the indicator using the thermal breakdown in

a cell’s p-n junction. The high internal temperatures can reach above 400 �C,

entering the cell’s second breakdown voltage. Consequently, the breakdown leads

to permanent cell damage. However, even if the second breakdown does not oc-

cur, high cell temperatures can lead to secondary degradation e↵ects. Figure 4.21

presents the temperature’s threshold for each degradation level.
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Figure 4.21: PV cell damage threshold identified by the estimated temperature

[81]

Typically, PV panels are rated up to 85 �C, but hotspot can push the cell tempera-

ture far above the rated temperature. If the cell surface temperatures surpass 150
�C, the encapsulate and isolative material surrounding the cells can be damaged.

The major challenging points are mainly the determination of power dissipa-

tion, which needs more elaborate current and voltage sensors installation. Also,

the calculation involves the PV cell material properties; in which the deep knowl-

edge of material science is necessary. In this case, it has a high potential for

further researches to develop the hotspot temperature estimation using the col-

laboration between electrical engineering and material science fields.

4.6 Conclusions

In conclusion, this chapter presents the improved hotspot model, which is

derived from the elaborate analysis of the reversed bias e↵ect in the PV cell

scale as stated in the IEC 61215 standard. The new hotspot model develops

from the voltage-controlled current source with the usage of the shunt resistance.
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4.6 Conclusions

This chapter analyzes the e↵ects of hotspot from the factors, including the shunt

resistance, level of irradiation and total performance in the cluster’s structure PV

module. The analysis shows more development and compatibility of the hotspot’s

model, contributing to a more practical level with the PV’s standard.

Importantly, the new hotspot detection algorithm is implemented to detect

the hotspot in the cell’s scale, using the concept of the increased bias current un-

der reversed bias condition to detect the incline change of PV’s current overtime

(represent with the current’s average slope). This concept is new and has never

been introduced in other research works. The implementation and graphical re-

sults prove the e�ciency and accuracy of the detection in di↵erent irradiation

and shunt resistances. The algorithm shows fast detection within 5 seconds, rep-

resenting the inclined average slope. Finally, the temperature estimation method

is discussed using the RC thermal circuit. The main challenges are the deter-

mination of power dissipation, which requires more elaborate sensors installation

and the material property parameters. Future works from this chapter are to

analyze the PV material characteristic under hotspot conditions such as thermal

distributions and heat transfer on each PV material structure.
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Chapter 5

Conclusions and Future Works

5.1 Conclusions

This thesis emphasizes two main points, including (1) global MPPT under par-

tial shading condition and (2) hotspot detection in the PV system. To elaborately

answer the problem of determining the accurate MPP during partial shading con-

ditions, the new global MPPT algorithm can e↵ectively track the maximum power

with the changes of irradiation and temperature. The proposed algorithm is im-

plemented based on the concept of the slope calculation technique. Three parts

of the algorithm include the main program, shading detection and irradiation

estimation, and global MPPT. Moreover, studies using short-term and long-term

operations prove the e↵ectiveness of the algorithm. The algorithm contributes

to the fast-tracking speed, sequences to lower the power loss, with more power

generated.

As a consequence of partial shading in PV system, the problem of the hotspot

is continuously analyzed. This thesis describes the e↵ects of the hotspot, which

not only decreasing the power but also causes damage to PV module. The main

challenging point is the connection between electrical and material engineering

perspective to implement the hotspot model.To answer the question, the hotspot

model using a low shunt resistance model to express the degradation of the PV
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performance. The model is analyzed and continuously improved by considering

reversed bias condition and practical standard. By using the information achieves

from the characteristic curves, the detection method using the inclined current

change is presented. Since the degradation of the material is observed, more

increase in current in hotspot’s cell is shown. The inclined current that occurred

from the reverse bias characteristic can be utilized as the indicator to detect the

hotspot.

Therefore, to answer the main problem statement, the analysis of the charac-

teristic curves is used to implement the methods represented as the algorithms.

This thesis presents methods for the irradiation estimation, shading detection,

global MPPT, and further develop into the hotspot detection method. The

achieved analysis and results show a better operation of PV system, with better

e�ciency enhancement and maintenance.

5.2 Future Works

The proposed global MPPT is tested its performance under steady and rapid

change of weather. Future works for the global MPPT include the test of the

algorithm under specific weather conditions that is di�cult for PV to operate;

for instance, snow and rain. Potentially, the investigation of the algorithm with

the standalone PV system can be further analyzed in terms of technical and

economical perspectives. In other respects, future work for the hotspot is to

study on the thermal transfer of the PV cell materials. More understanding of

material characteristics can be applied and utilized for improving the temperature

estimation technique.
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Research Achievements

Research achievements during the doctoral degree course at Shibaura Institute of

Technology, as of September 2020.

Journal Articles

[P.1] Gosumbonggot, J.; Fujita, G, “Partial Shading Detection and Global Max-

imum Power Point Tracking Algorithm for Photovoltaic with the Variation

of Irradiation and Temperature”, Energies 2019, 12, 202

[P.2] Gosumbonggot, J.; Fujita, G, “Global Maximum Power Point Tracking un-

der Shading Condition and Hotspot Detection Algorithms for Photovoltaic

Systems”, Energies 2019, 12, 882

[P.3] Gosumbonggot, J.; Fujita, G, “Hotspot and Partial Shading Detection Al-

gorithm for the Photovoltaic System Measured in Cell’s Scale”, SEATUC

Journal of Science and Engineering (SJSE), 2019

International Conference Proceedings

[P.1] Gosumbonggot, J.; Fujita, G. “Power Dissipation Analysis of the Hotspot

Cell in the Photovoltaic Module”, in Proc, of 2020 South East Asian Tech-

nical University Consortium Symposium (SEATUC 2020) Bangkok, Thai-

land, February 2020

[P.2] Gosumbonggot, J.; Fujita, G, “Photovoltaic’s Hotspot and Partial Shading

Detection Algorithm Using Characteristic Curve’s Analysis ”, in Proc, The
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2019 9th International Conference on Power and Energy Systems (ICPES)

Perth, Australia, December 2019 (Student Travel Award) (Selected

Paper for IET Renewable Power Generation)

[P.3] Gosumbonggot, J.; Fujita, G, “The Algorithm to Detect and Di↵erentiate

Line-Line and Shading fault in PV System”, in The 3rd IEEE ICDCM

(International Conference on DC Microgrids) Matsue, Japan, May 2019

[P.4] Gosumbonggot, J.; Fujita, G, “The Algorithm of Hotspot Detection for

Series-Parallel Connected PV Array”, in 2019 South East Asian Techni-

cal University Consortium Symposium (SEATUC 2019) Hanoi, Vietnam,

March 2019 (Best Paper Award)

[P.5] Gosumbonggot, J.; D.D. Nguyen; Fujita, G, “Partial Shading and Global

Maximum Power Point Detections Enhancing MPPT for Photovoltaic Sys-

tems Operated in Shading Condition”, 53rd International Universities Power

Engineering Conference (UPEC 2018) Glasgow, United Kingdom, Septem-

ber 2018 (Selected Paper for Energies Special Issue: UPEC2018)

[P.6] Gosumbonggot, J.; Fujita, G, “Global Maximum Power Point Tracking Al-

gorithm for Photovoltaic Systems operated in Shading Condition with Vari-

ation of Irradiation and Temperature”, Vietnam-Japan Scientific Exchange

Meeting (VJSE) Sendai, Japan, September 2018 (Best Oral Presenta-

tion Award)

[P.7] Gosumbonggot, J.; D.D. Nguyen; Fujita, G, “Short-ranged Maximum Power

Point Tracking Algorithm for Series Connected Photovoltaics in Partial

Shading Situation”, 2018 South East Asian Technical University Consor-

tium Symposium (SEATUC 2018) Yogyakarta, Indonesia, March 2018
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