
芝 浦 工 業 大 学

博 士 学 位 論 文

Studies on Accurate Numerical Computations of
Thin QR Decomposition and Verified Numerical Computations

for Matrix Equations

Thin QR分解に対する高精度数値計算法と行列方程式に対する
精度保証付き数値計算の研究

令和 2年 3月
Takeshi Terao

寺尾 剛史

Abstract

Numerical computations are widely used in scientific computing and can be performed quickly on
modern computers. With the rapid development of computer architecture, the number of cores has
increased to achieve high performance in terms of speed. Consequently, parallel computing has been
the subject of much research for high-performance computing. However, there are problems involv-
ing rounding errors due to finite precision arithmetic. If a problem is ill-conditioned or large-scale,
the computed results may be inaccurate due to the accumulation of rounding errors. Therefore, in
this thesis we focus on the computational performance of numerical algorithms in terms of speed
and accuracy. There are verified numerical computations that produce an approximate solution of
a problem and its error bound. In this thesis, we provide the following:

• accurate numerical computations of QR decomposition and their rounding error analysis,

• fast methods proving the nonsingularity of real matrices, and

• verified numerical computations for eigenvalue problems.

QR decomposition of a matrix A is a decomposition of the matrix into a product A = QR of an
orthogonal matrix Q and an upper triangular matrix R. QR decomposition is applied to the linear
least squares problem and eigenvalue algorithms. In this thesis, we focus on thin QR decomposition
(also called economy size QR decomposition or reduced QR decomposition). CholeskyQR is a fast
algorithm employed for thin QR decomposition. CholeskyQR2 aims to improve the orthogonality
of the Q-factor computed by CholeskyQR. Although Cholesky QR algorithms can be effectively
implemented in high-performance computing environments, they are unlike the Householder QR
and Gram–Schmidt algorithms, not suitable for ill-conditioned matrices. To address this problem,
we apply the concept of LU decomposition to the Cholesky QR algorithms; that is, the principle is
to use the LU -factors of a given matrix as preconditioning before applying Cholesky decomposition.
We call this method LU-Cholesky QR. We also perform rounding error analysis of the proposed
algorithms on the orthogonality and residual of computed the QR-factors. The numerical examples
provided in this thesis illustrate the efficiency of the proposed algorithms in parallel computing on
both shared and distributed memory computers. In addition, the preconditioning method can be
extended to thin QR decomposition in an oblique inner product.

Next, we provide a computer-assisted proof of the nonsingularity of a real and dense matrix,
which is an important problem in verified numerical computations, in particular in a system of linear
equations. Several verification methods have been proposed using factors of LU decomposition and
their approximate inverses. We propose fast and efficient methods using the LU factors and their
inverse matrices, and the proposed methods can be extended to the verification of the nonsingularity
of interval matrices.

1

Finally, we focus on verification methods for eigenvalues for large-scale and real symmetric ma-
trices. Solving standard and generalized symmetric eigenproblems is essential for many applications.
For large-scale problems, numerical results may be inaccurate; thus, we propose an efficient verifi-
cation method that provides quantitative error bounds of computed eigenvalues. Because the main
cost of the proposed method is devoted to matrix multiplication, the method is expected to have
high scalability on large-scale parallel systems. We present numerical results demonstrating the per-
formance of the proposed method in terms of speed and accuracy on the RIKEN K computer and
FUJITSU Supercomputer PRIMEHPC FX100. In addition, we provide quantitative error bounds
of the computed eigenvalues of problems arising from the physics of a material, in particular, elec-
tronic state calculations. We succeed in obtaining verified eigenvalues of large-scale problems up to
106 dimensions with a reasonable computational cost.

2

Contents

I Accurate Numerical Computation of Thin QR Decomposition 5

1 Introduction 6
1.1 Introduction . 6
1.2 Background . 7

1.2.1 Notation . 7
1.2.2 Cholesky QR algorithms . 7

2 LU-Cholesky QR algorithms for thin QR decomposition 9
2.1 Proposed algorithms . 9
2.2 Rounding error analysis of the proposed algorithms 12

2.2.1 Preliminaries . 12
2.2.2 Proof of Theorem I.1 . 18
2.2.3 Proof of Corollary I.2 . 20
2.2.4 Proof of Theorem I.3 . 20
2.2.5 Proof of Theorem I.4 . 21

2.3 Numerical results . 22
2.3.1 Shared memory computer environments . 22
2.3.2 Distributed memory computer environments 25

3 Preconditioned Cholesky QR algorithms in an oblique inner product 30
3.1 Introduction . 30
3.2 Preliminaries . 30

3.2.1 Cholesky QR algorithm . 30
3.2.2 Refinement of a Q-factor . 31
3.2.3 Shifted Cholesky QR algorithm . 31

3.3 LU-Cholesky QR algorithms in an oblique inner product 32
3.4 Numerical results . 33
3.5 Conclusion for Part I . 35

II Fast verification methods of nonsingularity for matrices 36

4 Introduction 37
4.1 Introduction . 37
4.2 Previous studies . 38

4.2.1 Notation . 38

3

4.2.2 A priori error analysis . 38
4.2.3 Verification methods . 39

5 Proposed verification method using LU-factors and their inverse matrices 44
5.1 Proposed methods . 44

5.1.1 Setting of vL and vU . 47
5.1.2 Algorithm flow . 48

5.2 Numerical results . 48
5.3 Conclusion of Part II . 51

III Validated numerical computations of all eigenvalues for large-scale ma-
trices 54

6 Introduction 55
6.1 Preliminaries . 55
6.2 Previous studies . 56

7 Proposed method 57
7.1 Rounding error analysis . 57
7.2 Numerical results . 58
7.3 Conclusion of Part III . 60

4

Part I

Accurate Numerical Computation of
Thin QR Decomposition

5

Chapter 1

Introduction

1.1 Introduction

In this paper, we propose the LU-Cholesky QR algorithms for thin QR decomposition. Suppose
A ∈ Rm×n,m ≥ n has full column rank. The thin QR decomposition of A such that

A = QR, Q ∈ Rm×n, R ∈ Rn×n

is unique where Q has orthogonal columns satisfying QTQ = I with I being the identity matrix,
and R is an upper triangular matrix with positive diagonal entries. Algorithms employed for thin
QR decomposition are proposed, for example Householder QR (cf. e.g. [1, p. 248]), CGS (Classical
Gram-Schmidt) [2], MGS (Modified Gram-Schmidt) [2], SVQR (Singular Value QR) [3], CAQR
(Communication-Avoiding QR) [4], Cholesky QR [3], and so forth.

Let u denote the unit round-off of floating-point numbers in working precision, for example,
u = 2−53 for IEEE standard 754 [5] binary64 (so-called “double precision”). Let κ2(A) be the
generalized condition number (cf. e.g. [1, p. 284], [6]) of A such that κ2(A) := σmax(A)/σmin(A) if
A has full rank, where σmax(A) and σmin(A) are the maximum and the minimum singular values of
A, respectively.

The Cholesky QR algorithms, such as CholeskyQR (cf. e.g., [1, Theorem 5.2.3]) and Cholesk-
yQR2 [7], are ideally employed for thin QR decomposition due to their communication avoidance
for tall-skinny matrices. CholeskyQR2 first applies CholeskyQR to A and then applies it again to
the computed Q-factor to refine the orthogonality. A rounding error analysis of CholeskyQR2 is
presented in [8]. Computational kernels of Householder QR, CGS, MGS, and CAQR algorithms
are basic linear algebra subprograms (BLAS) -level 1 and -level 2 routines. However, Cholesky QR
algorithms can be implemented using primarily BLAS-level 3 and linear algebra package (LAPACK)
routines, which reflects their high computational performance and parallelization efficiency. A major
drawback of Cholesky QR algorithms involves the squaring of the generalized condition number of
a given problem, i.e., κ2(A

TA) = κ2(A)2, since they directly compute a Cholesky decomposition
of the matrix ATA. Let B̂ be a computed result of the matrix multiplication ATA in floating-
point arithmetic. If κ2(A) >

√
u−1, then κ2(B̂) > u−1 is expected. In this case, the Cholesky

decomposition of B̂ tends to fail; thus, the Cholesky QR algorithms are not applicable.
To solve the problem, we propose two algorithms for thin QR decomposition using LU decom-

position, hereinafter referred to LU-CholeskyQR and LU-CholeskyQR2. Our focus is on Doolittle’s
LU decomposition of a matrix A such that PA = LU , where L ∈ Rm×n is a unit lower triangular

6

matrix, U ∈ Rn×n is an upper triangular matrix, and P ∈ Rm×m is a permutation matrix. After the
LU decomposition of A, Cholesky decomposition is used for the matrix LTL. Then, it is likely that it
runs to completion, since L tends to be fairly well-conditioned even if A is ill-conditioned (cf. e.g. [1,
p. 142], [9, p. 297]). This suggests that we can apply CholeskyQR to L even if κ2(A) >

√
u−1 is

satisfied. We call this algorithm by LU-CholeskyQR. We also develop an algorithm called LU-
CholeskyQR2, which is a refinement of LU-CholeskyQR in terms of the orthogonality of a Q-factor
computed by LU-CholeskyQR. This study is related to [A1, B2, C1–C5, C7, C9, D1, D2] in the list
of publications.

1.2 Background

1.2.1 Notation

Here, we introduce the notation used in Part I. Let F be a set of floating-point numbers as defined by
IEEE Std. 754 [5]. The notation fl(·) indicates that all operations inside parentheses are evaluated
using floating-point arithmetic in round-to-nearest (ties to even) mode. The number of floating-
point operations is counted in flops1. For simplicity, an expression with only the maximum degree
of a polynomial is used for flops. For example, the cost of matrix multiplication for n-by-n matrices
is simply represented as 2n3 flops instead of 2n3 − n2 flops.

1.2.2 Cholesky QR algorithms

CholeskyQR is a fast algorithm for the thin QR decomposition of full column rank matrices. For
a full column rank matrix A ∈ Rm×n, m ≥ n, if B = ATA = RTR, where R ∈ Rn×n is the
Cholesky-factor of ATA, then Q = AR−1 ∈ Rm×n defines the thin QR decomposition of A such
that A = QR [1, Theorem 5.2.3]. The thin QR decomposition of A in floating-point arithmetic aims
to compute QR-factors such as A ≈ Q̂R̂, where Q̂ ∈ Fm×n has approximately orthogonal columns
and R̂ ∈ Fn×n is an upper triangular matrix.

Here, CholeskyQR is introduced in MATLAB-like notations.

Algorithm I.1. CholeskyQR (cf. e.g. [1, Theorem 5.2.3])
For a full column rank matrix A ∈ Fm×n, the following algorithm produces computed thin QR-factors
such that A ≈ Q̂1R̂1.

function [Q̂1, R̂1] = CholQR(A)

B̂ = A′ ∗A; % B̂ = fl(ATA)

R̂1 = chol(B̂); % Cholesky decomposition B̂ ≈ R̂T
1 R̂1

Q̂1 = A/R̂1; % Solve Q1R̂1 = A for Q1

end

Here, chol(B̂) produces an upper triangular matrix as a computed Cholesky-factor of B̂. The
computational cost of B̂ = A′ ∗ A in Algorithm I.1 computed by dsyrk in BLAS is mn2 flops. In
addition, the cost of chol(B̂) and A/R̂1 is n3/3 and mn2 flops, respectively. Therefore, the total
cost of Algorithm I.1 is 2mn2 + n3/3 flops. Matrix B̂ becomes ill-conditioned if κ2(A) >

√
u−1,

1It is not FLOPS, Floating-point Operation Per Second.

7

and it is likely that the Cholesky decomposition of B̂ fails because it produces a square root of a
negative number.

The CholeskyQR2 presented next refines the orthogonality of a computed Q-factor Q̂1 obtained
by CholeskyQR.

Algorithm I.2. CholeskyQR2 [7]
For a full column rank matrix A ∈ Fm×n, the following algorithm produces computed thin QR-factors
such that A ≈ Q̂2R̂2.

function [Q̂2, R̂2] = CholQR2(A)

[Q̂1, R̂1] = CholQR(A); % A ≈ Q̂1R̂1

[Q̂2, R̃] = CholQR(Q̂1); % Q̂1 ≈ Q̂2R̃

R̂2 = R̃ ∗ R̂1;

end

The computational cost of Algorithm I.2 is 4mn2 + n3 flops. This algorithm provides com-
puted QR-factors Q̂2, R̂2 such that A ≈ Q̂1R̂1 ≈ Q̂2R̃R̂1 ≈ Q̂2R̂2. Rounding error analysis of
Algorithms I.1 and I.2 is provided in [8]. Here, assuming that the condition

δ := 8κ2(A)
√
(mn+ n(n+ 1))u ≤ 1, (1.1)

is satisfied, it holds that

∥Q̂T
1 Q̂1 − I∥2 ≤

5

64
δ2, (1.2)

∥Q̂T
2 Q̂2 − I∥2 ≤ 6(mn+ n(n+ 1))u, (1.3)

provided that neither underflow nor overflow occurs in floating-point computations. The orthogo-
nality of Q̂2 is thus more refined than that of Q̂1. As can be seen, the orthogonality of Q̂1 in (1.2)
depends on κ2(A), while that of Q̂2 does not; that is, ∥Q̂T

2 Q̂2 − I∥2 is bounded by O(u) regardless
of κ2(A) under condition (1.1). However, as can also be seen from (1.1), the above Cholesky QR
algorithms cannot be applied if κ2(A) >

√
u−1.

8

Chapter 2

LU-Cholesky QR algorithms for thin
QR decomposition

2.1 Proposed algorithms

Suppose that A ∈ Fm×n has full column rank. Our approach involves avoiding the Cholesky de-
composition of ATA. This is possible using Doolittle’s LU decomposition of A such that PA = LU ,
where L is a unit lower triangular matrix, U is an upper triangular matrix, and P is a permutation
matrix. It is heuristically expected that L is fairly well-conditioned, even if A is ill-conditioned
(cf. e.g. [1, p. 142], [9, p. 297]). Then, if the QR-factors of P TL are obtained such that P TL = QS
where Q is orthogonal and S is upper triangular, then A = P TLU = QSU =: QR. Here, the
QR-factors of P TL can be efficiently obtained by CholeskyQR through the Cholesky decomposition
of LTPP TL = LTL. Doolittle’s LU decomposition function can work as preconditioning for the
Cholesky QR algorithms.

Let L̂, Û , and P be the computed LU -factors of A such that PA ≈ L̂Û . We then perform
the Cholesky decomposition of fl(L̂T L̂) in floating-point arithmetic, which is expected to run to
completion. Our algorithms can thus produce computed QR-factors of A even if κ2(A) >

√
u−1,

which signifies that our algorithms are applicable to a wider class of problems than the original
Cholesky QR algorithms.

The following algorithm, called LU-CholeskyQR, generates computed QR-factors utilizing LU -
factors.

Algorithm I.3. LU-CholeskyQR
For a full column rank matrix A ∈ Fm×n, the following algorithm produces computed thin QR-factors

9

such that A ≈ Q̂1R̂1.

function [Q̂1, R̂1] = LU CholQR(A)

[L̂, Û , P] = lu(A); % PA ≈ L̂Û (P is not used hereafter.)

B̂ = L′ ∗ L; % B̂ = fl(L̂T L̂)

Ŝ = chol(B̂); % Cholesky decomposition B̂ ≈ ŜT Ŝ

R̂1 = Ŝ ∗ Û ;

Q̂1 = A/R̂1; % Solve Q̂1R̂1 = A for Q̂1

end

Because the computational cost of the LU decomposition for A is 2mn2 − n3/3 flops, the total
cost of Algorithm I.3 is 4mn2 − n3/3 flops.

Next, we propose a variant of the LU-CholeskyQR algorithm.

Algorithm I.4. A variant of LU-CholeskyQR
For a full column rank matrix A ∈ Fm×n, the following algorithm produces computed thin QR-factors
such that A ≈ Q̂1R̂1.

function [Q̂1, R̂1] = variant LU CholQR(A)

[L̂, Û , P] = lu(A); % PA ≈ L̂Û

B̂ = L′ ∗ L; % B̂ = fl(L̂T L̂)

Ŝ = chol(B̂); % Cholesky decomposition B̂ ≈ ŜT Ŝ

Q̂1 = (P ′ ∗ L̂)/Ŝ; % P is the permutation matrix

R̂1 = Ŝ ∗ Û ;

end

It should be noted that Algorithm I.1 is applicable for L̂ such that

A ≈ P T L̂Û ≈ P T Q̂R̂Û ,

where P T Q̂ =: Q̃1 has approximately orthogonal columns, R̂Û =: R̃1 is an upper triangular matrix,
and Q̂, R̂ are QR-factors computed by Algorithm I.1. This achieves numerical stability, even if A
is ill-conditioned. In addition, an upper bound of the orthogonality of Q̂1 is given as

∥Q̂T
1 Q̂1 − I∥2 ≤ κ2(L̂)

2(mn+ n(n+ 1))u, (2.1)

from (1.2), if 8κ2(L̂)
√
(mn+ n(n+ 1))u ≤ 1. However, the numerical stability of Algorithm I.4 is

identical to that of Algorithm I.3, because it depends on the applicability of Cholesky decomposi-
tion for L̂T L̂. The residual of the QR-factors computed by Algorithm I.4 is poorer than that of
Algorithm I.3, which is stated in Theorem I.4. The upper bounds of the residuals of the QR-factors
computed by Algorithms I.3 and I.4 depend on ∥A∥2 and ∥L∥2∥U∥2, respectively. Therefore, the
QR-factors computed by Algorithm I.3 have a better upper bound of their residuals than that
computed by Algorithm I.4. Therefore, Algorithm I.3 is suitable for preconditioning in many cases.

The following algorithm called LU-CholeskyQR2 refines the orthogonality computed by Q̂1

obtained by Algorithm I.3.

10

Algorithm I.5. LU-CholeskyQR2
For a full column rank matrix A ∈ Fm×n, the following algorithm produces computed thin QR-factors
such that A ≈ Q̂2R̂2 using Algorithm I.3.

function [Q̂2, R̂2] = LU CholQR2(A)

[Q̂1, R̂1] = LU CholQR(A); % A ≈ Q̂1R̂1 (Algorithm I.3)

[Q̂2, R̃] = CholQR(Q̂1); % Q̂1 ≈ Q̂2R̃

R̂2 = R̃ ∗ R̂1;

end

Thus, the orthogonality of Q̂1 is refined by CholeskyQR as Q̂1 ≈ Q̂2R̃, and the computational
cost of Algorithm I.5 is 6mn2 + n3/3 flops.

In a similar way to the Cholesky QR algorithms, our LU-Cholesky QR algorithms (Algorithms I.3
and I.5) can be implemented with standard numerical linear algebra libraries, such as BLAS and
LAPACK on shared memory computers and PBLAS and ScaLAPACK on distributed memory
computers. Therefore, our proposed algorithms effectively benefit from highly optimized routines
in these libraries, in particular, in parallel computing. However, while Cholesky QR has high grain
parallelism, LU-Cholesky QR does not, as it uses LU decomposition with pivoting. Accordingly,
in a parallel environment with large communication latency, LU-Cholesky QR can be significantly
slower than Cholesky QR.

As a result of rounding error analysis of Algorithms I.3 and I.5 on the orthogonality and residual
of the computed QR-factors, we present the following theorems and corollary.

Theorem I.1. Let Q̂1 be obtained by Algorithm I.3, where neither overflow nor underflow occurs
in floating-point operations. Under the assumptions

δL := 8κ2(L̂)
√

(mn+ n(n+ 1))u ≤ 1, (2.2)

δLU := 64κ2(L̂)κ2(Û)n2u ≤ 1, (2.3)

it holds that

∥Q̂T
1 Q̂1 − I∥2 ≤

1

8
max(δLU , δ

2
L). (2.4)

Corollary I.2. Let Q̂2 be obtained by Algorithm I.5, where neither overflow nor underflow occurs
in floating-point operations. Under the assumptions (2.2), (2.3), and

8κ2(Q̂1)
√
(mn+ n(n+ 1))u ≤ 1,

it hold that

∥Q̂T
2 Q̂2 − I∥2 ≤ 6.5(mn+ n(n+ 1))u.

Theorem I.3. Let Q̂2, R̂2 be obtained by Algorithm I.5, where neither overflow nor underflow occurs
in floating-point operations. Under the assumptions (2.2) and (2.3),

∥Q̂2R̂2 −A∥2 ≤ 4.09n2u∥A∥2. (2.5)

11

Theorem I.4. Let Q̂1, R̂1 be obtained by Algorithm I.4, where neither overflow nor underflow occurs
in floating-point operations. Under the assumptions (2.2) and (2.3),

∥Q̂1R̂1 −A∥2 ≤ 3.15n2u∥L̂∥2∥Û∥2. (2.6)

Proofs of Theorems I.1, I.3, and I.4 and Corollary I.2 are provided in Section 2.2. From
Theorem I.4, the residual norm of the QR-factors of Algorithm I.4 worse, which depends on
∥L̂∥2∥Û∥2(≳ ∥A∥2). Therefore, Algorithm I.3 is superior to Algorithm I.4 for the residual norm,
and orthogonality can be refined as in Algorithm I.5. Next, we modify Algorithm I.3.

2.2 Rounding error analysis of the proposed algorithms

We present the rounding error analysis of Algorithms I.3 and I.5 on the orthogonality of the com-
puted Q-factors by providing the proofs of Theorem I.1 and Corollary I.2.

For X = (xij), Y = (yij) ∈ Rm×n, the notation |X| signifies |X| = (|xij |) ∈ Rm×n. The
inequality X ≤ Y signifies that xij ≤ yij for all (i, j). We assume that all floating-point operations
are performed with unit roundoff u, that neither overflow nor underflow occurs in the floating-point
operations, and that no divide-and-conquer methods are used for matrix multiplication.

2.2.1 Preliminaries

We begin with standard rounding error analysis for matrix multiplication, LU decomposition, and
triangular systems. This applies to blocking strategies; however, it does not apply to more so-
phisticated methods, such as those proposed by Strassen [10], Coppersmith and Winograd [11], or
Williams [12]. For example, given A ∈ Fm×n and B ∈ Fn×k, the product AB is computed by using
mk inner products in dimension n in any order of evaluation.

Lemma I.5 (Jeannerod–Rump [13]). For matrices A ∈ Fm×n and B ∈ Fn×k, a computed result of
matrix multiplication C := fl(AB) ∈ Fm×k satisfies

|AB − C| ≤ nu|A||B|.

Lemma I.6 (Rump–Jeannerod [14]). Suppose that L̂ ∈ Fm×n and Û ∈ Fn×n are computed LU -
factors of A ∈ Fm×n. Then,

L̂Û −A = E5, |E5| ≤ nu|L̂||Û |.

Lemma I.7 (Rump–Jeannerod [14]). Suppose that R̂ ∈ Fn×n is a computed Cholesky-factor of
A ∈ Fn×n. Then,

R̂T R̂−A = E5, |E5| ≤ (n+ 1)u|R̂T ||R̂|.

Lemma I.8 (Rump–Jeannerod [14]). For a nonsingular triangular matrix T ∈ Fn×n and B ∈ Fn×k,
suppose triangular systems TX = B are solved by forward or backward substitution. Then, a
computed solution X̂ ∈ Fn×k satisfies

TX̂ −B = ∆, |∆| ≤ nu|T ||X̂|.

12

For A ∈ Fm×n, m ≥ n, suppose that matrices L̂ ∈ Fm×n, Û ∈ Fn×n, and P ∈ Fm×m are
computed by Doolittle’s LU decomposition with partial pivoting such that L̂Û ≈ PA. From Lemmas
II.1, II.2, I.7, and II.3,

PA− L̂Û = E1, |E1| ≤ nu|L̂||Û |, (2.7)

B̂ − L̂T L̂ = E2, |E2| ≤ mu|L̂T ||L̂|, (2.8)

ŜT Ŝ − B̂ = E3, |E3| ≤ (n+ 1)u|ŜT ||Ŝ|, (2.9)

R̂1 − ŜÛ = E4, |E4| ≤ nu|Ŝ||Û |, (2.10)

Q̂1R̂1 −A = E5, |E5| ≤ nu|Q̂1||R̂1|, (2.11)

are satisfied for the matrices in Algorithm I.3. It is known [9, p. 111] that, for M,N ∈ Rm×n with
|M | ≤ N ,

∥M∥2 ≤ ∥ |M | ∥2 ≤
√

rank(M)∥M∥2, (2.12)

∥M∥2 ≤ ∥N∥2. (2.13)

Therefore, E1, . . . , E5 satisfy the following inequalities.

∥E1∥2 ≤ n2u∥L̂∥2∥Û∥2, (2.14)

∥E2∥2 ≤ mnu∥L̂∥22, (2.15)

∥E3∥2 ≤ n(n+ 1)u∥Ŝ∥22, (2.16)

∥E4∥2 ≤ n2u∥Ŝ∥2∥Û∥2, (2.17)

∥E5∥2 ≤ n2u∥Q̂1∥2∥R̂1∥2. (2.18)

Assume that

δL := 8κ2(L̂)
√

(mn+ n(n+ 1))u ≤ 1, (2.19)

δLU := 64κ2(L̂)κ2(Û)n2u ≤ 1 (2.20)

are satisfied. From assumptions (2.19) and (2.20), L̂ and Û are nonsingular, and

mnu ≤ 1

64
, n(n+ 1)u ≤ 1

64
.

From (2.11), Q̂1 = (A+ E5)R̂
−1
1 , and

Q̂T
1 Q̂1 = R̂−T (A+ E5)

T (A+ E5)R̂
−1

= R̂−T
1 ATAR̂−1

1 + R̂−T
1 (ET

5 A+ATE5 + ET
5 E5)R̂

−1
1 . (2.21)

Substituting (2.7) into (2.21) yields

R̂−T
1 ATAR̂−1

1

= R̂−T
1 (L̂Û + E1)

T (L̂Û + E1)R̂
−1
1

= R̂−T
1 ÛT L̂T L̂Û R̂−1

1 + R̂−T
1 (ET

1 L̂Û + ÛT L̂TE1 + ET
1 E1)R̂

−1
1 . (2.22)

13

In addition, substituting (2.8) and (2.9) into (2.22), we have

R̂−T
1 ÛT L̂T L̂Û R̂−1

1 = R̂−T
1 ÛT (ŜT Ŝ − E2 − E3)Û R̂−1

1 . (2.23)

From (2.10), we obtain

R̂−T
1 ÛT ŜT ŜÛ R̂−1

1 = R̂−T
1 (R̂1 − E4)

T (R̂1 − E4)R̂
−1
1

= I − R̂−T
1 ET

4 − E4R̂
−1
1 + R̂−T

1 ET
4 E4R̂

−1
1 . (2.24)

Next, we introduce several lemmas.

Lemma I.9. The matrix Ŝ in Algorithm I.3 satisfies

∥Ŝ−1∥22 ≤ 1.02σmin(L̂)
−2. (2.25)

Proof. From (2.8), (2.9), (2.15), and (2.16),

ŜT Ŝ = B̂ + E3 = L̂T L̂+ E2 + E3 (2.26)

and

σmin(Ŝ)
2 = σmin(L̂

T L̂+ E2 + E3) ≥ σmin(L̂)
2 − ∥E2∥2 − ∥E3∥2

≥ σmin(L̂)
2 −mnu∥L̂∥22 − n(n+ 1)u∥Ŝ∥22. (2.27)

From (2.15), (2.16), and (2.26),

∥Ŝ∥22 − n(n+ 1)u∥Ŝ∥22 ≤ ∥L̂∥22 +mnu∥L̂∥22,

and

∥Ŝ∥22 ≤
1 +mnu

1− n(n+ 1)u
∥L̂∥22. (2.28)

Hence, from (2.27) and (2.28),

σmin(Ŝ)
2 ≥ σmin(L̂)

2 −mnu∥L̂∥22 − n(n+ 1)u
1 +mnu

1− n(n+ 1)u
∥L̂∥22

≥ σmin(L̂)
2 − (mn+ n(n+ 1))u

1 +mnu

1− n(n+ 1)u
∥L̂∥22.

From the assumption (2.19),

64(mn+ n(n+ 1))u∥L̂∥22 ≤ σmin(L̂)
2.

Then,

σmin(Ŝ)
2 ≥ σmin(L̂)

2 − σmin(L̂)
2

64
· 1 + 1/64

1− 1/64
≥ 0.983σmin(L̂)

2. (2.29)

□

14

Lemma I.10. The matrix R̂1 in Algorithm I.3 satisfies

∥R̂−1
1 ∥2 ≤ 1.03σmin(L̂)

−1σmin(Û)−1. (2.30)

Proof. From (2.28),

∥Ŝ∥22 ≤
1 +mnu

1− n(n+ 1)u
∥L̂∥22 ≤

65

63
∥L̂∥22

and from (2.10) and (2.17),

σmin(R̂1) = σmin(ŜÛ + E4) ≥ σmin(ŜÛ)− ∥E4∥2
≥ σmin(Ŝ)σmin(Û)− n2u∥Ŝ∥2∥Û∥2.

From these, (2.20), and (2.29),

σmin(R̂1) ≥ σmin(Ŝ)σmin(Û)− n2u∥Ŝ∥2∥Û∥2

≥
√
0.983σmin(L̂)σmin(Û)−

√
65

63
n2u∥L̂∥2∥Û∥2

≥ 0.99σmin(L̂)σmin(Û)−
√

65

63

σmin(L̂)σmin(Û)

64

≥ 0.974σmin(L̂)σmin(Û).

□

Lemma I.11. The matrix R̂1 in Algorithm I.3 satisfies

κ2(R̂1) ≤ 1.03(1 + n2u)

√
1 +mnu

1− n(n+ 1)u
κ2(L̂)κ2(Û). (2.31)

Proof. From (2.10) and (2.17), and (2.28),

∥R̂1∥2 ≤ (1 + n2u)∥Ŝ∥2∥Û∥2

and

∥Ŝ∥22 ≤
1 +mnu

1− n(n+ 1)u
∥L̂∥22. (2.32)

Therefore,

∥R̂1∥2 ≤ (1 + n2u)

√
1 +mnu

1− n(n+ 1)u
∥L̂∥2∥Û∥2.

Combining this and Lemma I.10 proves the lemma. □

Lemma I.12. The matrices L̂, Û , R̂1 in Algorithm I.3 satisfy

∥L̂Û R̂−1
1 ∥22 ≤ 1.06.

15

Proof. From (2.28) and Lemma I.10,

∥Ŝ∥2∥Û∥2∥R̂−1
1 ∥2 ≤

√
1 +mnu

1− n(n+ 1)u
∥L̂∥2∥Û∥2∥R̂−1

1 ∥2

≤ 1.03

√
65

63
κ2(L̂)κ2(Û).

From this, (2.10), (2.17), and Lemma I.9,

∥Û R̂−1
1 ∥2 ≤ ∥Ŝ−1∥2(1 + ∥E4∥2∥R̂−1

1 ∥2)
≤ ∥Ŝ−1∥2(1 + n2u∥Ŝ∥2∥Û∥2∥R̂−1

1 ∥2)

≤ 1.01σmin(L̂)
−1

(
1 + 1.03

√
65

63
n2uκ2(L̂)κ2(Û)

)
.

From the assumption (2.20),

∥Û R̂−1
1 ∥2 ≤ 1.01σmin(L̂)

−1

(
1 +

1.03

64

√
65

63

)
≤ 1.03σmin(L̂)

−1. (2.33)

Moreover, from (2.10), (2.23), and (2.24),

∥L̂Û R̂−1
1 ∥22 = ∥R̂−T

1 ÛT L̂T L̂Û R̂−1
1 ∥2

≤ ∥R̂−T
1 ÛT ŜT ŜÛ R̂−1

1 ∥2 + ∥R̂−T
1 ÛT (E2 + E3)Û R̂−1

1 ∥2
≤ ∥(R̂1 − E4)R̂

−1
1 ∥22 + ∥Û R̂−1

1 ∥22(∥E2∥2 + ∥E3∥2)
≤ (1 + ∥E4∥2∥R̂−1

1 ∥2)2 + ∥Û R̂−1
1 ∥22(∥E2∥2 + ∥E3∥2).

From (2.17), (2.28), and Lemma I.10,

∥E4∥2∥R̂−1
1 ∥2 ≤ 1.03n2u∥Ŝ∥2∥Û∥2σmin(L̂)

−1σmin(Û)−1

≤ 1.03n2u
1 +mnu

1− n(n+ 1)u
κ2(L̂)κ2(Û),

and, form (2.15), (2.16), and (2.28),

∥E2∥2 + ∥E3∥2 ≤ mnu∥L̂∥22 + n(n+ 1)u∥Ŝ∥22

≤ 1 +mnu

1− n(n+ 1)u
(mn+ n(n+ 1))u∥L̂∥22

Therefore, from these and (2.33),

∥L̂Û R̂−1
1 ∥22 ≤

(
1 +

1.03 · 65
63

n2uκ2(L̂)κ2(Û)

)2

+
1.07 · 65

63
(mn+ n(n+ 1))uκ2(L̂)

2.

16

Then, from (2.19) and (2.20),

∥L̂Û R̂−1
1 ∥22 ≤

(
1 +

1.03 · 65
64 · 63

)2

+
1.07 · 65
63 · 64

≤ 1.06.

□

Lemma I.13. The matrix Q̂1 computed by Algorithm I.3 satisfies

∥Q̂1∥2 ≤ 1.112 =: β. (2.34)

Proof. From (2.11) and (2.18),

∥Q̂1∥2 ≤ ∥AR̂−1
1 ∥2 + ∥E5R̂

−1
1 ∥2

≤ ∥AR̂−1
1 ∥2 + n2u∥Q̂1∥2κ2(R̂1),

then

(1− n2uκ2(R̂1))∥Q̂1∥2 ≤ ∥AR̂−1
1 ∥2. (2.35)

From (2.14) and (2.22),

∥AR̂−1
1 ∥22 = ∥R̂−T

1 ATAR̂−1
1 ∥2

≤ ∥L̂Û R̂−1
1 ∥22 + 2∥E1∥2∥R−1

1 ∥2∥L̂Û R̂−1
1 ∥2 + ∥E1∥22∥R̂−1

1 ∥22
≤ ∥L̂Û R̂−1

1 ∥22 + 2n2u∥L̂∥2∥Û∥2∥R̂−1
1 ∥2∥L̂Û R̂−1

1 ∥2
+ n4u2∥L̂∥22∥Û∥22∥R̂−1

1 ∥22.

Here, from Lemmas I.10 and I.12,

∥L̂Û R̂−1
1 ∥22 ≤ 1.06, ∥R̂−1

1 ∥2 ≤ 1.03σmin(L̂)
−1σmin(Û)−1. (2.36)

Hence,

∥AR̂−1
1 ∥22 ≤ 1.06 + 2 · 1.03

√
1.06n2uκ2(L̂)κ2(Û)

+ (1.03 · n2uκ2(L̂)κ2(Û))2.

From the assumption (2.20),

∥AR̂−1
1 ∥22 ≤ 1.06 +

2 · 1.03
√
1.06

64
+

(
1.03

64

)2

≤ 1.094. (2.37)

Also, from (2.20) and (2.31),

n2uκ2(R̂1) ≤ 1.03(1 + n2u)

√
1 +mnu

1− n(n+ 1)u
n2uκ2(L̂)κ2(Û)

≤ 1.03 · 65
64

·
√

65

63
· 1

64
.

From this, (2.35), and (2.37), we obtain

∥Q̂1∥2 ≤
∥AR̂−1

1 ∥2
1− n2uκ2(R̂1)

≤ 1.112. (2.38)

□

17

2.2.2 Proof of Theorem I.1

We estimate ∥Q̂T
1 Q̂1−I∥2, where Q̂1 is computed by Algorithm I.3. From (2.21), (2.22), and (2.23),

let

δ1 := ∥R̂−T
1 (ET

5 A+ATE5 + ET
5 E5)R̂

−1
1 ∥2,

δ2 := ∥R̂−T
1 (−ÛT (E2 + E3)Û + ÛT L̂TE1 + ET

1 L̂Û + ET
1 E1)R̂

−1
1 ∥2,

δ3 := ∥R̂−T
1 (−ET

4 R̂1 − R̂T
1 E4 + ET

4 E4)R̂
−1
1 ∥2.

Then,

∥Q̂T
1 Q̂1 − I∥ ≤ δ1 + δ2 + δ3.

We first estimate δ1. From (2.18) and (2.34),

∥E5∥2 ≤ n2u∥Q̂1∥2∥R̂1∥2 ≤ βn2u∥R̂1∥2.

From this and (2.37),

δ1 ≤ 2∥R̂−1
1 ∥2∥E5∥2∥AR̂−1

1 ∥2 + ∥R̂−1
1 ∥22∥E5∥22

≤ 2
√
1.094βn2uκ2(R̂1) + β2n4u2κ2(R̂1)

2. (2.39)

Substituting (2.20) and (2.31) into (2.39),

δ1 ≤ 2.06
√
1.094βn2u(1 + n2u)

√
1 +mnu

1− n(n+ 1)u
κ2(L̂)κ2(Û)

+ β2n4u2

(
1.03(1 + n2u)

√
1 +mnu

1− n(n+ 1)u
κ2(L̂)κ2(Û)

)2

=
2.06

64

√
1.094β(1 + n2u)

√
1 +mnu

1− n(n+ 1)u
δLU

+
β2

642
1.032(1 + n2u)2

1 +mnu

1− n(n+ 1)u
δ2LU

≤ 0.0393δLU + 0.00035δ2LU ≤ 0.0397δLU . (2.40)

18

We next estimate δ2. From (2.14), (2.15), (2.16), (2.28), (2.33), and Lemmas I.10 and I.12,

δ2 ≤ ∥Û R̂−1
1 ∥22(∥E2∥2 + ∥E3∥2)

+ 2∥E1∥2∥L̂Û R̂−1
1 ∥2∥R̂−1

1 ∥2 + ∥R̂−1
1 ∥22∥E1∥22

≤ 1.032σmin(L̂)
−2(mn∥L̂∥22 + n(n+ 1)∥Ŝ∥22)u

+ 2.06n2u∥L̂∥2∥Û∥2 · 1.03σmin(L̂)
−1σmin(Û)−1

+ 1.032σmin(L̂)
−2σmin(Û)−2n4u2∥L̂∥22∥Û∥22

≤ 1.032σmin(L̂)
−2(mn+

(1 +mnu)n(n+ 1)

1− n(n+ 1)u
)u∥L̂∥22

+ 2.06n2u∥L̂∥2∥Û∥2 · 1.03σmin(L̂)
−1σmin(Û)−1

+ 1.032σmin(L̂)
−2σmin(Û)−2n4u2∥L̂∥22∥Û∥22

= 1.032(mn+
(1 +mnu)n(n+ 1)

1− n(n+ 1)u
)uκ2(L̂)

2

+ 2.06n2u · 1.03κ2(L̂)κ2(Û) + 1.032n4u2κ2(L̂)
2κ2(Û)2

≤ 1.032

64

1 +mnu

1− n(n+ 1)u
δ2L +

2.06 · 1.03
64

δLU +
1.032

642
δ2LU

≤ 0.0172δ2L + 0.0333δLU + 0.00026δ2LU

≤ 0.0172δ2L + 0.034δLU . (2.41)

We finally estimate δ3. From (2.17), (2.28), and Lemma I.10,

δ3 ≤ 2∥R̂−1
1 ∥2∥E4∥2 + ∥R̂−1

1 ∥22∥E4∥22
≤ 2.06σmin(L̂)

−1σmin(Û)−1n2u∥Ŝ∥2∥Û∥2
+ 1.032σmin(L̂)

−2σmin(Û)−2n4u2∥Ŝ∥22∥Û∥22

≤ 2.06σmin(L̂)
−1σmin(Û)−1n2u

√
1 +mnu

1− n(n+ 1)u
∥L̂∥2∥Û∥2

+ 1.032σmin(L̂)
−2σmin(Û)−2n4u2

1 +mnu

1− n(n+ 1)u
∥L̂∥22∥Û∥22

=
2.06

64

√
1 +mnu

1− n(n+ 1)u
δLU +

1.032

642
1 +mnu

1− n(n+ 1)u
δ2LU

≤ 0.0328δLU + 0.000268δ2LU ≤ 0.034δLU . (2.42)

Thus, combining (2.40), (2.41), and (2.42),

∥Q̂T
1 Q̂1 − I∥2 ≤ δ1 + δ2 + δ3

≤ 0.0397δLU + 0.0172δ2L + 0.034δLU + 0.034δLU

≤ 0.1077δLU + 0.0172δ2L ≤ 0.1249max(δLU , δ
2
L)

≤ 1

8
max(δLU , δ

2
L),

which proves Theorem I.1.

19

2.2.3 Proof of Corollary I.2

We estimate ∥Q̂T
2 Q̂2 − I∥2, where Q̂2 is computed by Algorithm I.5. In a similar way to rounding

error analysis of CholeskyQR2 [8], an upper bound of ∥Q̂T
2 Q̂2 − I∥2 can be obtained.

From (2.19), (2.20), and (2.4),

∥Q̂T
1 Q̂1 − I∥2 ≤

1

8
.

Then, √
1− 1

8
≤ σmin(Q̂1), σmax(Q̂1) ≤

√
1 +

1

8

and

κ2(Q̂1) =
σmax(Q̂1)

σmin(Q̂1)
≤ 1.134. (2.43)

From the assumption

α := 8κ2(Q̂1)
√
mnu+ n(n+ 1)u ≤ 1,

it holds from (1.2) that

∥Q̂T
2 Q̂2 − I∥2 ≤

5

64
α2. (2.44)

From this and (2.43),

∥Q̂T
2 Q̂2 − I∥2 ≤

5

64

(
8 · 1.134

√
(mn+ n(n+ 1))u

)2
≤ 6.5(mn+ n(n+ 1))u,

which proves Corollary I.2.

2.2.4 Proof of Theorem I.3

From Lemmas II.1 and II.3, Q̂1, R̂1, Q̂2, R̂2, and R̃ in Algorithm I.5 (through Algorithms I.1 and
I.3) satisfy

Q̂2R̃− Q̂1 = E6, |E6| ≤ nu|Q̂2||R̃|, (2.45)

R̃R̂1 − R̂2 = E7, |E7| ≤ nu|R̃||R̂1|, (2.46)

Q̂1R̂1 −A = E8, |E8| ≤ nu|Q̂1||R̂1|. (2.47)

Suppose that R̂1 is non-singular, then R̃ and Q̂1 satisfy

R̃ = (R̂2 + E7)R̂
−1
1 , Q̂1 = (A+ E8)R̂

−1
1 (2.48)

from (2.46) and (2.47). To substitute (2.48) into (2.45), the residual can be estimated as follows.

Q̂2(R̂2 + E7)R̂
−1
1 − (A+ E8)R̂

−1
1 = E6(= Q̂2R̃− Q̂1),

Q̂2(R̂2 + E7)−A− E8 = E6R̂1,

Q̂2R̂2 −A = E6R̂1 − Q̂2E7 + E8.

20

With this, the norm of residual is bounded by

∥Q̂2R̂2 −A∥2 ≤ ∥E6∥2∥R̂1∥2 + ∥Q̂2∥2∥E7∥+ ∥E8∥2
≤ n2u(2∥Q̂2∥2∥R̃∥2 + ∥Q̂1∥2)∥R̂1∥2 (2.49)

from (2.12). Also, ∥R̃∥22 satisfies

∥R̃∥22 ≤
1 +mnu

1− n(n+ 1)u
∥Q̂1∥2 ≤

65

63
∥Q̂1∥2 (2.50)

as the same of proof of (2.32), since Ŝ and R̃ are Cholesky factors of LTL and Q̂T
1 Q̂1 respectively.

From (2.34) and (2.44),

∥Q̂1∥2 ≤ 1.112, ∥Q̂2∥2 ≤
√
1 +

5

64
≤ 1.0384.

Therefore, from (2.49) and (2.50),

∥Q̂2R̂2 −A∥2 ≤ 3.495n2u∥R̂1∥2. (2.51)

Next, we analyze upper bound of ∥R̂1∥2. From Theorem I.1,

σmin(Q̂1) ≥
√

1− 1

8
≥ 0.875, σmax(Q̂1) ≤

√
1 +

1

8
≤ 1.125.

From this and (2.47), we obtain

∥Q̂1R̂1 − E8∥2 ≥ ∥Q̂1R̂1∥2 − n2u∥Q̂1∥2∥R̂1∥2
≥ σmin(Q̂1)∥R̂1∥2 − n2u∥Q̂1∥2∥R̂1∥2

and

∥R̂1∥2 ≤
∥A∥2

σmin(Q̂1)− n2u∥Q̂1∥2

≤ ∥A∥2
0.875− 1.125n2u

≤ 1.17∥A∥2. (2.52)

To substitute (2.52) into (2.51),

∥Q̂2R̂2 −A∥2 ≤ 3.495 · 1.17n2u∥A∥2
≤ 4.09n2u∥A∥2.

2.2.5 Proof of Theorem I.4

From (2.7), (2.10), and (2.12),

L̂Û − PA = E1, ∥E1∥ ≤ n2u∥L̂∥2∥Û∥2, (2.53)

R̂1 − ŜÛ = E4, ∥E4∥ ≤ n2u∥Ŝ∥2∥Û∥2, (2.54)

21

and from Lemma II.3,

Q̂1Ŝ − P T L̂ = E9, ∥E9∥2 ≤ n2u∥Q̂1∥2∥Ŝ∥2. (2.55)

From (2.28), (2.54), and (2.55), we obtain

∥E4∥ ≤ n2 1 +mnu

1− n(n+ 1)u
u∥L̂∥2∥Û∥2 ≤

65

63
n2u∥L̂∥2∥Û∥2, (2.56)

∥E9∥ ≤ 65

63
n2u∥Q̂1∥2∥L̂∥2. (2.57)

From (2.55),

Q̂1ŜÛ − P T L̂Û = E9Û ,

and from (2.53) and (2.54),

Q̂1(R̂1 − E4)−A− P TE1 = E9Û ,

Q̂1R̂1 −A = Q̂1E4 + P TE1 + E9Û .

From this, (2.53), (2.56), and (2.57),

∥Q̂1R̂1 −A∥2 ≤ ∥Q̂1∥2∥E4∥2 + ∥E1∥2 + ∥E9∥2∥Û∥2

≤ n2u

(
2
65

63
∥Q̂1∥2∥L̂∥2∥Û∥2 + ∥L̂∥2∥Û∥2

)
,

and, from (1.2),

∥Q̂1R̂1 −A∥2 ≤

(
1 + 2

65

63

√
1 +

5

64

)
n2u∥L̂∥2∥Û∥2 (2.58)

≤ 3.15n2u∥L̂∥2∥Û∥2. (2.59)

2.3 Numerical results

Here, we present the numerical results of our proposed algorithms in both shared and distributed
memory computing environments.

2.3.1 Shared memory computer environments

We compared the orthogonality of the computed Q-factors, residual norms of the computed QR-
factors, and computation times for the above algorithms (Algorithms I.1, I.2, I.3, and I.5) and
a standard Householder QR algorithm through numerical examples in the following two shared
memory computer environments:

Env. 1 CPU: Intel(R) Core(TM) i7-8550U, 4 cores, Memory: 16 GB, OS: Windows 10, Software:
MATLAB R2018a

Env. 2 CPU: Intel(R) Core(TM) i9-7900X, 10 cores, Memory: 128 GB, OS: Windows 10, Software:
MATLAB R2018a

22

Figure 2.1: Comparison of the computation times for various n with m = 500,000 in Env. 1

We first compare the computation time, and a test matrix A ∈ Fm×n is generated using MAT-
LAB’s function as A = rand(m,n).With respect to the computation times, Figs. 2.1 and 2.2 indicate
that the proposed algorithms were faster than MATLAB’s qr function. Moreover, when n reached a
certain size, the cost of preconditioning by LU decomposition was relatively less expensive, because
the computational performance of LU decomposition was improved for larger n, especially in Env. 2.

Next, we compared the strong-scalability of MATLAB’s qr function, CholeskyQR2, and LU-
CholeskyQR2 algorithms in Env. 2. From Fig. 2.3, strong-scalability of LU-CholeskyQR2 is superior
to that of MATLAB’s QR, and comparable to that of CholeskyQR2.

Next we compare orthogonality and residual on Env. 1, and generate test matrices using
Higham’s randsvd function [9] as

A = gallery(’randsvd’,[m,n],cnd,mode,m,n,1),

where cnd is a specified generalized condition number κ2(A), and mode can be selected as follows:

1. One large singular value.

2. One small singular value.

3. Geometrically distributed singular values.

4. Arithmetically distributed singular values.

5. Random singular values with uniformly distributed logarithm.

23

Figure 2.2: Comparison of the computation times for various n with m = 1,000,000 in Env. 2

In numerical examples, we choose mode = 3 unless otherwise specified. As a standard Householder
QR algorithm, we use MATLAB’s qr function for thin QR decomposition as

[Q,R] = qr(A,0).

For comparison on the orthogonality ∥Q̂T Q̂− I∥2 and the residual norms ∥Q̂R̂−A∥2 for computed
QR-factors, we use the Advanpix Multiprecision Computing Toolbox [15] for calculating them
precisely.

Figure 2.4 compares the orthogonality as ∥Q̂T Q̂ − I∥2, and Fig. 2.5 compares the residuals as
∥Q̂R̂ − A∥2. As can be seen, the proposed algorithms (LU-CholeskyQR and LU-CholeskyQR2)
run to completion even if κ2(A) >

√
u−1. Moreover, the Q-factors computed by LU-CholeskyQR

are successfully refined by LU-CholeskyQR2 in terms of orthogonality. It should be noted that
neither CholeskyQR nor CholeskyQR2 cannot produce QR-factors if κ2(A) >

√
u−1, as Cholesky

decomposition of fl(ATA) breaks down. Both the orthogonality and the residual norms of the
computed QR-factors obtained by LU-CholeskyQR2 are comparable to the results produced by
MATLAB’s qr function.

Moreover, Figs. 2.6 and 2.7 compare the orthogonality and the residual norms for m = 1024,
32 ≤ n ≤ 1024, and κ2(A) ≈ 107. Similar to the previous results, both the orthogonality and the
residual norms of the computed QR-factors obtained by LU-CholeskyQR2 are comparable to the
results produced by MATLAB’s qr function.

Furthermore, Figs. 2.8 and 2.9 display the orthogonality and the residual norms of theQR-factors
computed by LU-CholeskyQR2, respectively, for all mode ∈ {1, 2, 3, 4, 5}. When κ2(A) ≈ u−1, the
orthogonality becomes slightly worse in the cases of mode ∈ {1, 2}. However, the residual norms
are still small for all the modes.

24

Figure 2.3: Comparison of the computation times for various threads with m = 1,000,000, n = 256
in Env. 2

2.3.2 Distributed memory computer environments

Finally, we show some numerical results on parallel distributed memory computers using RIKEN’s
K computer and FUJITSU Supercomputer PRIMEHPC FX100. Computing times of the above
algorithms are compared in the following two computational environments:

K computer CPU: SPARC6TM VIIIfx (8 cores), Memory: 16 GB / node

FX100 CPU: SPARC6TM XIfx (32 cores), Memory: 32 GB (HMC) / node

Here, we use mpifccpx as the Fujitsu C compiler command with MPI with the options

-Kfast,parallel,openmp -SCALAPACK -SSL2BLAMP

on K computer and FX100 in common.
We generate m×n matrices whose elements are pseudo-random numbers uniformly distributed

in the interval (0, 1) with m = 1,048,576, n = 256. Note that the generated test matrices are not
ill-conditioned so that the Cholesky QR algorithms are applicable.

Tables 2.1 and 2.2 compare the computation times for the Householder QR algorithm (labeled
‘HouseholderQR’), CholeskyQR2, and LU-CholeskyQR2. We use the ScaLAPACK routines listed
below:

Algorithm Major ScaLAPACK routines

HouseholderQR pdgeqrf, pdorgqr
CholeskyQR2 dsyrk, dpotrf, dtrsv, dtrmm (∗)
LU-CholeskyQR2 pdgetrf and all routines in (∗)

25

Figure 2.4: Comparison of the orthogonality ∥Q̂T Q̂−I∥2 for various κ2(A) with m = 1024, n = 128
in Env. 1

As can be seen, CholeskyQR2 is the fastest among them in all cases, as expected. Although
the computational performance of Doolittle’s LU decomposition is not very high due to partial
pivoting, the proposed algorithm (LU-CholeskyQR2) is faster than the Householder QR algorithm
(HouseholderQR) in almost all the cases.

26

Figure 2.5: Comparison of the residual norms ∥Q̂R̂−A∥2 for various κ2(A) with m = 1, 024, n = 128
in Env. 1

Figure 2.6: Comparison of the orthogonality ∥Q̂T Q̂− I∥2 for various n with m = 1024, cnd = 107

in Env. 1

27

Figure 2.7: Comparison of the residual norms ∥Q̂R̂ − A∥2 for various n with m = 1024, cnd = 107

in Env. 1

Figure 2.8: The orthogonality ∥Q̂T Q̂− I∥2 for Algorithm I.5 (LU-CholeskyQR2) for various κ2(A)
with several singular value distributions with m = 1024, n = 128

28

Figure 2.9: The residual norms ∥Q̂R̂−A∥2 for Algorithm I.5 (LU-CholeskyQR2) for various κ2(A)
with several singular value distributions with m = 1024, n = 128

Table 2.1: Comparison of computation times (sec) on RIKEN’s K computer (m = 1,048,576,
n = 256)

Algorithm \ # nodes 1 2 4 8 16 32 64 128

HouseholderQR 33.89 27.01 12.51 6.10 3.09 1.64 0.89 0.86
CholeskyQR2 7.78 2.58 1.29 0.67 0.36 0.20 0.14 0.12
LU-CholeskyQR2 23.93 12.39 6.24 2.79 1.48 0.82 0.50 0.43

Table 2.2: Comparison of computation times (sec) on FUJITSU FX100 (m = 1,048,576, n = 256)

Algorithm \ # nodes 1 2 4 8 16 32 64

HouseholderQR 15.75 8.12 3.97 2.03 1.09 0.62 0.35
CholeskyQR2 1.79 0.94 0.50 0.27 0.16 0.11 0.13
LU-CholeskyQR2 7.97 3.36 1.74 0.68 0.57 0.42 0.38

29

Chapter 3

Preconditioned Cholesky QR
algorithms in an oblique inner product

3.1 Introduction

In this chapter, we consider thin QR decomposition in an oblique inner product for full rank matrices
A ∈ Rm×n,m ≥ n and B ∈ Rm×m with B being positive definite. This decomposition produces
B-orthogonal columns Q ∈ Rm×n and an upper triangular matrix R ∈ Rn×n such that

A = QR, QTBQ = I, (3.1)

where I is the identity matrix. For the QR-factors computed by numerical computations, B-
orthogonality as ∥QTBQ − I∥ and residual as ∥QR − A∥ are significant. Although CholeskyQR
has weak numerical stability, Cholesky QR is a fast algorithm employed for thin QR decomposi-
tion [16]. In addition, when CholeskyQR runs to completion, we can refine B-orthogonality using
CholeskyQR2 [16]. In Part I, we propose the fast and accurate numerical algorithms for this QR de-
composition in an oblique inner product using Doolittle’s LU decomposition. There are advantages
in terms of B-orthogonality, residual, and computation times, that is shown in numerical examples.

3.2 Preliminaries

We first define the notation in Part I. Let F be a set of binary floating-point numbers, and let
u be the unit roundoff (binary64: u = 2−53). The 2-norm of vector x = (xi) ∈ Rn and matrix
A = (aij) ∈ Rm×n indicates that

∥x∥2 =

√√√√ n∑
i=1

x2i , ∥A∥2 = max
∥x∥2=1

∥Ax∥2.

Matrix A+ denotes the Moore-Penrose pseudoinverse matrix of A; that is, A+ = (ATA)−1AT . κ2(A)
is the condition number such that κ2(A) = ∥A∥2∥A+∥2.

3.2.1 Cholesky QR algorithm

In this subsection, we first introduce Cholesky QR algorithms in an oblique inner product for
A ∈ Fm×n, B ∈ Fm×m using MATLAB-like notation.

30

Algorithm I.6. CholeskyQR algorithm in an oblique inner product

function [Q1, R1] = CholQR(A,B)

C = A′ ∗B ∗A; % C ≈ ATBA

R1 = chol(C); % C ≈ RT
1 R1

Q1 = A/R1; % Q1 ≈ AR−1
1

end

Since this algorithm is implementable using Level-3 routines in basic linear algebra subprograms
(BLAS) and linear algebra package (LAPACK), CholeskyQR achieves high performance on speed.
However, the paper [16] reports numerical instability of CholeskyQR. For a matrix C as κ2(C) ≳
u−1, Cholesky decomposition for C breaks down in many cases. Here, we have

κ2(A
TBA) ≤ κ2(A)2κ2(B). (3.2)

Therefore, even if matrices A andB are well-conditioned, there is possibility that C is ill-conditioned.
This indicates that CholeskyQR has weak numerical stability.

3.2.2 Refinement of a Q-factor

Next, we consider the refinement after applying CholeskyQR for A and B. The following algorithm
named CholeskyQR2 [16] refines B-orthogonality ∥QTBQ− I∥2.

Algorithm I.7. CholeskyQR2 algorithm in an oblique inner product

function [Q2, R2] = CholQR2(A,B)

[Q1, R1] = CholQR(A,B);

[Q2, R] = CholQR(Q1, B);

R2 = R ∗R1;

end

For m ≫ n, the cost of CholeskyQR2 is almost twice as much as that of CholeskyQR.

3.2.3 Shifted Cholesky QR algorithm

We introduce the shifted Cholesky QR algorithms [17] whose numerical stability is stronger than
that of the standard Cholesky QR algorithms.

Algorithm I.8. Shifted CholeskyQR algorithm in an oblique inner product

function [Q1, R1] = sCholQR(A,B, s)

C = A′ ∗B ∗A;

R1 = chol(C + s ∗ I); % s is a positive constant

Q1 = A/R1;

end

31

Even if κ2(C) > u−1, κ2(C + sI) ≤ u−1 is satisfied by the diagonal shift. In [17], the amount of
shift is calculated as

s ≈ 11(2m
√
mn+ n(n+ 1))u∥A∥22∥B∥2. (3.3)

Similarly, the shifted CholeskyQR2 and shifted CholeskyQR3 are introduced as follows [17]:

Algorithm I.9. Shifted CholeskyQR2 algorithm in an oblique inner product

function [Q2, R2] = sCholQR2(A,B, s)

[Q1, R1] = sCholQR(A,B, s);

[Q2, R] = CholQR(Q1, B);

R2 = R ∗R1;

end

Algorithm I.10. Shifted CholeskyQR3 algorithm in an oblique inner product

function [Q3, R3] = sCholQR3(A,B)

[Q1, R1] = sCholQR(A,B, s);

[Q3, R] = CholQR2(Q1, B);

R3 = R ∗R1;

end

3.3 LU-Cholesky QR algorithms in an oblique inner product

In this section, we propose the LU-Cholesky QR algorithm employed for thin QR decomposition
in an oblique inner product. We focus on the preconditioning using numerical computations of
Doolittle’s LU decomposition of a given matrix A such that

PA ≈ L̂Û ,

where L̂ is a unit lower triangular matrix, Û is an upper triangular matrix, and P is a permutation
matrix. It is known that L̂ tends to be fairly well-conditioned even if A is ill-conditioned.

We apply Doolittle’s LU decomposition to preconditioning of CholeskyQR.

Algorithm I.11. LU-CholeskyQR algorithm in an oblique inner product

function [Q1, R1] = LU CholQR(A,B)

[L̂, Û , p] = lu(A); % PA ≈ L̂Û

C = L̂′ ∗B(p, p) ∗ L̂; % B(p, p) = PBP T

R = chol(C);

R1 = R ∗ U ;

Q1 = A/R1;

end

32

If a given matrix A is ill-conditioned, κ2(A) ≥ κ2(L), so that the point of this algorithm is that
κ2(L̂

TPBP T L̂) ≲ κ2(A
TBA) is expected. Hence, even if a matrix A is ill-conditioned, the proposed

algorithm for A and B being κ2(B) < u−1 can run to completion.
Next, LU-CholesktQR2 algorithm is explained.

Algorithm I.12. LU-CholeskyQR2 algorithm in an oblique inner product

function [Q2, R2] = LU CholQR2(A,B)

[Q1, R1] = LU CholQR(A,B);

[Q2, R] = CholQR(Q1, B);

R2 = R ∗R1;

end

LU-CholekyQR2 aims to refine B-orthogonality such as the original CholeskyQR2 algorithm
introduced in Section 3.2.2.

3.4 Numerical results

Here, we provide the numerical results. Matrices A and B are generated by MATLAB as follows:

A = gallery(′randsvd′, [m,n], cndA, 3,m, n, 1),

B = gallery(′randsvd′,m, cndB, 3,m,m, 1).

These matrices A and B satisfy κ2(A) ≈ cndA, κ2(B) ≈ cndB and ∥A∥2, ∥B∥2 ≈ 1. Therefore, for
simplicity, we obtain the shift amount s in (3.3) as s ≈ 11(2m

√
mn + n(n + 1))u for sCholQR,

sCholQR2, and sCholQR3. Figure 7.2 compares B-orthogonality of the shifted Cholesky QR and
LU-Cholesky QR algorithms for various κ2(B) for cndA = 109 and cndA = 1014. The figure indicates
that the B-orthogonality of the Q-factor computed by the proposed algorithms is comparable to that
computed by the shifted Cholesky QR. From right side in Fig. 7.2, although the standard Cholesky
QR algorithms break down when κ2(B) ≳ 1010 and cndA = 1014, LU-Choleksy QR algorithms can
be applied to ill-conditioned matrices.

Figure 3.2 compares residual of shifted Cholesky QR and LU-Cholesky QR algorithms for various
κ2(B) for cndA = 109 and cndA = 1014. The residual of the QR-factors computed by the proposed
algorithms is comparable to that computed by the shifted Cholesky QR.

Finally, we compare the computation times for the following random matrices generated by the
MATLAB function; A = randn(m,n) and B = randn(m). The computation environment of the
computer and MATLAB are as follows:

CPU: Intel Core i7-8550U, Memory: 16 GB, MATLAB R2019a

Figure 3.3 reveals that the computation times of sCholQR, sCholQR2, and sCholQR3 are 1, 2,
and 3 times that of the standard CholeskyQR algorithm, respectively. However, the cost of LU
decomposition is much lower than that of CholeskyQR algorithm. Hence, computation times of
CholeskyQR and LU-CholeskyQR algorithms are comparable.

33

Figure 3.1: Comparison of B-orthogonality (m = 1024, n = 256, cndA = 109 (left) and cndA = 1014

(right)).

Figure 3.2: Comparison of residual. m = 1024, n = 256 (m = 1024, n = 256, cndA = 109 (left)
and cndA = 1014 (right)).

34

Figure 3.3: Comparison of computation times [sec] for various n. (m = 10, 000)

3.5 Conclusion for Part I

In Part I, we propose LU-Cholesky QR algorithms for thin QR decomposition to improve the robust-
ness of existing Cholesky QR algorithms. Our investigations in Part I indicate that the proposed
algorithms would effectively work for ill-conditioned matrices while Cholesky QR algorithms, such
as CholeskyQR and CholeskyQR2 would not be applicable.

With respect to computation time, the comparisons in our numerical examples reveal that

• LU-CholeskyQR2 is faster than the Householder QR algorithm on both the shared memory
computers and distributed memory computers used in Part I,

• the computation time for LU-CholeskyQR2 is approximately 1.5 times greater than that of
CholeskyQR2 on our shared memory computers, and

• the computation time for LU-CholeskyQR2 is between 3 and 5 times greater than that of
CholeskyQR2 on the distributed memory computers used in Part I.

With respect to the orthogonality and norms of residuals, LU-CholeskyQR2 is comparable to
CholeskyQR2 and the Householder QR algorithm.

We also presented the results of rounding error analysis of the proposed algorithms in a similar
way to the Cholesky QR algorithms.

Moreover, We proposed the preconditioned Cholesky QR algorithms for thin QR decomposition
in an oblique inner product. The cost of preconditioning is significantly smaller than the cost of the
standard CholeskyQR algorithm. In addition, the numerical stability of the proposed algorithms is
superior to that of the shifted Cholesky QR algorithms. Thus, the proposed algorithms are practical
due to their high computational performance in speed, accuracy, and stability.

35

Part II

Fast verification methods of
nonsingularity for matrices

36

Chapter 4

Introduction

4.1 Introduction

The goal of this chapter is to propose fast methods for proving the nonsingularity of a matrix
A ∈ Rn×n using only numerical computations based on IEEE 754 [5]. To prove the nonsingularity
of a given matrix, one of the following may be demonstrated:

• that the determinant is not zero,

• that the matrix inverse exists,

• that there are no zero eigenvalues.

If numerical computations are used for these approaches, rounding error problems arise. For ex-
ample, we cannot obtain the exact determinant, inverse matrix, and eigenvalues due to the ac-
cumulation of rounding errors. We aim to prove the nonsingularity of a given matrix using only
floating-point arithmetic.

It is known that the matrix A is nonsingular if there exists a matrix R ∈ Rn×n such that

∥RA− I∥ < 1, (4.1)

where I is the identity matrix. This theory is often used for computer-assisted proofs of nonsin-
gularity of matrices. It is difficult to rigorously compute ∥RA− I∥ using floating-point arithmetic
due to rounding error problem. Therefore, an upper bound of ∥RA− I∥ can be computed. Proving
∥RA− I∥ < 1 is also essential for verifying numerical computations for linear systems. Let a linear
system be Ax = b, x, b ∈ Rn and an approximate solution of Ax = b be x̂. If ∥RA − I∥ < 1, then
the upper bound of the error is bounded by

∥x̂− x∥ ≤ ∥R(b−Ax̂)∥
1− ∥RA− I∥

.

In Part II, we use the maximum norm and focus on how to obtain upper the bound of ∥RA− I∥∞
using only floating-point arithmetic.

There are two strategies for setting R. One is using LU factors and their approximate inverses
[18, 19, 20, 21]. Let L̂ and Û be the computed LU factors of PA, where P is a permutation
matrix, that is, PA ≈ L̂Û . Matrices XL and XU are the approximate inverse matrices of L̂ and

37

Û , respectively. Then, R is set by R := XUXLP . The second strategy is to compute R as the
approximate inverse of a matrix A directly [18, 19].

In this chapter, we propose four new methods for obtaining the upper bound of ∥RA − I∥∞
by setting R := (L̂Û)−1P . These methods have advantages for proof of nonsingularity of interval
matrices. Numerical results illustrate their efficiency. In addition, the proposed methods often
result in superior upper bounds of ∥RA− I∥∞ although their computational cost is lower than that
of previous studies.

The remainder of this chapter is organized as follows. We introduce the target problem and
present an overview of previous studies in Section 4.2.1. In Section 4.2.2, we summarize notations
and lemmas for rounding error analysis. In addition, we describe previous studies on obtaining the
upper bound of ∥RA − I∥∞. In Section 4.2.3, we introduce new methods and their extension to
interval matrices with numerical examples. This study is related to [B1, C10–C22] in the list of
publications.

4.2 Previous studies

4.2.1 Notation

Here, we introduce the notation used in Part II. Let F be a set of binary floating-point numbers
as defined by IEEE Std. 754 [5]. Notations fl(·), f l▽(·), and fl△(·) indicate that all operations
inside parentheses are evaluated using floating-point arithmetic with the following rounding modes:
rounding to the nearest (roundTiesToEven), rounding downward (roundTowardNegative) and up-
ward (roundTowardPositive), respectively. Let u be the unit roundoff and us be the minimum
positive value in floating point numbers, for example, u = 2−53, us = 2−1074 for binary64 in IEEE
Std. 754. For x, y ∈ Rn, the notation |x| is defined as |x| = (|x1|, |x2|, . . . , |xn|)T and x < y signifies
xi < yi for all i. This notation can easily be extended to matrices. E ∈ Fn×n and e ∈ Fn are an
n-by-n matrix and n-vector of ones, respectively, while matrices EL and EU are lower and upper
triangular matrices whose all elements are 1, respectively. As in Section 1.2.1, we also count the
number of floating-point operations in flops1. For simplicity, we only use the maximum degree
of a polynomial for flops. For example, the number of floating-point operations of a product of
A,B ∈ Fn×n is considered by 2n3 flops excluding the O(n2) terms. For a matrix A ∈ Rn×n, diag(A)
represents the vector (a11, . . . , ann)

T ∈ Rn. For A,B ∈ Fn×n, a function max(A,B) returns a matrix
with the largest elements taken from A or B.

4.2.2 A priori error analysis

Here, we perform standard rounding error analysis for matrix multiplication, LU decomposition, and
triangular systems. For A ∈ Fn×n, suppose that matrices L̂ and Û are computed by several variants
of Gaussian elimination with partial pivoting, where pivoting information is stored in permutation
matrix P such that L̂Û ≈ PA.

Lemma II.1 ([13]). For A,B ∈ Fn×n, a computed result of matrix multiplication C := fl(AB)
satisfies

|AB − C| ≤ nu|A||B|+ nus
2

E.

1It is not FLOPS, Floating-point Operation Per Second.

38

Lemma II.1 applies to blocking strategies, however, it does not apply to more sophisticated
methods, such as those proposed by Strassen [10], Coppersmith and Winograd [11], or Williams [12].
For example, given A ∈ Fm×n and B ∈ Fn×k, let C be the approximation of their product AB
returned by using mk inner products in dimension n in any order of evaluation.

The following lemmas are related to the residual for LU decomposition and triangular systems.
We introduce results from [14] with an underflow term from [18].

Lemma II.2 ([14] and [18]). For A ∈ Fn×n, suppose that matrices L̂ and Û are the computed LU
factor. If nu < 1, then, also in the presence of underflow,

L̂Û − PA = ∆A, |∆A| ≤ nu|L̂||Û |+ us
1− nu

(ne+ diag(|U |))eT .

Lemma II.3 ([14] and [18]). Let matrix equation TX = B, where T ∈ Fn×n is a nonsingular
triangular matrix, be solved by forward / backward substitution. If nu < 1, then the computed
solution X̂ satisfies

TX̂ = B +∆, |∆| ≤ nu|T ||X̂|+ us
1− nu

(nI +D)ET ,

where D is the diagonal matrix of T . If T is a lower triangular matrix, then ET := EL. Otherwise,
ET := EU . If matrix T is a unit triangular matrix, then

|∆| ≤ nu|T ||X̂|+ nus
1− nu

ET

is satisfied.

Lemma II.4 ([22, p. 145]). If T = {tij} is a nonsingular triangular matrix, then

|T−1| ≤ M(T)−1,

where the triangular matrix M(T) = {mij} is the comparison matrix of T :

mij =

{
|tii|, i = j
−|tij |, i ̸= j

.

4.2.3 Verification methods

In this subsection, we introduce previous studies on computing the upper bound of ∥RA−I∥∞. First,
we introduce verification methods for computing an approximate inverse matrix of A. Assuming
that R is a computed inverse matrix, the computational cost of obtaining R is 2n3 flops. Then, an
upper bound of |RA− I| can be obtained by

|RA− I| ≤ max(fl▽(|RA− I|), fl△(|RA− I|)). (4.2)

Next, we introduce an algorithm based on (4.2). All algorithms in this chapter are written in
MATLAB-like style. It should be noted that we use the absolute value | · | for matrices instead of
abs(·) and omit operation “∗” for simplicity.

39

Algorithm II.1 (Oishi-Rump [18]). For A ∈ Fn×n, the following algorithm computes an upper
bound of ∥RA− I∥∞.

function res = Method1(A)

R = inv(A); % R is an approximate inverse of A

feature(′setround′,−inf); % Change the rounding mode to rounding downward

S1 = |RA− I|;
feature(′setround′, inf); % Change the rounding mode to rounding upward

S2 = |RA− I|;
S = max(S1, S2);

res = norm(S, inf); % res ≥ ∥S∥∞
end

Algorithm II.1 computes the approximate inverse performs matrix and performs two matrix
multiplications. Therefore, the computational cost of Algorithm II.1 is 6n3 flops.

Here, we introduce a faster method. From Lemma II.1, an upper bound of |RA − I| can be
obtained by

|RA− I|e ≤ fl(|RA− I|)e+ (n+ 1)u(|R|(|A|e) + e) +
nus
2

Ee.

Thus, we have an upper bound of ∥RA− I∥∞ as

∥RA− I∥∞ = ∥|RA− I|e∥∞ ≤ ∥fl(|RA− I|)e+ (n+ 1)u(|R|(|A|e) + e)∥∞ + n2us/2

≤ ∥fl△(fl(|RA− I|)e+ (n+ 1)u(|R|(|A|e) + e)∥∞ + n2us/2). (4.3)

We introduce an algorithm based on (4.3) using directed rounding2.

Algorithm II.2. Let A,R ∈ Fn×n. This algorithm computes an upper bound of ∥RA− I∥∞

function res = Method2(A)

n = size(A, 1);

e = ones(n, 1);

R = inv(A); % R is an approximate inverse of A

S = |RA− I|;
feature(′setround′, inf); % Change the rounding mode to rounding upward

T = Se+ (n+ 1)u(|R|(|A|e) + e) + n2us/2;

res = norm(T, inf);

end

Algorithm II.2 computes the approximate inverse matrix and performs matrix multiplication.
The computational cost of Algorithm II.2 is 4n3 flops, which is smaller than that of Algorithm II.1.
However, res obtained by Algorithm II.1 is often significantly smaller than that obtained by Algo-
rithm II.2.

2In the original paper [19], the upper bound of ∥RA− I∥∞ is obtained using only rounding to the nearest mode.
In this paper, we use direct rounding for simplicity.

40

Next, we introduce verification methods using LU factors as PA ≈ L̂Û and their inverse matrices
XL ≈ L−1 and XU ≈ U−1. Suppose that L̂ and Û are computed LU factors that satisfy Lemma
II.2. XL and XU are computed inverse matrices of L̂ and Û , respectively by a successive solution of
L̂Tx = ei, ÛTx = ei in any order of evaluation and satisfy Lemma II.3. Here, we define a function
computing XL and XU as follows.

Algorithm II.3. The following function returns the LU factors and their approximate inverse
matrices.

function [L̂, Û , p,XL, XU] = invlu(A)

I = eye(size(A)); % I is the identity matrix

[L̂, Û , p] = lu(A, ′vector′); % LU decomposition A(p, :) ≈ L̂Û

XL = I/L̂; % Solve XLL̂ = I for XL

XU = I/Û ; % Solve XU Û = I for XU

end

It should be noted that if we use XL = I/L̂ and XU = I/Û , then the computational cost is
n3 flops for both. Thus, we implement original codes for I/L̂ and XU = I/Û in the numerical
examples. The cost of Algorithm II.3 is 4/3 n3 flops because LU decomposition involves 2/3 n3

flops and solving a triangular system requires 1/3 n3 flops.
Next, we introduce several lemmas pertaining to the upper bounds of |RA − I| with R :=

XUXLP .

Lemma II.5 (Oishi-Rump [18]). Let L̂, Û be the computed LU factors of A ∈ Fn×n, P be the
permutation matrix, and XL, XU be approximate inverse matrices of L̂, Û using Algorithm II.3.
Then, including possible underflow, the bounds for ∥XUXLPA− I∥∞ can be obtained by

∥XUXLPA− I∥∞ ≤ nu∥2|XU ||XL||L̂||Û |+ |XU ||Û | ∥∞ + ϵus

where

ϵ =
nu

1− nu
((∥ |XU ||XL| ∥∞ + 1)(n+max(diag(|U |))) + n∥XU∥∞∥U∥∞).

Using Lemma II.5 and the switching of rounding modes, we can obtain the upper bound of
∥XUXLPA− I∥∞ using only floating-point arithmetic.

Algorithm II.4 (Oishi-Rump [18]). This function returns an upper bound of ∥XUXLPA− I∥∞.

function res = Method3(A)

n = size(A, 1);

e = ones(n, 1);

[L̂, Û , p,XL, XU] = invlu(A); % Algorithm II.3

feature(′setround′, inf); % Change the rounding mode to rounding to upward

s1 = 2nu(|XU |(|XL|(|L̂|(|Û |e))));
s2 = nu(|XU |(|U |e));
ϵ = nu/(1− nu)((s2 + 1)(n+max(diag(|U |))) + n∥ |XU |e∥∞∥ |U |e∥∞)

res = norm(s1 + s2 + ϵus, inf);

end

41

It should be noted that the cost after invlu(A) is O(n2) flops; thus, Algorithm II.4 requires 4/3n3

flops. Next, we introduce two methods proposed in [20] and [21]. In the original papers, there is no
treatment of underflow; however, we introduce these methods in the presence of underflow.

Lemma II.6 (Ogita-Oishi [20]). Let L̂, Û be the computed LU factors of A, P be permutation
matrix (PA ≈ L̂Û), and XL, XU be the approximate inverse matrices of L̂, Û using Algorithm II.3.
Then, including possible underflow, the bounds for ∥XUXLPA− I∥∞ can be obtained by

∥XUXLPA− I∥∞ ≤ ∥ |XU |(|XLPA− Û |+ nu|U |+ ϵEU)∥∞, (4.4)

ϵEU =
nus(n+max(diag(Û)))

1− nu

where the upper bound of |XLPA− U | is computed as

|XLPA− Û | ≤ max(fl▽(|XL(PA)− Û |), fl△(|XL(PA)− Û |)).

We introduce an algorithm obtaining the upper bound of ∥XUXLPA − I∥∞ on the basis of
Lemma II.6.

Algorithm II.5 (Ogita-Oishi [20]). This function returns upper bounds of ∥RA−I∥∞ = ∥XUXLPA−
I∥∞.

function res = Method4(A)

n = size(A, 1);

e = ones(n, 1);

[L̂, Û , p,XL, XU] = invlu(A); % Algorithm II.3

feature(′setround′,−inf); % Change the rounding mode to rounding to downward

S1 = XLA(p, :)− Û ;

feature(′setround′, inf); % Change the rounding mode to rounding to upward

S2 = XLA(p, :)− Û ;

S = max(|S1|, |S2|);
s = |XU |(Se+ nu|Û |e+ nus(n+max(diag(Û)))/(1− nu));

res = norm(s, inf);

end

Algorithm II.5 involves Algorithm II.3 (4/3n3 flops) and two triangular-dense matrix multipli-
cations (n3 flops for a multiplication). The cost of Algorithm II.5 is 10

3 n
3 flops.

Lemma II.7 (Ozaki-Ogita-Oishi [21]). Let L̂, Û be computed LU factors of A, P be permutation
matrix, and XL, XU be approximate inverse matrices of L̂, Û using Algorithm II.3. Then, including
possible underflow, ∥XUXLPA− I∥∞ is bounded by

∥XUXLPA− I∥∞
≤ ∥|XU |(|fl(XL(PA)− Û)|+ (n+ 1)u(|XL||PA|+ |Û |) + nu|U |+ ϵ1EU + ϵ2E)∥∞,

ϵ1EU =
nus(n+max(diag(Û)))

1− nu
, ϵ2E =

n2us
2

.

42

We introduce an algorithm based on Lemma II.7 using direct rounding.

Algorithm II.6 (Ozaki-Ogita-Oishi [21]). This function returns an upper bound of ∥RA− I∥∞ =
∥XUXLPA− I∥∞.

function res = Method5(A)

n = size(A, 1);

e = ones(n, 1);

[L̂, Û , p,XL, XU] = invlu(A);% Algorithm II.3

S = XLA(p, :)− Û ;

feature(′setround′, inf);% Change the rounding mode to rounding to upward

t = nus(n+max(diag(Û)))/(1− nu) + n2us/2;

s = |XU |(|S|e+ (n+ 1)u(|XL|(|A(p, :)|e) + |Û |e) + nu|Û |e+ te);

res = norm(s, inf);

end

This algorithm involves 7
3n

3 flops, since it involves Algorithm II.3 (4/3n3 flops) and a triangular-
dense matrix multiplication (n3 flops).

43

Chapter 5

Proposed verification method using
LU-factors and their inverse matrices

5.1 Proposed methods

We set R := (L̂Û)−1P and aim to obtain the upper bound of ∥RA − I∥∞. Note that the rigorous
(L̂Û)−1 is not required for the proposed method. We first define a function computing the LU
factors and their inverse matrices.

Algorithm II.7. This function returns LU factors and its approximate inverse matrices.

function [L̂, Û , p,XL, XU] = invlu2(A)

I = eye(size(A)); % I is the identity matrix

[L̂, Û , p] = lu(A); % LU decomposition A(p, :) ≈ L̂Û

XL = L̂\I; % Solve L̂XL = I for XL

XU = I/Û ; % Solve XU Û = I for XU

end

The difference in Algorithm II.3 and Algorithm II.7 is only the computation ofXL. For computed
results of Algorithm II.7, we define matrices ∆L, ∆U and ∆A as follows:

∆L := I − L̂XL, ∆U := I −XU Û , ∆A = L̂Û − PA. (5.1)

Here, L̂,XL and ∆L are lower triangular matrices, and Û ,XU and ∆U are upper triangular matrices.
Assume that matricesXL andXU are computed by backward substitution for linear systems L̂X = I
and XÛ = I.

We first introduce the variant of Lemma II.4.

Lemma II.8. If all diagonal elements of I − |T | are positive, then

|(I − T)−1| ≤ (I − |T |)−1,

where T is a triangular matrix and I is the identity matrix.

44

Proof 1. From Lemma II.4, I − T satisfies |(I − T)−1| ≤ M(I − T)−1 =: S. Assume that T is a
lower triangular matrix, S = {sij} satisfies

sij =

1/(1− tii), i = j,

i−1∑
k=j

|tik||ski|/(1− tii), i > j.

Here,

{(I − |T |)−1}ij =

1/(1− |tii|), i = j,

i−1∑
k=j

|tik||ski|/(1− |tii|), i > j,

then,
|(I − T)−1| ≤ M(I − T)−1 ≤ (I − |T |)−1

is satisfied. The case of an upper triangular matrix can similarly be proved. □

The following theorem provides a sufficient condition for nonsingularity of matrices.

Theorem II.9. For A ∈ Fn×n, assume that LU decomposition successfully runs to completion.
Matrices L̂, Û , and P are computed LU factors such as L̂Û ≈ PA and L̂ and Û are non-singular.
Matrices XL and XU are approximate solutions of L̂X = I and XÛ = I by backward substitution.
For ∆L and ∆U in (5.1), assume that there exist vL > 0 and vU > 0 such that

(I − |∆L|)vL > 0, (I − |∆U |)vU > 0, (5.2)

Then, matrix A is non-singular if

∥(I − |∆U |)−1|XUXL|(I − |∆L|)−1|∆A| ∥ < 1. (5.3)

Proof 2. Note that off-diagonal elements of triangular matrices I − |∆L| and I − |∆U | are not
positive. From assumption (5.2), all diagonal elements of I − |∆L| and I − |∆U | are positive. Since
I − |∆L| ≤ I −∆L and I − |∆U | ≤ I −∆U , all diagonal elements of I −∆L and I −∆U are also
positive. Therefore triangular matrices I − ∆L and I − ∆U are non-singular, and from (5.1), we
have

L̂−1 = XL(I −∆L)
−1, Û−1 = (I −∆U)

−1XU . (5.4)

Next, we derive an upper bound of |(L̂Û)−1PA− I|. Using (5.1), (5.4) and Lemma II.8 in turn,

|RA− I| = |(L̂Û)−1PA− I| = |(L̂Û)−1(L̂Û −∆A)− I| = |(L̂Û)−1∆A|
≤ |Û−1L̂−1||∆A|
≤ |(I −∆U)

−1| · |XUXL| · |(I −∆L)
−1| · |∆A|

≤ (I − |∆U |)−1|XUXL|(I − |∆L|)−1|∆A|.

Therefore, if ∥(I − |∆U |)−1|XUXL|(I − |∆L|)−1|∆A| ∥ < 1, then A is non-singular. □

45

From Theorem II.9, we derive an upper bound |RA − I|, where R = (L̂Û)−1P . Next, we
introduce a theorem concerning with an upper bound of ∥RA − I∥∞. The critical point of the
following theorem is to obtain an upper bound without computing (I − |∆L|)−1 and (I − |∆U |)−1.

Theorem II.10. Assume that (5.2) is satisfied for ∃vL, vU > 0, then

∥(I − |∆U |)−1|XUXL|(I − |∆L|)−1|∆A| ∥∞ ≤ max
i

(|XUXL|vL)i
(wU)i

max
i

(|∆A|e)i
(wL)i

∥vU∥∞,

where wL = (I − |∆L|)vL > 0 and wU = (I − |∆U |)vU > 0.

Proof 3. We obtain

|∆A|e =
(
(|∆A|e)1
(wL)1

(wL)1, . . . ,
(|∆A|e)n
(wL)n

(wL)n

)T

≤ max
i

(|∆A|e)i
(wL)i

wL. (5.5)

From the definition of wL, we have (I − |∆L|)−1wL = vL. This and (5.5) derives

(I − |∆L|)−1|∆A|e ≤ max
i

(|∆A|e)i
(wL)i

vL. (5.6)

Similarly, we obtain

(I − |∆U |)−1|XUXL|vL ≤ max
i

(|XUXL|vL)i
(wU)i

vU .

Then,

∥ |(L̂Û)−1PA− I|e∥∞ ≤ ∥(I − |∆U |)−1|XUXL|(I − |∆L|)−1|∆A|e∥∞

≤ max
i

(|XUXL|vL)i
(wU)i

max
i

(|∆A|e)i
(wL)i

∥vU∥∞

is satisfied. □

The manner of setting vL and vU is important. This discussion is provided in Section 3.1. From
Theorem II.10, if we obtain upper bounds of |XUXL|vL and |∆A|e, and lower bounds of wL and
wU , then we can obtain the upper bound of ∥(L̂Û)−1PA− I∥∞. We first explain how to compute
the upper bound of |XUXL|vL and |∆A|e.

Method A. |XUXL|vL ≤ |XU |(|XL|vL)

Method B. |XUXL|vL ≤ fl(|XUXL|)vL + nu|XU |(|XL|vL) +
nus
2

vL from Lemma II.1

Method C. |∆A|e ≤ nu|L̂|(|Û |e) + nus
1− nu

(ne+ diag(|U |)) from Lemma II.2

Method D. |∆A|e ≤ max(fl▽(|L̂Û − PA|)), fl△(|L̂Û − PA|)e

46

Table 5.1: Comparison of computational cost of proposed methods

Name Method Cost

|XUXL|v |∆A|e
T(A,C) A C 4

3n
3

T(B,C) B C 2n3

T(A,D) A D 8
3n

3

T(B,D) B D 10
3 n

3

Methods A, B, and methods C, D produce upper bounds of |XUXL|vL and |∆A|e, respectively.
The computational cost of combinations of methods A, B and methods C, D are presented in Table
5.1. For example, T(A, C) signifies that method A is used for the upper bound for |XUXL|vL and
method C is used for the upper bound for |∆A|e. We note that the cost of fl(XUXL) and fl(LU)
is 2n3/3 flops.

Next, we describe how to compute the lower bounds of wL := (I − |∆L|)vL and wU := (I −
|∆U |)vU . We can compute the lower bounds from Lemma II.3 using direct rounding as follows:

wL = (I − |∆L|)vL ≥ −(nu|L̂||XL|vL +
nus

1− nu
eeT vL − vL)

≥ −fl△(nu|L̂|(|XL|vL) +
nus

1− nu
e(eT vL)− vL) =: w′

L, (5.7)

wU = (I − |∆U |)vU ≥ −(nu|XU ||Û |vU +
us

1− nu
(ne+ diag(|Û |))eT vU − vU)

≥ −fl△(nu|XU |(|Û |vU) +
use

T vU
1− nu

(ne+ diag(|Û |))− vU)

=: w′
U . (5.8)

5.1.1 Setting of vL and vU

Here, we introduce how to obtain vL and vU defined in (5.2). Let s ∈ Fn and r ∈ Fn be the upper
bounds of |XUXL|vL and |∆A|e, respectively. These vectors can be obtained using a combination
either of method A or B and either method C or D. In addition, from (5.7) and (5.8), w′

L and w′
U

are computable lower bounds of wL and wU . Thus, from Theorem II.10,

∥(L̂Û)−1PA− I∥∞ ≤ max
i

(|XUXL|vL)i
(wU)i

max
i

(|∆A|e)i
(wL)i

∥vU∥∞

≤ max
i

si
(w′

U)i
max

i

ri
(w′

L)i
∥vU∥∞. (5.9)

To avoid the overestimation of (5.9), we aim to have

max
i

si
(w′

U)i
≈ 1, max

i

ri
(w′

L)i
≈ 1, i.e., w′

U ≈ s, w′
L ≈ r.

Therefore, we set the linear systems as follows:

w′
U ≈ (I − nu|XU ||Û |)v∗U = s, w′

L ≈ (I − nu|L̂||XL|)v∗L = r. (5.10)

47

Let the approximation of v∗U and v∗L be vU and vL, respectively. The linear systems are solved by an

iterative method without matrix multiplications |L̂||XL| and |XU ||Û | from initial vectors s and r.
It should be noted that the coefficient matrices in (5.10) are often strongly diagonally dominant so
that we can obtain an accurate approximate solution of the linear systems with several iterations.
Because s, r > 0, we can expect that w′

L, w
′
U > 0. In addition,

vL ≈ (I − nu|L̂||XL|)−1r, vU ≈ (I − nu|XU ||Û |)−1s,

and all diagonal elements in (I − nu|L̂||XL|) and (I − nu|XU ||Û |) are expected to be positive. In
this case, from Lemma II.8, all elements in (I − nu|L̂||XL|)−1 and (I − nu|XU ||Û |)−1 are positive,
and vL, vU > 0.

5.1.2 Algorithm flow

Here, we present the flow of the proposed method.

Step 1 Compute the LU decomposition for a given matrix A and its inverse matrices by Algorithm
II.7.

Step 2 Solve the linear system (I−nu|L̂||XU |)v∗L = r and obtain approximation vL by an iterative
method, where r is the upper bound of |∆A|e.

Step 3 Solve the linear system (I−nu|XU ||Û |)v∗U = s and obtain approximation vU by an iterative
method, where s is the upper bound of |XUXL|vL.

Step 4 Compute w′
L and w′

U based on (5.7) and (5.8), respectively.

Step 5 If vL, w
′
L, vU or w′

U ≤ 0 then verification fails and this algorithm completes.

Step 6 Compute the upper bound of ∥(L̂Û)−1PA− I∥∞ based on Theorem II.10. If the bound is
strictly less than 1, then the given matrix is nonsingular.

The details of this algorithm are provided in Appendix A.

5.2 Numerical results

In this section, we present numerical results to compare previous studies with our proposed methods.
Test matrices A ∈ Fn×n were generated using MATLAB by

A = gallery(‘randsvd′, n, cond,mode, n, n, 1), (5.11)

where cond is the expected condition number of A, and mode is one of the following values: (1)
one large singular value, (2) one small singular value, (3) geometrically distributed singular values.
We used the Jacobi method for linear systems in STEP 2 and STEP 3 and obtained an accurate
approximation of the solution of linear systems in several iterations.

There is a routine trmm that performs triangular-dense matrix multiplication in BLAS; however,
a routine computing triangular-triangular matrix multiplication is not supported. We implemented
it using block matrix multiplication using dgemm in BLAS.

48

Table 5.2: Comparison of computational cost of verification methods.

Method Cost Ratio

Method3 4
3n

3 2

T(A, C) 4
3n

3 2

T(B, C) 2n3 3

Method5 2n3 3.5

T(A, D) 8
3n

3 4

Method4 10
3 n

3 5

T(B, D) 10
3 n

3 5

Method2 4n3 6

Method1 6n3 9

Table 5.2 presents the computational cost of the verification methods. The ratio is the cost
of each method divided by the cost of LU decomposition. We compared the upper bounds of
∥RA−I∥∞ for various condition numbers. Figures 5.1-5.6 present the upper bounds of ∥RA−I∥∞,
where the mode of the gallery function is 1, 2, and 3, respectively. Figures 5.1 and 5.2 present
the computed results when mode = 1. In this case, T(B, D) can verify the nonsingularity of ill-
conditioned matrices more effectively than Method2. The cost of these methods is 10

3 n
3 and 4n3

flops. This result indicates that the proposed method is fast and robust when mode = 1. Figures
5.3 and 5.4 present the computed results when mode = 2. In this case, the proposed methods do not
display superior performance to that of previous methods. The reason is as follows: For Method5,
we have

|RA− I| ≈ (n+ 1)u|XU ||XL||PA|. (5.12)

However,

|RA− I| ≈ |XUXL||∆A| ≈ |XU ||XL||∆A|. (5.13)

tends to be satisfied for mode=2. Because |XU ||XL| is common for (5.12) and (5.13), we compare
(n+ 1)u|PA| and |∆A| as

Y1 := (n+ 1)u|PA|, Y2 := max(|fl▽(PA− L̂Û)|, |fl△(PA− L̂Û)|), Y3 := nu|L̂||Û |,

where Y2 and Y3 are the upper bounds of |∆A| using method D and Method C, respectively. Table 5.3
presents the maximum norm of Y1, Y2, and Y3. The table indicates that Y1 ≲ Y2 ≲ Y3 tends to be
satisfied; therefore, Method5 produces better upper bounds of ∥RA− I∥∞ than those produced by
the proposed methods. This implies that Method4 is also superior to the proposed methods.

Figures 5.5 and 5.6 present the upper bound of ∥RA − I∥∞ when mode = 3. In this case, the
computed results of Methods2, 4, and T(B, D) are almost identical.

Table 7.1 compares the computation times of the verification methods. Here, we define two
notations, T∗ and κ∗. T∗ is the computation time and κ∗ is a condition number while the upper
bound of ∥RA− I∥∞ ≈ 1. For example, TM1 indicates the computation time of Method1, and the
nonsingularity of a given matrix can be verified up to κM1 by Method1. Therefore, small T∗ and
large κ∗ indicate a more effective method. We summarize the numerical results as follows.

49

Figure 5.1: n = 1, 000,mode = 1

Figure 5.2: n = 10, 000,mode = 1

50

Table 5.3: Comparison of the maximum norm of Y1, Y2, and Y3 when n = 1000
method \ cnd 106 108 1010 1012

Y1 2.87e-12 2.87e-12 2.87e-12 2.86e-12
Y2 1.85e-11 1.77e-11 1.96e-11 1.97e-11
Y3 4.23e-09 4.02e-09 4.04e-09 4.46e-09

mode = 1. TT (B,C) < TM4, κM4 < κT (B,C). T(B,C) is superior to Method4.

mode = 2. TM5 < TT (B,D) ≈ TM4, κT (A,D) < κM5 < κM4.
T(B,D) is inferior to Methods4 and Method5.

mode = 3. TT (B,D) ≈ TM4, κM4 < κT (B,D). T(B,D) is superior to Method4.
TT (B,C) < TM5, κM5 < κT (B,C). T(B,C) is superior to Method5.

Table 5.4: Comparison of computation times [s] and their ratio (verification/LU decomposition).

Method Cost Ratio 10,000 20,000 30,000

Method3 4
3n

3 2 6.87 (2.63) 46.3 (2.64) 143 (2.59)

T(A, C) 4
3n

3 2 7.76 (2.98) 47.6 (2.70 145 (2.63)

T(B, C) 2n3 3 10.7 (4.07) 65.9 (3.79) 204 (3.66)

Method5 2n3 3.5 11.2 (4.32) 73.0 (4.18) 227 (4.11)

T(A, D) 8
3n

3 4 12.7 (4.96) 83.0 (4.76) 256 (4.62)

Method4 10
3 n

3 5 14.2 (5.47) 96.7 (5.53) 304 (5.49)

T(B, D) 10
3 n

3 5 15.3 (5.87) 99.4 (5.74) 311 (5.88)

Method2 4n3 6 14.9 (5.55) 101 (5.79) 327 (5.91)

Method1 6n3 9 23.1 (7.63) 143 (8.19) 469 (8.44)

5.3 Conclusion of Part II

In Part II, we propose fast verification methods for proving the nonsingularity of real matrices. For
several test matrices, the proposed methods are faster and more robust than existing methods. In
addition, the proposed methods can be easily extended to proving the nonsingularity of interval
matrices.

51

Figure 5.3: n = 1, 000,mode = 2

Figure 5.4: n = 10, 000,mode = 2

52

Figure 5.5: n = 1, 000,mode = 3

Figure 5.6: n = 10, 000,mode = 3

53

Part III

Validated numerical computations of
all eigenvalues for large-scale matrices

54

Chapter 6

Introduction

Let A = AT , B = BT ∈ Rn×n with B being positive definite. We consider a generalized eigenprob-
lem

Ax(i) = λiBx(i),

where λi ∈ R and x(i) ∈ Rn, i = 1, . . . , n, are eigenvalues and eigenvectors, respectively. Assume
that λi ≤ λi+1 for 1 ≤ i ≤ n− 1, and let λ̂i and x̂(i), i = 1, . . . , n, be the computed eigenvalues and
eigenvectors, respectively. The proposed verification method produces upper bounds of |λ̂i − λi|
for all i on the basis of the Gershgorin circle theorem (cf. e.g. [1, p.357]) using λ̂i and x̂(i) for all
i. The proposed method also utilizes verified solutions of linear systems proposed in [23]. We also
improve error analysis for approximate solutions of linear systems to obtain better error bounds of
computed eigenvalues.

To demonstrate the effectiveness of the proposed method, we present numerical results on the
scalability of the proposed method on FUJITSU PRIMEHPC FX100. In addition, as a practical
application, we provide quantitative error bounds of the computed eigenvalues for both standard and
generalized eigenproblems arising from quantum materials physics, where the results are obtained
on the RIKEN K computer. This study is related to [B3] in the list of publications.

6.1 Preliminaries

First, we introduce the notation used in Part III. Let P = (pij), Q = (qij) ∈ Rn×n. Inequalities
for matrices are understood componentwise, for example, P > Q signifies pij > qij for all (i, j).
The absolute value notation |P | signifies |P | = (|pij |) ∈ Rn×n, a nonnegative matrix consisting of
componentwise absolute values of P . Similar notation is applied to real vectors. Let ∥P∥∞ denote
the maximum norm of P such that ∥P∥∞ = max1≤i≤n

∑n
j=1 |pij |.

Next, we introduce the Gershgorin circle theorem: Gi := {µ : |µ − pii| ≤
∑

i ̸=j |pij |}, then
λ(P) ⊆

∪n
i=1 Gi. If the union of k sets Gi, i1, . . . , ik, are disjoint from the others, then that union

contains exactly k eigenvalues of P .
Here, we review previous studies pertaining to verification methods for all eigenvalues [24, 25, 26].

Define D and X such that D ∈ Rn×n is a diagonal matrix with dii = λi for i = 1, . . . , n and
X = [x(1), . . . , x(n)] ∈ Rn×n with XTBX = I, where I is the identity matrix. Then, the matrix
form AX = BXD is obtained, and B−1AX = XD is satisfied. For any nonsingular X̂ ∈ Rn×n, we
have λk(B

−1A) = λk(X̂
−1B−1AX̂) = dkk for all k. Assuming that X̂ ≈ X and D̂ = diag(λ̂) ≈ D,

55

it is expected that X̂T ≈ (BX̂)−1 and AX̂ ≈ BX̂D̂. Then, the problem of enclosing all eigenvalues
is reduced to the verified solutions of linear systems such that (BX̂)Y = AX̂ for Y , where D̂ is
expected to be a good approximation of Y . If we obtain an upper bound of |D̂ − Y |, then all
eigenvalues can be enclosed by the Gershgorin circle theorem.

6.2 Previous studies

We first describe rounding error analysis for all eigenvalues using a scaler. For a matrix A+∆, all
eigenvalues are enclosed by

λi(A)− ∥∆∥2 ≤ λi(A+∆) ≤ λi(A) + ∥∆∥2

Here, we have λi(X̂
−1AX̂) = λi(A). In addition,

|D̂ − X̂−1AX̂| ≤ X̂−1|X̂D̂ −AX̂|

and, if ∥I − X̂T X̂∥2 < 1

∥X̂−1∥2 ≤
1√

1− ∥I − X̂T X̂∥2
.

Therefore,

∥D̂ − X̂−1AX̂∥2 ≤
∥X̂D̂ −AX̂∥2√
1− ∥I − X̂T X̂∥2

=: α

is satisfied. Then,

λi(A)− α ≤ λi(A) = λi(X̂
−1AX̂) ≤ λi(A) + α

is obtained.
Next, we describe element-wise error analysis for all eigenvalues, which was proposed by Miya-

jima [25]. This paper provides the upper bound of |D̂ − X̂−1B−1AX̂| such that

|D̂ − X̂−1B−1AX̂| ≤ |R|+max
i

(|R|e)i
(e− |G|e)i

|G|, (6.1)

where e = (1, . . . , 1)T .

56

Chapter 7

Proposed method

7.1 Rounding error analysis

We define

R = X̂T (BX̂D̂ −AX̂), G = I − X̂TBX̂, (7.1)

and assume that there exists an n-vector v > 0 satisfying w := (I − |G|)v > 0. This means that
(I − |G|) and X̂ are nonsingular. Then,

D̂ − X̂−1B−1AX̂ = (X̂TBX̂)−1X̂T (BX̂D̂ − ÂX̂) = (I −G)−1R.

From the assumption for v,

|(I −G)−1| ≤ (I − |G|)−1 = I + (I − |G|)−1|G|

is satisfied. Therefore, we obtain

|D̂ − X̂−1B−1AX̂| ≤ |R|+ (I − |G|)−1|G||R|.

Suppose an n-vector v > 0 satisfies w := (I − |G|)v > 0. Using [27, p. 134],

|D̂ − X̂−1B−1AX̂|e ≤ |R|e+max
i

(|G||R|e)i
wi

v =: r, (7.2)

where e = (1, . . . , 1) ∈ Rn. From this and the Gershgorin circle theorem, all eigenvalues are enclosed
by

λ(B−1A) ⊆
n∪

i=1

[λ̂i − ri, λ̂i + ri].

If λ̂i + ri ≤ λ̂i+1 − ri+1 for 1 ≤ i ≤ n − 1, no multiple eigenvalue exists. Here, it is better that v
satisfies (I − |G|)v ≈ |G||R|e. In addition, if ∥G∥∞ ≪ 1, (I − |G|)−1 ≈ (I + |G|) is satisfied [1].
Thus, we set v = (I + |G|)|G||R|e. Then,

w = (I − |G|)v = (I − |G|)(I + |G|)|G||R| = (I − |G|2)|G||R|

57

and

max
i

(|G||R|e)i
wi

= (1 +O(u2)) ≈ 1

are obtained. Here, we compare error analysis of the proposed method and Miyajima’s method [25].
From (6.1),

max
i

(|R|e)i
(e− |G|e)i

|G|e ≥ ∥R∥∞|G|e

However, from (7.2)

max
i

(|G||R|e)i
wi

v ≤ (1 +O(u2))(I + |G|)|G||R|e ≈ |G||R|e

In addition, we have |G||R|e ≤ ∥R∥∞|G|e. Therefore,

max
i

(|G||R|e)i
wi

v ≲ max
i

(|R|e)i
(e− |G|e)i

|G|e

is expected. This signifies that the proposed upper bound is superior to that of the previous study.

7.2 Numerical results

Here we discuss the performance of the proposed verification method. We used the ScaLAPACK
routines PDSYEVD and PDSYGVX as eigensolvers for standard and generalized eigenproblems,
respectively.

First, we present the performance in terms of computational speed on FUJITSU FX100 for stan-
dard eigenproblems using pseudo-random matrices with various n. The specification of FX100 is as
follows: CPU: SPARC64 XIfx with 32 cores, RAM: 32 GB, Total number of nodes: 2,880. Figure 7.1
displays the ratio of computation times of the proposed verification method Tveri and the eigensolver
Teig as Tveri/Teig . When the number of nodes increases, the ratio decreases, which signifies that
the proposed method has higher strong-scalability than the ScaLAPACK routine PDSYEVD. The
reason for this is that the proposed method is based primarily on matrix multiplication.

Next, as a practical application, we consider a quantum materials simulation that aims to
understand electronic structures in material physics. To correctly understand the properties of
materials, it is crucial to determine the order of eigenvalues [28]. Our verification method is useful
for this purpose. The used matrix data were stored in the ELSES matrix library [29, 30] and were
generated by ELSES [31], a quantum mechanical nanomaterial simulator. The number in a problem
name indicates the dimension of the problem; for example, the matrix size of VCNT400000std is
400,000. In addition, std in VCNT400000std indicates the standard eigenvalue problem. To address
larger problems, we performed numerical experiments on the RIKEN K computer for both standard
and generalized eigenproblems. The specification of the K computer is as follows: CPU: SPARC64
VIIIfx with 8 cores, RAM: 8 GB, Total number of nodes: 82,944.

From Tab. 7.1, which presents the computation times for obtaining verified solutions and the
ratio as Tveri/Teig , the proposed verification method is faster than the eigensolver on K computer.

Define the difference δk := λ̂k+1 − λ̂k and the radius sum ρk := rk + rk+1 for 1 ≤ k ≤ n − 1. If

58

Figure 7.1: Ratio of computation times on FX100

Table 7.1: Computation times [s] obtaining verified solutions on K computer
Problem name No. of nodes Teig Tveri Ratio

VCNT225000 2,025 2.62e+03 1.77e+03 0.67
VCNT400000std 1,600 9.01e+03 7.14e+03 0.79
VCNT1000000std 10,000 2.67e+04 2.08e+04 0.77

59

ρk/δk > 1 for all k, then all eigenvalues can be separated. We present the results in Fig. 7.2, where
the left figure shows the results of generalized eigenproblems and the right figure shows the results
of standard eigenproblems. As can be seen from the left figure, we succeed in confirming that there
are no multiple eigenvalues for generalized eigenproblems with n ≤ 225, 000. In addition, as seen
from the right figure, although separation of all eigenvalues fails for standard eigenproblems with
n ≥ 4 × 105, enclosure of all eigenvalues is still possible in the case of n = 106. For the problem
with n = 106, only 82 Gershgorin circles have intersections. If the eigenpairs corresponding to such
circles have high accuracy, then it may be possible to guarantee that all eigenvalues are separated.
Therefore, in future work, we will develop a method for the refinement of eigenpairs.

Figure 7.2: Ratio of difference δk and radius sum ρk on K computer

7.3 Conclusion of Part III

In Part III, we derived the new upper bounds for all eigenvalues. In addition, we implemented the
verification method of all eigenvalues using the proposed error analysis for supercomputers. The
advantages of the proposed method are as follows:

• The proposed method can be applied for any eigensolvers that can produce all eigenpairs.

• On the large-scale parallel systems, the proposed verification method has high strong scala-
bility due to strong dependency on matrix multiplication.

We success to generate the intervals that enclose all eigenvalues of the matrix whose dimension is
106.

60

List of publications

Journal article

A1 T. Terao, K. Ozaki, T. Ogita,“ LU-Cholesky QR algorithms for thin QR decomposition”,
Accepted for Parallel Computing.

International conference proceedings

B1 T. Terao, K. Ozaki,“ Verification of positive definiteness using approximate inverse matrix
of computed Cholesky factor”, Proceedings of the 17th International Conference on Compu-
tational and Mathematical Methods in Science.

B2 T. Terao, K. Ozaki, T. Ogita,“LU-Cholesky QR algorithms for thin QR decomposition in an
oblique inner product”, Submitted for publication of proceedings of International Conference
on Mathematics: Pure, Applied and Computation, 2019.

B3 T. Terao, K. Ozaki, T. Ogita,“ Verified numerical computations for standard eigenvalue
problems on supercomputer”, Accepted for publication of proceedings of the 38th JSST
Annual International Conference on Simulation Technology, 2019.

conferences

C1 T. Terao, K. Ozaki, T. Ogita,“ Preconditioned Cholesky QR Algorithms for Ill-conditioned
Matrices”, Workshop on Large-scale Parallel Numerical Computing Technology (Kobe),
2019/6/7.

C2 T. Terao, K. Ozaki, T. Ogita,“ Robust and efficient Cholesky QR algorithms for thin QR
decomposition”, The 3rd UOG-SIT Workshop in Pure/Applied Mathematics and Computer
Science (Guam), 2019/3/22.

C3 T. Terao, K. Ozaki, T. Ogita, “ Robust Preconditioned Cholesky QR algorithms for ill-
conditioned matrices on large-scale parallel systems”, 2019 Conference on Advanced Topics
and Auto Tuning in High-Performance Scientific Computing (Taiwan), 2019/3/15.

C4 寺尾 剛史，尾崎 克久, 荻田 武史，「悪条件行列に対する Cholesky QRアルゴリズムとその比
較」，2018年度応用数理学会研究部会連合発表会 (大阪大学)，2019/3/5.

C5 T. Terao, K. Ozaki, Takeshi Ogita,“Thin QR Decomposition using LU Factors and its Refine-
ment”, SIAM Conference on Computational Science and Engineering (Spokane), 2019/2/25.

61

C6 T. Terao, K. Ozaki, ”Generation of Test Matrices with Specified Eigenvalues on Parallel
Distributed Computers”, The 37th JSST Annual International Conference on Simulation
Technology (Muroran), 2018/9/18.

C7 寺尾 剛史，尾崎 克久, 荻田 武史，「LU分解を用いた CholeskyQRアルゴリズムの丸め誤差解
析」，2018年度日本応用数理学会年会 (名古屋大学)，2018/9/3.

C8 T. Terao, K. Ozaki,“Generation of large scale matrices for numerical examples”, 10th Inter-
national Workshop on Parallel Matrix Algorithms and Applications (Switzerland), 2018/6/27.

C9 T. Terao, K. Ozaki, T. Ogita,“ Rounding Error Analysis of QR Decomposition using LU
Factors Based on CholeskyQR Algorithm”, IX Pan-American Workshop Applied Mathematics
& Computational Science (Cuba), 2018/6/14.

C10 T. Terao, K. Ozaki,“Verification of Positive Definiteness of Symmetric Sparse Matrices”, 2018
Conference on Advanced Topics and Auto Tuning in High-Performance Scientific Computing
(Taiwan), 2018/6/14.

C11 寺尾 剛史，尾崎 克久，「区間行列に対する正則性の高速な保証法」，2017年度日本応用数理学
会研究部会連合発表会 (電気通信大学)，2018/3/15.

C12 T. Terao, K. Ozaki,“ Validated Solution of Linear Systems for Real Symmetric and Positive
Definite Matrices”, SIAM Conference on Parallel Processing for Science Computing (Waseda
University), 2018/3/9.

C13 寺尾 剛史，尾崎 克久,「実対称正定値行列を係数行列とする連立一次方程式の数値解の高速精
度保証法」，精度保証付き数値計算の実問題への応用研究集会発表会 (北九州)，2017/12/9.

C14 寺尾 剛史，尾崎 克久,「超大規模な線形数値計算に対する精度保証付き数値計算法の開発と実
装」，「若手・女性利用者推薦」成果報告会 (東京大学)，2017/12/6.

C15 寺尾 剛史，尾崎 克久，南畑 淳史「連立一次方程式の数値解に対する高速精度保証法」，RIMS
共同研究（公開型） 数値解析学最前線 ー理論・方法・応用ー (京都大学)，2017/11/10.

C16 寺尾 剛史，尾崎 克久，「大規模疎行列を係数行列に持つ連立１次方程式の数値解に対する精度保
証付き数値計算」，第 17回AT研究会オープンアカデミックセッション (山梨大学)，2017/10/7.

C17 寺尾 剛史，尾崎 克久，「行列の正則性を高速に保証するための理論と実装法」，2017年度日本
応用数理学会年会 (武蔵野大学)，2017/9/7.

C18 寺尾 剛史，尾崎 克久，「実対称行列を係数行列とする連立１次方程式の数値解に対する精度
保証付き数値計算」，Summer United Workshops on Parallel, Distributed and Cooperative
Processing (秋田)，2017/7/27.

C19 寺尾 剛史，尾崎 克久，「行列の正則性を保証する高速な手法について」，第 26回環瀬戸内ワー
クショップ (愛媛大学)，2017/7/22.

C20 寺尾 剛史，尾崎 克久，「超大規模な線形計算に対する精度保証付数値計算法の開発と評価」，学
際大規模情報基盤共同利用・共同研究拠点，2017/7/13.

62

C21 T. Terao, K. Ozaki,“Verification of Positive Definiteness using Approximate Inverse Matrices
of Computed Cholesky Factors”, International Conference on Computational and Mathemat-
ical Methods in Science and Engineering (Spain), 2017/7/4.

C22 T. Terao, K. Ozaki,“Fast verification methods for proving non-singularity of matrices”, 10th
Summer Workshop on Interval Methods, and 3rd International Symposium on Set Membership
- Applications, Reliability and Theory (England), 2017/6/14.

C23 寺尾 剛史，尾崎 克久，「ブロックコレスキー分解を用いた正定値性の保証法」，精度保証付き数
値計算と高性能計算に関するワークショップ (東京女子大学)，2017/4/10.

Poster

D1 T. Terao, K. Ozaki, T. Ogita,“High-Performance Computing of Thin QR Decomposition on
Parallel Systems”, International conference on high performance computing in Asia-Pacific
Region (Germany), 2019/6/19.

D2 T. Terao, K. Ozaki, T. Ogita,“High-Performance Computing of Thin QR Decomposition on
Parallel Systems”, International Supercomputing Conference (Germany), 2019/6/18.

63

Acknowledgment

I would like to express my appreciation to my thesis advisor Professor Katsuhisa Ozaki. I give special
gratitude to Prof. Takeshi Ogita and Dr. Atsushi Minamihata for their thoughtful guidance.

These works used super high-performance computing environments for extreme research using
computational resources of the K computer and other computers of the HPCI system provided by
RIKEN R-CCS and Nagoya University through the HPCI System.

64

Bibliography

[1] G. H. Golub, C. F. Van Loan, Matrix Computations, 4th edition, Johns Hopkins University
Press, 2013.

[2] Å. Björck, Solving linear least squares problems by gram-schmidt orthogonalization, BIT Nu-
merical Mathematics 7 (1) (1967) 1–21.

[3] A. Stathopoulos, K. Wu, A block orthogonalization procedure with constant synchronization
requirements, SIAM Journal on Scientific Computing 23 (6) (2002) 2165–2182.

[4] J. Demmel, L. Grigori, M. Hoemmen, J. Langou, Communication-optimal parallel and sequen-
tial qr and lu factorizations, SIAM Journal on Scientific Computing 34 (1) (2012) A206–A239.

[5] ANSI/IEEE, IEEE Standard for Floating-Point Arithmetic, New York (2008).

[6] P. S. Stanimirović, Generalizations of the condition number, Mathematica Balkanica 15 (2001)
35–48.

[7] T. Fukaya, Y. Nakatsukasa, Y. Yanagisawa, Y. Yamamoto, CholeskyQR2: a simple and
communication-avoiding algorithm for computing a tall-skinny QR factorization on a large-
scale parallel system, in: Proceedings of the 5th Workshop on Latest Advances in Scalable
Algorithms for Large-Scale Systems, IEEE Press, 2014, pp. 31–38.

[8] Y. Yamamoto, Y. Nakatsukasa, Y. Yanagisawa, T. Fukaya, Roundoff error analysis of the
CholeskyQR2 algorithm, Electronic Transactions on Numerical Analysis 44 (2015) 306–326.

[9] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, 2002.

[10] V. Strassen, Gaussian elimination is not optimal, Numerische mathematik 13 (4) (1969) 354–
356.

[11] D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions, Journal of
symbolic computation 9 (3) (1990) 251–280.

[12] V. V. Williams, Multiplying matrices faster than coppersmith-winograd., in: STOC, Vol. 12,
Citeseer, 2012, pp. 887–898.

[13] C.-P. Jeannerod, S. M. Rump, Improved error bounds for inner products in floating-point
arithmetic, SIAM J. Matrix Anal. Appl. 34 (2013) 338–344.

[14] S. M. Rump, C.-P. Jeannerod, Improved backward error bounds for LU and Cholesky factor-
ization, SIAM J. Matrix Anal. Appl. 35 (2014) 684–698.

65

[15] Advanpix, Multiprecision computing toolbox for MATLAB, ver. 3.8.3.8882 (2015).

[16] Y. Yamamoto, Y. Nakatsukasa, Y. Yanagisawa, T. Fukaya, Roundoff error analysis of the
choleskyqr2 algorithm in an oblique inner product, JSIAM Letters 8 (2016) 5–8.

[17] T. Fukaya, R. Kannan, Y. Nakatsukasa, Y. Yamamoto, Y. Yanagisawa, Shifted choleskyqr for
computing the qr factorization of ill-conditioned matrices, arXiv preprint arXiv:1809.11085.

[18] S. Oishi, S. M. Rump, Fast verification method of solution of matrix equations, Numer. Math.
90 (2002) 755–773.

[19] T. Ogita, S. M. Rump, S. Oishi, Verified solution of linear systems without directed rounding,
Advance Research Institute for Science and Engineering 2005-04.

[20] T. Ogita, S. Oishi, Fast verified solutions of linear systems, IPSJ Trans. 46 (2005) 10–18, (in
Japanese).

[21] K. Ozaki, T. Ogita, S. Oishi, An algorithm for automatically selecting a suitable verification
method for linear systems, Numerical Algorithms 56 (2011) 363–382.

[22] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd edition, SIAM, 2002.

[23] T. Yamamoto, Error bounds for approximate solutions of systems of equations, Japan Journal
of Applied Mathematics 1 (1) (1984) 157–171.

[24] S. Miyajima, Numerical enclosure for each eigenvalue in generalized eigenvalue problem, Jour-
nal of Computational and Applied Mathematics 236 (9) (2012) 2545–2552.

[25] S. Miyajima, Fast enclosure for all eigenvalues and invariant subspaces in generalized eigenvalue
problems, SIAM Journal on Matrix Analysis and Applications 35 (3) (2014) 1205–1225.

[26] T. Hoshi, T. Ogita, K. Ozaki, T. Terao, An a posteriori verification method for generalized
hermitian eigenvalue problems in large-scale electronic state calculations, submitted for publi-
cation (2019).

[27] A. Neumaier, A simple derivation of the hansen-bliek-rohn-ning-kearfott enclosure for linear
interval equations, Reliable Computing 5 (2) (1999) 131–136.

[28] D. Lee, T. Miyata, T. Sogabe, T. Hoshi, S.-L. Zhang, An interior eigenvalue problem from
electronic structure calculations, Japan Journal of Industrial and Applied Mathematics 30 (3)
(2013) 625–633.

[29] T. Hoshi, H. Imachi, A. Kuwata, K. Kakuda, T. Fujita, H. Matsui, Numerical aspect of large-
scale electronic state calculation for flexible device material, Japan Journal of Industrial and
Applied Mathematics 36 (2) (2019) 685–698.

[30] T. Hoshi, Elses matrix library, http://www.elses.jp/matrix/ (2019).

[31] T. Hoshi, S. Yamamoto, T. Fujiwara, T. Sogabe, S.-L. Zhang, An order-n electronic structure
theory with generalized eigenvalue equations and its application to a ten-million-atom system,
Journal of Physics: Condensed Matter 24 (16) (2012) 165502.

66

