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Abstract 

 

An optical isolator is an indispensable device in optical communication systems since it can protect 

active photonic devices from unwanted reflected light. Magnetic garnet crystals are necessary to 

construct the optical isolator owing to their large magneto-optic coefficient and low absorption loss in 

the near infrared region. In decade ago, optical isolators with a Si guiding layer have been researched 

widely. The author has investigated two types of the optical isolator with the Si guiding layer, employing 

a nonreciprocal guided-radiation mode conversion. First, the optical isolator utilizes a magneto-optic 

waveguide with a crystalline Si guiding layer. The magneto-optic waveguide is fabricated by bonding 

technique between a magnetic garnet and silicon-on-insulator (SOI) structure. Last, the optical isolator 

consists of an amorphous Si guiding layer deposited on a magnetic garnet cladding layer. Therefore, in 

both cases, the optical isolator is composed of a magneto-optic waveguide with the Si guiding layer and 

the magnetic garnet cladding layer.  

In order to realize the magneto-optic waveguide with a crystalline Si guiding layer, surface activated 

bonding and adhesive bonding were considered. By using these techniques, Si and a magnetic garnet 

can be connected with each other at low temperature. The optical isolator employing the nonreciprocal 

guided-radiation mode conversion was designed at a wavelength of 1.55 µm. The nonreciprocal phase 

shift was calculated in the magneto-optic waveguide with a magnetic garnet / Si / SiO2 structure. It was 

confirmed that the largest nonreciprocal phase shift was obtained when the thickness of the Si guiding 

layer is 200 nm. The relationship of waveguide parameters for isolator operation was investigated. By 

using bonding technique, there is concern over a gap generated between the Si guiding layer and the 

magnetic garnet cladding layer. The nonreciprocal phase shift was calculated when the gap existed in the 

magneto-optic waveguide and the relationship of waveguide parameters were clarified for various gaps. 

The magneto-optic waveguides were fabricated by surface activated bonding and adhesive bonding.  

In the optical isolator with a hydrogenated amorphous Si (a-Si:H) guiding layer, the magneto-optic 

waveguide has a structure of air/ a-Si:H/ magnetic garnet. Since the a-Si:H guiding layer is deposited 

directly on the magnetic garnet cladding layer, there are no gaps between the a-Si:H and the magnetic 

garnet. The nonreciprocal phase shift was calculated at a wavelength of 1.55 µm and the relationship of 

waveguide parameters were clarified. The isolation ratio of the optical isolator was calculated by 



 
 

simulating the electric field of TM guided mode and that of TE radiation mode. The magneto-optic 

waveguide with a-Si:H guiding layer was fabricated and evaluated.  

The temperature dependence of the optical isolator employing a nonreciprocal guided-radiation 

mode conversion was investigated. The optical isolator consists of a rib-type magneto-optic waveguide 

with a-Si:H guiding layer. The relationship of rib height and rib width for the isolator operation was 

clarified for various operating temperatures. Refractive indices of layers in the magneto-optic waveguide 

were considered since proper refractive indices can circumvent deviation of the waveguide parameters 

due to the temperature shift. The results show that athermal operation can be achieved by the negative 

temperature dependence of the refractive index of the upper cladding layer, and the relationship of 

waveguide parameters varies only slightly with the selected upper cladding layer. As for the candidate 

of the upper cladding layer of the magneto-optic waveguide, TiO2 and C6H11CH3 compound were 

proposed for athermal operation of the optical isolator. 

 

 

 

 

 

  



 
 

Contents 

 

       Pages 

Acknowledgements  I 

Abstract  II 

Contents  IV 

List of Figures  IX 

List of Tables  XIII 

List of Publications  XIV 

 

 

Ch1: Background  1 

1.1 Introduction  1 

1.2 Optical nonreciprocal devices  3 

1.2.1 Bulk optical isolator  3 

1.2.1.1 Polarization-dependent type  3 

1.2.1.2 Polarization-independent type  4 

1.2.2 Waveguide optical isolator  5 

1.2.3 Optical circulator  9 



 
 

1.3 Si photonics  10 

1.4 Waveguide optical isolator for Si photonics  12 

1.5 Organization of the dissertation  15 

 

Ch2: Theories  22 

2.1 Propagation of light wave  22 

2.2  Garnet crystal  24 

2.2.1 Cerium-substituted yttrium iron garnet (Ce:YIG)  24 

2.2.2 Gadolinium calcium gallium magnesium zirconium garnet  25 

(GCGMZG) 

2.3 Magneto-optic effect  26 

2.3.1 Faraday effect  26 

2.3.2 Cotton-Mouton effect  29 

2.3.3 Kerr effect  29 

2.4 Nonreciprocal phase shift  31 

2.5 Nonreciprocal guided-radiation mode conversion     34 

2.6 Fabrication processes  35 

2.6.1 Surface activated bonding  35 

2.6.2 Photosensitive adhesive bonding  36 

2.6.3 Plasma-enhanced chemical vapor deposition  37 

2.6.4 Spin coating  38 



 
 

2.6.5 Electron beam lithography  39 

2.6.6 Ultraviolet lithography  40 

2.6.7 Etching  41 

 

Ch3. Magneto-optic waveguides fabricated by bonding   46 

         technique  

3.1 Introduction  46 

3.2 Device structure  46 

3.3 Isolator design  47 

3.3.1 Surface activated bonding  47 

3.3.2 Photosensitive adhesive bonding  50 

3.4 Calculation of isolation ratio  52 

3.4.1 The electric field of TM guided mode  53 

3.4.2 The electric field of TE radiation mode  54 

3.4.3 The conversion of TM guided mode to TE radiation mode   55 

3.5 Fabrication processes  56 

3.5.1 Surface activated bonding  56 

3.5.2 Photosensitive adhesive bonding  57 

3.6 Conclusion  58 

 

 



 
 

Ch4. Magneto-optic waveguides with a-Si:H guiding layer  61 

4.1 Introduction  61 

4.2 Device structure  61 

4.3 Isolator design  62 

4.4 Calculation of isolation ratio  65 

4.4.1 The electric field of TM guided mode  65 

4.4.2 The electric field of TE radiation mode  66 

4.4.3 The conversion of TM guided mode to TE radiation mode   67 

4.5 Fabrication processes  69 

4.5.1 Plasma-enhanced chemical vapor deposition  69 

4.5.2 Spin coating, Baking, and Espesor  70 

4.5.3 Electron beam lithography  71 

4.5.4 Ultraviolet lithography  71 

4.5.5 Etching  71 

4.6 Evaluation of magneto-optic waveguide  72 

4.7 Conclusion  74 

 

Ch5. Athermal operation of optical isolator  75 

5.1 Introduction  75 

5.2 Temperature dependence of isolator design  75 

5.3 Material for upper cladding layer  79 



 
 

5.4 Conclusion  81 

 

Ch6. Conclusions  83 

6.1 Conclusions  83 

6.2 Suggestions for the future work  85 

 

  



 
 

List of Figures 

 

Figure 1.1 Operation principle of a bulk-type optical isolator  4 

Figure 1.2 The diagram of fiber-embedded polarization-independent isolator  5 

Figure 1.3 Operation principle of an optical isolator with parallel polarizers  7 

Figure 1.4 The structure of waveguide-type optical isolator employing   7 

mode conversion   

Figure 1.5 The diagram of mode-conversion isolator  8 

Figure 1.6 Basic geometry of the semileaky optical isolator  8 

Figure 1.7 Behavior of an optical circulator  10 

Figure 1.8 The schematic drawing of SOI waveguide MZI optical isolator   13 

Figure 1.9 Optical isolator with Si guiding layer fabricated by bonding   13 

technique 

Figure 1.10 Optical isolator with hydrogenated amorphous Si (a-Si:H)   14 

guiding layer deposited on a magnetic garnet cladding layer 

Figure 2.1 Structure of non-planar waveguides, consisting of (a) strip-  23 

loaded waveguides, (b) ridge waveguides, (c) rib waveguides, (d) buried  

channel waveguides, and (e) diffused waveguides 

Figure 2.2 Operation principle of Faraday effect  27 

Figure 2.3 The relationship of propagation constant  34 

Figure 2.4 Schematic process flow of surface activated bonding technique  35 

 



 
 

Figure 2.5 Schematic process flow of photosensitive adhesive wafer   37 

bonding technique 

Figure 2.6 Schematic of plasma-enhanced chemical vapor deposition   38 

technique  

Figure 2.7 Schematic of electron beam lithography  40 

Figure 2.8 Schematic of ultraviolet lithography  41 

Figure 2.9 Schematic of reactive ion etching  42 

Figure 3.1 Optical isolator fabricated by bonding technique  47 

Figure 3.2 Cross-sectional structure of magneto-optic waveguide fabricated   48 

by surface activated bonding 

Figure 3.3 Calculated nonreciprocal phase shift depending on Si thickness   49 

when the waveguide is fabricated by surface activated bonding  

Figure 3.4 Relationship of waveguide parameters for isolator operation  49 

when the waveguide is fabricated by surface activated bonding 

Figure 3.5 Cross-sectional structure of magneto-optic waveguides   50 

fabricated by photosensitive adhesive bonding 

Figure 3.6 Calculated nonreciprocal phase shift depending on Si thickness   51 

when the waveguide is fabricated by photosensitive adhesive bonding 

Figure 3.7 Relationship of waveguide parameters for isolator operation  51 

when the waveguide is fabricated by photosensitive adhesive bonding 

Figure 3.8 Cross section of magneto-optic waveguide for calculating   52  

isolation ratio 

Figure 3.9 The electric field of TM guided mode  53 



 
 

Figure 3.10 The electric field of TE radiation mode  54 

Figure 3.11 The power attenuation of optical isolator depending on the  56  

angle of external magnetic field  

Figure 3.12 Photograph of Si/ Ce:YIG fabricated by surface activated  57 

bonding 

Figure 3.13 Thickness of the adhesive layer as a function of dilution ratio  58 

Figure 3.14 Magneto-optic waveguide fabricated by photosensitive  58  

adhesive bonding 

Figure 4.1 Optical isolator with a-Si:H guiding layer  62 

Figure 4.2 Calculated nonreciprocal phase shift for slab waveguide with  63 

air/ a-Si:H/ Ce:YIG structure depending on a-Si:H thickness 

Figure 4.3 Calculated nonreciprocal phase shift for slab waveguide with  63 

air/ a-Si:H/ Ce:YIG/ GCGMZG structure depending on Ce:YIG thickness 

Figure 4.4 Cross sectional structure of magneto-optic waveguide with   64 

a-Si:H guiding layer 

Figure 4.5 Relationship of waveguide parameters for isolator operation  64 

Figure 4.6 Cross section of magneto-optic waveguide for calculating   65  

isolation ratio 

Figure 4.7 The electric field of TM guided mode  66 

Figure 4.8 The electric field of TE radiation mode  67 

Figure 4.9 The power attenuation of optical isolator depending on the angle  68  

of external magnetic field  

 



 
 

Figure 4.10 The fabrication process of the magneto-optic waveguide with   69 

a-Si:H guiding layer 

Figure 4.11 The magneto-optic waveguide with a-Si:H/ buffer/ Ce:YIG   72 

structure observed by SEM 

Figure 4.12 Experimental setup for optical waveguide  73 

Figure 4.13 Near-field pattern form the waveguide with a-Si:H guiding   73 

layer 

Figure 5.1 Relationship of waveguide parameters depending on operating   76 

temperature  

Figure 5.2 Effective refractive indices of TM mode and TE cutoff  77  

depending on the operating temperature. The temperature dependences of  

the refractive index of the upper cladding layer are assumed to be (a)  

+5.0x10-4 |/K| and (b) -5.0x10-4 |/K|   

Figure 5.3 Effective refractive indices of TM mode and TE cutoff with   78 

temperature dependences of the refractive index of (a) -5.5x10-4 |/K|, (b) 

-6.0x10-4 |/K|, (c) -6.5x10-4 |/K|, and (d) -7.0x10-4 |/K|   

Figure 5.4 Relationship of waveguide parameters for magneto-optic  78  

waveguides with upper cladding layer when the temperature dependences  

of the refractive index are (a) +6.0x10-4 |/K| and (b) -6.0x10-4 |/K|   

Figure 5.5 Relationship of waveguide parameters for magneto-optic   80 

waveguides with TiO2 

Figure 5.6 Relationship of waveguide parameters for magneto-optic   80 

waveguides with C6H11CH3 

 



 
 

List of Tables 

 

Table 1.1 The advantages and disadvantages of the magneto-optic   15 

waveguide for optical isolator  

Table 4.1 PECVD’s conditions  70 

Table 4.2 Spin coat’s conditions   70 

Table 4.3 Espesor spin coat’s conditions  71 

Table 4.4 RIE’s conditions  72 

 

  



 
 

List of Publications 

Journals 

[1] S. Choowitsakunlert, T. Kobashigawa, N. Hosoya, R. Silapunt, H. Yokoi, “Temperature-

insensitive design of waveguide isolator employing nonreciprocal guided-radiation mode 

conversion”: Jpn. J. Appl. Phys., Vol. 57, no. 11, pp. 112201-1-112201-5, September 2018.  

[2] S. Choowitsakunlert, K. Takagiwa, T. Kobashigawa, N. Hosoya, R. Silapunt, H. Yokoi, 

“Fabrication processes of SOI structure for optical nonreciprocal devices”: Key Engineering 

Materials, Vol. 777, pp. 107-112, August 2018.  

[3] S. Choowitsakunlert, K. Takagiwa, T. Kobashigawa, N. Hosoya, R. Silapunt, H. Yokoi, 

“Photosensitive adhesive bonding process of magnetooptic waveguides with Si guiding layer for 

optical nonreciprocal devices”: Jpn. J. Appl. Phys., Vol. 57, no. 5, pp. 058007-1-058007-2, May 

2018.  

[4] S. Choowitsakunlert, R. Silapunt, and H. Yokoi, “A 1D study of antiferromagnetic operated on 

multiferroic composites in nano read head”: Microsyst. Technol., March 2017. (online) 

 

International Conferences 

[1] N. Hosoya, S. Choowitsakunlert, R. Silapunt, H. Yokoi, “Magneto-optic waveguide with Si 

guiding layer for optical nonreciprocal devices using photosensitive adhesive bonding”: 23rd 

Microoptics Conference, P-37, October 2018. 査読有り 

[2] T. Kobashigawa, S. Choowitsakunlert, R. Silapunt, and H. Yokoi, “Athermal condition of 

nonreciprocal radiation type optical isolator using strip-loaded waveguide”: 23rd Microoptics 

Conference, P-39, October 2018. 査読有り 

[3] H. Yokoi and S. Choowitsakunlert, “Optical nonreciprocal devices for Si photonics”: European 

Advanced Materials Conference 2018, Stockholm, Sweden, August 2018. 査読有り 

http://iopscience.iop.org/article/10.7567/JJAP.57.058007
http://iopscience.iop.org/article/10.7567/JJAP.57.058007
http://iopscience.iop.org/article/10.7567/JJAP.57.058007


 
 

[4] S. Choowitsakunlert, R. Silapunt, H. Yokoi, “Magneto-optic waveguide in optical isolator 

employing nonreciprocal guided-radiation mode conversion for athermal operation”: Advanced 

Photonics Congress 2018, JTu5A.2, July 2018. 査読有り 

[5] S. Choowitsakunlert, K. Takagiwa, T. Kobashigawa, N. Hosoya, R. Silapunt, H. Yokoi, 

“Fabrication processes of SOI structure for optical nonreciprocal devices”: 7th International 

Conference on Advanced Materials and Engineering Materials, P3-104, May 2018. 査読有り 

[6] S. Choowitsakunlert, R. Silapunt, K. Takagiwa, H. Yokoi, “Athermal condition of magneto-optic 

waveguides in optical isolator employing nonreciprocal guided-radiation mode conversion”: 22nd 

OptoElectronics and Communications Conference, P3-104, August 2017. 査読有り 

[7] S. Choowitsakunlert, K. Takagiwa, T. Kobashigawa, N. Hosoya, R. Silapunt, H. Yokoi, 

“Fabrication processes of magneto-optic waveguides with Si guiding layer for optical 

nonreciprocal devices”: 5th International IEEE Workshop on Low Temperature Bonding for 3D 

Integration, 17SP-20, May 2017. 査読有り 

[8] S. Choowitsakunlert, K. Kobayayshi, K. Takagiwa, R. Silapunt, and H. Yokoi, “Design of optical 

isolator employing nonreciprocal radiation mode conversion for athermal operation”: 21st 

Microoptics Conference, 13C-3, October 2016. 査読有り 

[9] K. Kobayashi, S. Choowitsakunlert, and H. Yokoi, “Optical isolator with Y2O3 strip-loaded 

waveguide employing nonreciprocal radiation mode conversion”: 21st Microoptics Conference, 

13C-4, October 2016. 査読有り 

[10] H. Yokoi, S. Choowitsakunlert, K. Kobayashi, and T. Takagiwa, “Optical isolator with Si guiding 

layer fabricated by photosensitive adhesive bonding”: 14th International Symposium on 

Semiconductor Wafer Bonding, H2-2094, Electrochem. Soc. Proc., October 2016. 査読有り 

 

 

 



 
 

Domestic Conferences 

[1] 松崎真悟, S. Choowitsakunlert, 小橋川卓矢, 細谷斉昭, R. Silapunt, 横井秀樹, “超音速フリー

ジェット PVD 法を用いた Si フォトニクス用磁気光学導波路の設計”: 第６回グリーンイ

ノベーションシンポジウム, February 2019.  

[2] 小橋川卓矢, S. Choowitsakunlert, R. Silapunt, 横井秀樹, “Si 導波層を有する磁気光学導波路

の製作プロセスの検討”: 第５回グリーンイノベーションシンポジウム, pp. 129-131, 

February 2018.  

[3] 高際健児, S. Choowitsakunlert, 細谷斉昭, 横井秀樹, “a-Si:H/SiNx導波層を有する磁気光学

導波路の試作”: 第 78回応用物理学会学術講演会, 7p-PA2-13, September 2017. 

[4] S. Choowitsakunlert, R. Silapunt, and H. Yokoi, “Multiferroic composites with PtMn sandwich 

structure for read head technology in 1D”: 第４回グリーンイノベーションシンポジウム, pp. 

91-93, February 2017.  

[5] 高際健児, S. Choowitsakunlert, 細谷斉昭, 横井秀樹, “a-Si:H/SiNx導波層を有する磁気光学

導波路の設計および試作”: nano tech 2017, February 2017.  

 

 

 

 

 

  



 
 

CHAPTER 1 BACKGROUND 

 

 

1.1  Introduction 
 

Fiber-optic communication systems are light wave systems that employ optical fibers for 

information transmission.  A basic optical fiber system consists of a transmitting device that converts an 

electrical signal into an optical signal, an optical fiber cable that carries the light, and a receiver that 

accepts the optical signal and converts it back into an electrical signal. A communication system 

transmits information from one place to another by transoceanic distance. Owing to the development of 

an optical fiber communication system, high speed processing for transmitting and receiving data is 

available.  

The proficiency of waveguide devices is very important to develop the optical communication 

systems as in a semiconductor laser diode and an optical fiber. In 1960, T. Maiman operated the first 

optical maser, which is known as a laser [1]. He measured an emitted spectrum from a ruby. In 1962, 

laser action in a semiconductor material was demonstrated by R. Hall [2]. It took about another decade 

for the first semiconductor laser diodes to be developed that could operate at room temperature. After 

that, Diode Laser Labs of New Jersey introduced the first commercial room-temperature semiconductor 

laser diodes. The advent of high performance semiconductor laser diodes [3,4], high speed and high 

sensitivity photodetectors [5], and very low loss optical fibers [6-8] makes it reliable that optical fiber 

communications would be put into practical use, which is required from information society. As an 

optical transmission system is developing, the progress of the waveguide devices which construct the 

system is required. Besides, as electric circuits had progressed, the realization of optoelectronic 

integrated circuits has been heavily desired.   

In 1969, S. E. Miller considered the concept of integrated optics [9-12]. The first idea of integrated 

optics was applied in thin film technology to form optical devices and circuit. It was found that a thin 

layer of dielectric film, which had larger refractive index than that of the surroundings, was a perfect 

optical waveguide. The purpose of integrated optics is to unify many optical components on a single 

chip. The integrated optics has been used frequently to denote waveguide devices on transparent 

substrates, such as glass or lithium niobate (LiNbO3). The initial yields were very poor for a single chip 



 
 

so that it seemed foolhardy to decrease the problem by placing on a chip. Nevertheless, in 1954, a chip 

with four-transistor circuit was investigated, that included some passive circuit elements, connected by 

external wire bonds. In 1978, the first demonstration of integrated optics [13] was reported, which was 

an integration of an injection laser diode and a Gunn oscillator. Meanwhile, the Photonic Integrated 

Circuit (PIC) [14] has been introduced to describe semiconductor integrated devices. The PIC is a device 

that integrates multiple photonic functions and as such is similar to an electronic integrated circuit. The 

major difference between the two circuits is that a PIC provides function for information signals imposed 

on optical wavelengths typically in the visible spectrum or near infrared from 850 nm to 1650 nm. The 

most commercially utilized material platform for PICs is indium phosphide (InP), which allows the 

integration of various optically active and passive functions on the same chip. In 1990, the PIC was 

demonstrated with indium gallium arsenide (GaInAs)/ gallium indium arsenide phosphide (GaInAsP) 

multiple-quantum-well integrated heterodyne receiver [15].  The characteristics of PICs are the stability 

against mechanical vibration or thermal fluctuation, low operating voltage, high speed operation, small 

in size, and suitable for mass production. 

In order to maintain a performance of optical communication systems, the characteristic of the 

semiconductor laser diodes plays a very important roll. Semiconductor laser diodes are available as 

reliable light source. The rapid development of optical fiber communication systems requires a high 

level of on-chip integration of various optical components. Optical integration does not have the same 

degree of success as electronics integration. The semiconductor laser diodes are usually fabricated on 

III-V compound semiconductor wafers such as gallium arsenide (GaAs) and InP. 

It is essential that the laser is protected from reflected light, otherwise they can become unstable or 

can even be damaged. An external feedback gives effect by the enhanced effect of carrier vibration [16-

17], mode hopping phenomena among external cavity modes [18], a transition to chaotic state [19-20], 

effect of coherence collapse [21], and so on. In optical communication systems, optical isolators are one 

of the most important passive components [22]. Another type of passive element that is commonly used 

in fiber optic systems is an optical circulator [23]. The function of an optical isolator and an optical 

circulator are to let a light beam pass through in one direction, that is, the forward direction only, like a 

one-way traffic. Therefore, optical isolators are used to prevent destabilizing feedback of light that 

causes undesirable effects such as frequency instability in laser sources and parasitic oscillation in 

optical amplifiers. Ordinary optical isolators are commercially available which make use of the Faraday 

effect to produce nonreciprocity. The Faraday effect is a magneto-optic phenomenon in which the 

polarization plane of light passing through a transparent substance is rotated in the presence of a 

http://www.fs.com/c/fiber-circulator_1311


 
 

magnetic field parallel to the direction of light propagation. The magnitude of the rotation depends on 

the strength of the magnetic field and the nature of the transmitting substance. Unlike in the optical 

activity (or natural activity), the direction of the rotation changes its sign for light propagating in reverse. 

For example, if the ray transverses the same path twice in opposite direction, the total rotation is double 

of the rotation for a single passage.  

 

1.2  Optical nonreciprocal devices 

 

Several kinds of the optical nonreciprocal device are investigated with the magneto-optic waveguide. 

The design of the optical nonreciprocal devices will be explained.  

 

1.2.1 Bulk optical isolator 
 

An optical isolator plays an important role in stabilizing optical communication systems by 

eliminating the back reflection of each device. Currently, a bulk optical isolator dominates in optical 

communications compared with in-line or waveguide ones. A number of configurations for polarization-

dependent and polarization-independent optical isolator have been proposed and demonstrated [24,25].  

 

1.2.1.1 Polarization-dependent type 

The optical isolators are common and their design is fairly well understood for bulk devices. 

Generally, optical isolators consist of a magnetic garnet that shows large Faraday effect, a permanent 

magnet for applying an external magnetic field, and polarizing elements with polarization axis offset of 

45 degrees as shown in figure 1.1. In forward propagation, the light passing the optical isolator undergoes 

by following: at first the light passes through the polarizer. The incident light is transformed into a 

linearly polarized light. After it passes through the Faraday rotator, the polarization plane is rotated by 

45 degrees. Then, this light passes through the analyzer without loss since its polarization plane is now 

in the same direction as the light transmission axis of the analyzer. On the other hand, a backward light 

propagates in a slightly different manner. The light passing through the analyzer is transformed into a 

linearly polarized light with a 45 degrees-tilt in the transmission axis. Passing through the Faraday 



 
 

rotator, the polarization plane of the backward light is rotated by 45 degrees in the same direction as the 

first round. Therefore, this light is completely shut out by the polarizer because its polarization plane is 

now 90 degrees away from the light transmission axis of the polarizer. The performance of optical 

isolators is primarily evaluated by their insertion losses and isolation ratio (the ratio of the optical power 

propagating backward at the input to the forward power at the output), both of which are determined by 

the absorption losses end-face reflectance and the extinction ratios of optical elements.  

 

Figure 1.1 Operation principle of a bulk-type optical isolator. 

1.2.1.2 Polarization-independent type 

While polarization-dependent optical isolators operate for the light polarized, only in a specific 

direction, polarization-independent isolators operate for any kind of polarization state. Consequently, 

these isolators are frequently used in optical fiber amplifiers. The basic working principle of a 

polarization-independent optical isolator was first proposed by T. Matsumoto [26]. Its arrangement 

consists of a Faraday rotator and a half-wave plate inserted between a pair of birefringent crystal plates 

of equal thickness (as spatial walk-off polarizer, SWP). The birefringent plate functions to split the 

incident beam into a pair of orthogonal rays and separate one ray ("E" ray) from the other ray ("O" ray) 

as they travel through the plate. This phenomenon of spatial displacement is often referred to as "walk 

off". The two separated components are rotated as they pass through the half-wave plate and the Faraday 
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rotator, and then enter the second birefringent plate where they are recombined to form the output signal. 

Since a Faraday rotator is a nonreciprocal device, any signal traveling in the reverse direction through 

the isolator will be physically separated into orthogonally polarized signals as it passes through both 

birefringent plates and will not be recombined into the input fiber. In an alternative design, a wedge-

shaped spatial walk-off polarizer was used to bring a large separation of two polarization states in 

backward direction by Shirasaki. The schematic and working principle is depicted in figure 1.2. 

 

Figure 1.2 The diagram of fiber-embedded polarization-independent isolator 

   

1.2.2 Waveguide optical isolator 
 

The bulk isolator is not suitable for integrating with other optical devices. Waveguide optical 

isolators have been investigated to realize the integrated circuit. There are a few basic concepts to 

construct the waveguide optical isolator. They utilize a mode conversion which corresponds to the 

Faraday rotation in a bulk isolator, an optical nonreciprocal phase shift which occurs in transverse 

magnetic (TM) modes, and a mode coupling between guided and radiation modes. 

A mode-conversion type optical isolator consists of three parts that include input polarizer, Faraday 

rotator, and output polarizer. The Faraday rotator composes of a magnetic garnet such as yttrium iron 
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garnet and terbium gallium garnet, which have large Faraday rotation coefficient, placed in a cylindrical 

permanent magnet and rotates the polarization of passing light by 45 degrees. In forward direction, the 

light will propagate passing input polarizer and the polarized light will have only one direction (vertical 

plane). Then, the light passes through the Faraday rotation, so that the plane of polarization will be 

rotated 45 degrees. The output polarizer, which is aligned 45 degrees relating to the input polarizer, will 

then let the light pass through. On the other hand, light traveling in the reverse direction (backward 

direction) will pass through the output polarizer and become polarized by 45 degrees. The light passes 

through the Faraday rotator and experiences additional 45 degrees of non-reciprocal rotation. The light 

is now polarized in the horizontal plane and will be rejected by the input polarizer, which allows light 

polarized in the vertical plane to pass through. Owing to this principle, the device acts as a bulk-type 

optical isolator.  

Waveguide modes in planar dielectric waveguides have their electric vector vibrating in orthogonal 

planes. This device includes two polarizers that are difficult to set rotation angle at 45 degrees, therefore, 

an optical active element must be prepared. An optical isolator with parallel polarizers is employing the 

mode conversion by using Faraday rotation as shown in figure 1.3. The electric vectors are 0 degree or 

90 degrees plane by the active element. It is possible to replace the active element with an anisotropic 

one in the waveguide cases because TM modes have a component of electric field along the propagation 

direction and an anisotropic crystal can be oriented to provide a coupling between this field component 

and the electric field of transverse electric (TE) modes as shown in figure 1.4. When this principle is 

applied to the waveguide optical isolator, propagation constants of TE and TM modes must be coincident 

for obtaining mode conversion between two modes. It is difficult to realize the waveguide optical isolator 

employing the mode conversion. The phase matching between two modes is a coincidence in 

propagation constants of the two modes. Figure 1.5 shows another waveguide-type optical isolator 

employ mode conversion. J.P. Castera et al. proposed a similar isolator using the Faraday and Cotton-

Mouton effects [27]. These waveguide designs required mode conversion that was similar to that used 

in bulk isolators, but they needed to match TE and TM propagation constants by fine-tuning the 

waveguide dimensions which was difficult with the lithography of the time. Therefore, in 1980s, they 

continued to focus on complete elimination of birefringence to enable waveguides to exhibit full Faraday 

rotation. Ando et al. [28] proposed a compact tandem (Faraday/Cotton-Mouton) isolator that employed 

laser annealing on a large scale to eliminate the growth-induced anisotropy which caused the 

magnetization of garnet films to lie out of the plane.  
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Figure 1.3 Operation principle of an optical isolator with parallel polarizers. 
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Figure 1.4 The structure of waveguide-type optical isolator employing mode conversion. 



 
 

 

 

Figure 1.5 The diagram of mode-conversion isolator. 

 

Another type of the waveguide-type isolator is a “semileaky isolator”. An anisotropy was realized 

within refractive indices that were higher or lower than the garnet waveguide in order to obtain 

“semi-leaky” waveguides [29]. Figure 1.6 shows the basic geometry of the semileaky optical isolator. 

The nonreciprocal magneto-optic mode conversion was designed to be equal but opposite in the 

forward direction, then TE mode would experience little loss. On the other hand, in the backward 

direction, TM modes were generated and leaked away due to the higher cladding index. Due to the 

problem in an optical contact between the magneto-optic guiding layer and anisotropic superstrate, 

it is very difficult to fabricate this isolator [30]. 
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Figure 1.6 Basic geometry of the semileaky optical isolator. 

qm

M

M

Substrate

Magneto-optic layer

Mode selector

Faraday part Cotton-Mouton part



 
 

 

An optical isolator employing a nonreciprocal phase shift is attractive because there is no need for 

phase matching or complicated control of the direction of magnetization [31]. The nonreciprocal phase 

shift occurs in TM modes travelling in magneto-optic waveguides, in which the magnetization is aligned 

transversely to the light propagation direction in the film plane. When a magneto-optic layer is used as 

a cladding layer in the magneto-optic waveguide, the nonreciprocal phase shift has its maximum with a 

high-refractive-index guiding layer [32].  

An optical isolator based on a nonreciprocal guided-radiation mode conversion is realized [33-35]. 

The isolator operates on the basis of the nonreciprocal guided-radiation mode conversion in a channel 

waveguide. The optical isolator employing the nonreciprocal guided-radiation mode conversion is very 

attractive because of its simple structure. A backward TM mode is converted to TE radiation mode while 

a forward TM mode propagates with no mode conversion by arranging the propagation constant 

relationship of the two modes. It can be accomplished by the optical nonreciprocal phase shift which 

occurs in TM modes [36,37].  

 

1.2.3 Optical circulator 
 

Another type of passive element that is commonly used in fiber optic systems is the optical circulator 

[23,38]. An optical circulator is a special fiber-optic component that can be used to separate optical 

signals that travel in opposite directions in an optical fiber. It can be made with any number of ports. 

Moreover, if it makes sure the last port does not circulate around the first, the device can be used in 

systems where this feature is not required. The optical circulators are very versatile devices and may be 

used in many applications.  

Optical circulators are made of an assembly of optical components. There are many different designs 

but the key principle is like that of the optical isolator. The basic function of an optical circulator is 

illustrated in the figure 1.7. For example, in a 3-port circulator, a signal is transmitted from port 1 to port 

2, another signal is transmitted from port 2 to port 3, and finally, a third signal can be transmitted from 

port 3 to port 1. In terms of operation principles, optical circulators can be divided into three types, 

traditional, waveguide, and holographic. The traditional optical circulators consist of spatial walk-off 

polarizers (SWPs), Faraday rotators (FRs), and half-wave plates (Hs) to implement its function. [39] 



 
 

 

Figure 1.7 Behavior of an optical circulator. 

 

1.3  Si photonics 
 

For the global market of Si photonics, the Si photonics market is estimated to be USD 774.1 million 

in 2018 and is expected to USD 2.61 billion in 2024 that means the compound annual growth rate 

(CAGR) is growing up to 22.45%. This market is reported base on the product, applications, 

components, and regions. The Si photonics is produced for a transceiver, a switch, a variable optical 

attenuator, a cable, and a sensor. The Si photonics is realized in the application such as data center, 

telecommunications, military and defense, medical and life sciences, and sensing. The Si photonics is a 

perfect solution for high-density photonic integration, allowing the incorporation of photonic devices on 

a Si wafer. The problem to transfer huge data should be resolved through high-density photonic 

integration with photonics devices.  

Si photonics means the implementation of some level of photonic integrated circuit in Si. The 

emergence of photonics and electronics based on a Si platform creates an ideal solution for 

optoelectronic integrated circuit which potentially enables optical interconnects with power 

consumption [40]. More than a decade’s researches, Si-based photonic devices are rapidly increasing 

their performances. Si-based micro and nano-waveguide devices have shown a lot of advantages, 

including high speed [41], low optical loss [42], low power consumption [43], small size [44], 

monolithic optoelectronic integrations [45], and hybrid material integration capability [46]. Si photonics 

has been developed as an integration technology that supports a wide range of compact photonic device 

on an integrated circuit for applications ranging from communication to sensing. Si photonics is 

employed in the project of HELIOS, PLATON, ePIXnet, iPHOS, RAMPLAS, PARADIGM, etc. [47]  
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For example, HELIOS proposes to integrate Si photonic components with integrated circuits. 

HELIOS intends to realize a design and fabrication chain for integrating the photonic layer with CMOS 

circuit by using microelectronic fabrication processes. [48] HELIOS aims to develop a generic 

integration and manufacturing technology for high density and high-performance components and 

circuits involving passive and active photonic functions.  

PLATON [49, 50] purposes to develop and demonstrate on-chip Tb/s optical router for back-plane 

or blade-server interconnects through merging plasmonics and silicon photonics technology, employing 

plasmonics for the switching functionalities and silicon photonics for filtering, multiplexing, and header 

detection processes. PLATON includes a router-chip with integrated photonics, plasmonics, and 

microelectronic components. PLATON aims to reduce the size and power consumption bottleneck in 

data center and high-performance computing system by realizing chip-scale high-throughput routing 

fabric with reduced energy consumption and footprint requirement. PLATON’s optical board 

technology is used to blend the functionally potential small-footprint, high-bandwidth plasmonic 

structures and the potential integration of plasmonics with the more mature silicon-on-insulator (SOI) 

technology providing a new generation of miniaturized photonic components.  

Si is used as an optical medium and in complementary metal-oxide semiconductor fabrication 

processing technology. It allows tighter monolithic integration of many optical functions with a single 

device. Optical waveguides, modulators, and photo-detectors can be integrated within a single device, 

thus providing a smaller form factor. Many existing devices still require external laser sources and, 

therefore, light coupling capabilities at the input and output of a Si photonics IC are critical to the success 

of the product. There are still numerous challenges designers need to overcome in order to make Si 

photonics devices viable for mass adoption and the technology of choice for future optoelectronic 

communication. In 2015, Si photonics fundamentals were presented, the basic building blocks covering 

both active and passive elements, and discuss the contrast with existing multimode/single mode 

optoelectronics technology. It will provide an overview of the challenges which designers have already 

conquered to bring this technology to a stage where successful products are demonstrated.   

Si photonics has attracted attention as an emerging technology for optical telecommunications and 

for optical interconnects in microelectronics. Based on complicated semiconductor technology, Si 

photonics would be provided with and inexpensive integrated electronic-photonic platform. For the 

silica-based or III-V semiconductor-based photonic systems, Si photonics requires an optical waveguide 

system. The III–V compound semiconductor-based waveguides and photonic devices have geometries 



 
 

smaller than those in the silica-based system; however, on a Si substrate it is very difficult to grow 

epitaxially the high-quality III–V materials needed for the construction of practical photonic devices.  

Moreover, Si waveguides, such as rib-type waveguides with core dimensions of a few micrometers 

[51] and photonic wire waveguides with core dimensions of several hundreds of nanometers [52–54], 

are considered. The waveguide must have features that allow accommodating passive and dynamic 

photonic devices such as wavelength filters and modulators. The waveguide system must be flexible 

enough to allow active functions, such as light emission and detection to be implemented. A Si-based 

waveguide is obviously preferable for electronic photonic convergence. 

 

1.4  Waveguide optical isolator for Si photonics 
 

As for the communication network, the fiber optic supports the coming multimedia based society. 

This system is indispensable for transmitting audio data, as has been conventionally performed, in 

addition to transmitting large-volume data such as move data freely. The reflection of the bifurcation of 

optical fiber causes amplifier or laser diode failure, it has become a problem alongside the widening of 

services. Recently, branch connection systems for high-speed transmission or for a large number of 

subscribers, various other optical parts are required in addition to these core parts. These include optical 

amplifiers, splitters, optical isolators, optical couplers, optical branching filters, optical switches, optical 

modulators, optical attenuators, etc. Generally, the laser diode of the optical transmitter is built in the 

laser diode module integrated with optical parts such as the optical fiber. The optical isolator is located 

between the laser diode and the optical fiber and prevents the penetration of reflected light to the laser 

diode. 

An optical isolator is essential for protecting the active photonic devices from unwanted refracted 

light. In decade ago, the optical isolators with a Si guiding layer have been widely researched and lead 

to the optical isolator design. In order to increase transmit capacity, the light source should have a high-

coherence operation and therefore becomes sensitive to optical feedback. A bulk-type optical isolator is 

installed using laser sub mount in a silicon transceiver chip based on CMOS photonics technology. 

Therefore, an optical isolator on a silicon platform is required. H. Yokoi, et al. proposed the optical 

isolator in Mach-Zehnder interferometer (MZI) devices with a Si guiding layer that was integrated in a 

garnet cladding on SOI [55] as shown in figure 1.8. The optical isolators have been developed and 



 
 

operated on the magneto-optic phenomenon of a nonreciprocal phase shift, rather that polarization 

conversion as for Faraday rotation based isolators [56]. As for MZI structure, there are complex 

waveguides. These structures need to apply the external magnetic field in two directions for isolator 

operation. 
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Figure 1.8 The schematic drawing of SOI waveguide MZI optical isolator. 

 

At the present, the author proposes rib-type optical isolators with the Si guiding layer. The rib-type 

waveguide is a simple structure. The external magnetic field is applied in these structure in one direction 

for isolator operation. The magneto-optic waveguide on the SOI substrate can be fabricated by bonding 

technique [57,58]. In the magneto-optic waveguide, the Si guiding layer is deposited on the SiO2 as 

shown in figure 1.9. In this research, the author focuses on surface activated bonding and photosensitive 

adhesive bonding since they are suitable for bonding between Si and magnetic garnet at low temperature. 

 

Figure 1.9 Optical isolator with Si guiding layer fabricated by bonding technique. 



 
 

 

H. Yokoi et al.  have proposed an optical isolator with a Si guiding layer deposited on a magnetic 

garnet layer [59]. Recently, an amorphous Si has attracted attention for integrated optics because of its 

low absorption loss and high refractive index [60-62]. In this thesis, the optical isolator with a 

hydrogenated amorphous Si (a-Si:H) guiding layer deposited on a garnet substrate is considered. The 

optical isolator with an a-Si:H guiding layer is shown in figure 1.10. The optical isolator employing the 

nonreciprocal guided-radiation mode conversion is designed. The principle of the nonreciprocal phase 

shift will be explained in the next chapter. 

 

Figure 1.10 Optical isolator with hydrogenated amorphous Si (a-Si:H) guiding layer deposited on a 

magnetic garnet cladding layer. 

 

From above, there are several types of a magneto-optic waveguide for optical isolators. The advantages and 

disadvantages of each waveguide type are considered as shown in table 1.1. 

 

 

 

 

 

 



 
 

 

 

Table 1.1 The advantages and disadvantages of the magneto-optic waveguide for optical isolators. 

Optical isolator type Advantage Disadvantage 

Mode conversion isolator - Low loss 

- Easy to be aligned magneti-
zation on a film plane. 

- Need phase matching between 
TE and TM modes  
 

Semileaky optical isolator - Large fabrication tolerance  

- Wide operating wavelength 
range 

- Need phase matching between 
TE and TM modes 

- Difficult to fabricate 

MZI optical isolator - No need for phase matching 
between TE and TM modes  

 

- complex waveguide 

- Need the external magnetic field 
in two direction. 

Rib-type optical isolator - No need for phase matching 
between TE and TM modes  

- Use a simple structure. 

- Apply the external magnetic 
field in one direction. 

- Difficult of deposited the Si on 
magnetic garnet. 
 

 

1.5  Organization of the dissertation  

 

The optical fiber communication is used to transmit light and information over long distances. The 

optical isolator is indispensable in protecting optical active devices from unwanted reflected light. The 

waveguide optical isolator is desired in order to realize a photonic integrated circuit. In the near-infrared 

region, magnetic garnet crystals are necessary components for an optical nonreciprocal device because 

of their transparency and strong magneto-optic effect. Developing Si photonics technology, optical 

isolators with the Si guiding layer are desired.  

This dissertation is composed of six chapters. 

 In chapter 1 “introduction”, the background of the optical fiber communication is introduced. The 

optical nonreciprocal devices are classified in a bulk optical isolator, waveguide optical isolators, and 

an optical circulator. Si photonics and a waveguide optical isolator for Si photonics are also introduced. 



 
 

In chapter 2 “theories”, this chapter will explain propagation of light wave in the waveguide. The 

properties of garnet materials for optical isolators will be clarified. The magneto-optic effect is classified 

in Faraday effect, Cotton-Mouton effect, and Kerr effect. The calculation of the nonreciprocal phase 

shift will be described by solving the Maxwell equation. Moreover, the theory of fabrication process of 

magneto-optic waveguides is also illustrated such as surface activated bonding, photosensitive adhesive 

bonding, plasma-enhanced chemical vapor deposition (PECVD), spin coating, electron beam 

lithography (EBL), ultraviolet lithography, and etching. 

In chapter 3 “magneto-optic waveguides fabricated by bonding technique”, the optical isolator 

employing the nonreciprocal phase shift is designed. An optical isolator constructed on a SOI substrate, 

a widely adopted substrate for modern optical devices is explained. The magneto-optic waveguide on 

the SOI substrate can be fabricated by bonding technique. An optical isolator employing a nonreciprocal 

guided-radiation mode conversion consists of a rib-type magneto-optic waveguide with a Si guiding 

layer. The optical isolator employing the nonreciprocal guided-radiation mode conversion is realized by 

calculating the isolation ratio. The electric field of TM guided mode and TE radiation mode are studied. 

Design of the optical isolator fabricated by surface activated bonding or photosensitive adhesive bonding 

is considered. Relationship of waveguide parameters for isolator operation is clarified for various gaps. 

In chapter 4 “magneto-optic waveguides with a-Si:H guiding layer”, an optical isolator with the 

amorphous Si guiding layer on a garnet substrate is investigated. The relationship of rib height and rib 

width for the isolator operation is clarified. The optical isolator employing the nonreciprocal guided-

radiation mode conversion is realized by calculating the isolation ratio. The electric field of TM guided 

mode and TE radiation mode are studied. The magneto-optic waveguide with the a-Si:H guiding layer 

is fabricated and evaluated.  

In chapter 5 “athermal operation of optical isolator”, the temperature dependence of the optical 

isolator is investigated. The relationship of rib height and rib width for the isolator operation is clarified 

for various operating temperatures. Refractive indices of layers in a magneto-optic waveguide are 

considered to circumvent the deviation of the waveguide parameters for isolator operation due to the 

temperature shift.  

Finally, conclusions and recommendation are presented in chapter 6.  
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CHAPTER 2 THEORIES 

 

 

2.1 Propagation of light wave 

 

Light is a part of the electromagnetic spectrum, which is the collection of all waves such as visible 

light, microwaves, radio waves, and X-rays. In 1665, I. Newton [1,2] believed that light consists of a 

large number of minute material corpuscles emitted by a luminous body which produces the sensation 

of sight when these corpuscles strike the eye. The light travels with a tremendous speed in straight lines 

and homogeneous medium. This theory is used to explain the principle of rectilinear of light, laws of 

reflection as well as the law of refraction. A wavefront is a surface over which an optical wave has a 

constant phase. For example, a wavefront can be the surface over which the wave has a maximum or a 

minimum value. The shape of a wavefront is usually determined by the geometry of the source such as 

plane waves, cylindrical waves, and spherical waves. The direction of the wave propagation is always 

perpendicular to the surface of the wavefront at each point. However, the wavesfronts are produced by 

a point source in which they are concentric spheres in the principle.  

In 1678, C. Huygens [3] considered the light waves propagation in longitudinal and explained the 

phenomenon of reflection, refraction, interference, and diffraction. When a wave travels in a single 

medium at a constant speed, the Huygen’s construction preserves the general form of the wavefront. 

That is, spheres propagate and become larger spheres, cylinders become larger cylinders, etc. If a portion 

of the wavefront enters a different medium, then the wavelets generated by each portion of the wavefront 

travel with the velocity that is appropriate for the medium that the wavefront locates. That is, the 

wavelets in the medium where the speed of light is lower will have smaller radii than the wavelets in the 

original medium. Michelson-Morley’s [4] experiment failed to detect the presence of ether, therefore, 

the ether concept was relinquished.  

The basic structure of a dielectric waveguide composes of optical medium with high-index (core 

layer), that will be surrounded around low-index media (cladding layer). When the light wave is 

propagating along the longitudinal (z) direction, the characteristics of a waveguide are determined in the 

transverse direction profile of its dielectric constant ε(x,y)/εo, that is independent of the longitudinal (z) 



 
 

direction. The characteristics of a waveguide depend on the transverse direction profile of the refractive 

index n(x,y). There are two types of waveguide. First, it is a planar waveguide. There is an optical 

confinement in only one direction, the core is sandwiched between cladding layers in one direction. The 

core layer is called film, meanwhile the cladding layer is called cover and substrate, respectively. 

Second, it is a non-planar waveguide that is two dimensional transverse optical confinement. The core 

is covered by the cladding layer, and n(x,y) is a function of both x and y coordinates.  

The optical waveguides are the important structure in semiconductor lasers used in order to control 

the light for various distance, and used in both passive and active devices.  For waveguide, the index has 

abrupt changes between core and cladding that is called a step-index waveguide, meanwhile the index 

profile varying gradually is called a graded-index waveguide. Mostly, non-planar waveguides are used 

for device applications. The non-planar waveguides have a lot of types, that are differentiated by the 

distinctive feature of the index profiles. The waveguide types come from the group of non-planar 

waveguides, which include strip-loaded waveguides, ridge waveguides, rib waveguides, buried channel 

waveguides, and diffused waveguides as shown in figure 2.1(a)-(e).  

     

(a)                                         (b)                                                 (c) 

                 

                                      (d)                                                         (e) 

Figure 2.1 Structure of non-planar waveguides, consisting of (a) strip-loaded waveguides, (b) ridge 

waveguides, (c) rib waveguides, (d) buried channel waveguides, and (e) diffused waveguides.   



 
 

2.2 Garnet crystal 

 

Garnets are some of the most magnetic gemstones. The most of all of the garnets acquire in the same 

properties and crystal forms, however, it has different chemical composition. Normally, the general 

formula of garnet is X3Y2(SiO4)3. The X site is usually occupied by divalent cations 

(Ca, Mg, Fe, Mn) and the Y site by trivalent cations (Al, Fe, Cr) in an octahedral/ tetrahedral framework 

with SiO4 occupying the tetrahedral. Most gemologist garnets [5] are based on their color, refractive 

index, and absorption spectrum [6-8]. Magnetic susceptibility measurements in conjunction with 

refractive index can be used to distinguish garnet species and varieties, and determine the composition 

of garnets in terms of percentages of end-member species within an individual gem. 

The crystallographic structure of garnet has been expanded with the general formula X3Y2(ZO4)3. 

For silicon, a large number of element has been instated of Z site including Ge, Ga, Al, V, and Fe [9]. 

Garnet films have large lattice parameters and thermal expansion mismatch with typical photonic 

substrates such as Si, GaAs, and InP. Good quality films are made by controlling the deposition and 

annealing processes. Yttrium iron garnet (YIG), the five iron(III) ions occupy two octahedral and 

three tetrahedral sites, with the yttrium(III) ions are coordinated by eight oxygen ions in an irregular 

cube. The iron ions in the two coordination sites exhibit different spins, resulting in magnetic behavior. 

YIG [10] is a versatile ceramic material with high melting point, large resistivity, high electromagnetic 

properties, etc. It is well-known as magnetic garnet and widely applied in electronics and microwave 

communication, such as in isolators, circulators, phase shifters, etc. In addition, Gadolinium Gallium 

Garnet (GGG) is synthesized for usage as a substrate for liquid-phase epitaxy of magnetic garnet films 

for bubble memory and magneto-optic applications. In this thesis, a cerium-substituted yttrium iron 

garnet (Ce:YIG) and calcium-, magnesium-, and zirconium-doped GGG ((Gd,Ca)3(Ga,Mg,Zr)5O12 or 

GCGMZG) were considered.   

 

3.2.1 Cerium-substituted yttrium iron garnet (Ce:YIG) 
 

Optical isolators are realized in the advanced communication systems. Time-reversal symmetry is 

typically broken using magneto-optic materials whose permittivity tensor has non-vanishing off-

diagonal components, such as YIG and Ce:YIG. The waveguide-type magneto-optic devices have many 
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https://en.wikipedia.org/wiki/Silicon
https://en.wikipedia.org/wiki/Calcium
https://en.wikipedia.org/wiki/Magnesium
https://en.wikipedia.org/wiki/Iron
https://en.wikipedia.org/wiki/Manganese
https://en.wikipedia.org/wiki/Aluminium
https://en.wikipedia.org/wiki/Chromium
https://en.wikipedia.org/wiki/Octahedron
https://en.wikipedia.org/wiki/Tetrahedron
https://en.wikipedia.org/wiki/Magnetic_susceptibility
https://en.wikipedia.org/wiki/Octahedral
https://en.wikipedia.org/wiki/Tetrahedral
https://en.wikipedia.org/wiki/Spin_(physics)
https://en.wikipedia.org/wiki/Magnetic


 
 

advantages such as well guided light, low magnetic field requirements, low cost, and the possibility of 

compact integration. YIG materials have been commercially used in microwave circuits like resonators, 

isolators, and circulators. There are many researches proposing the YIG waveguides because YIG has a 

Faraday rotation of several hundreds of deg/cm. Therefore, this order of length is needed for 

nonreciprocal polarization plane rotation. Large Faraday rotation materials are undesignable for compact 

integration, and Ce:YIG films have a large Faraday rotation as well. Gomi et al. [11] showed the giant 

Faraday rotation of Ce:YIG films which has been achieved by using radio frequency sputtering. They 

focus on the Faraday rotation spectrum and magnetic properties. Moreover, Ce:YIG films have been 

found to exhibit a large magneto-optic effect and low propagation loss. It will be good candidate material 

for devices with higher quality [11]. Tate et. al. [12] proposed the crystallinity of Ce:YIG iron garnet 

film prepared by radio frequency sputtering that was studied by using X-ray diffraction technique and 

transmission electron microscopy. Ce:YIG iron garnet films were synthesized by conventional radio 

frequency sputtering with ceramic target. The films were deposited on the substrates of gadolinium 

gallium garnet (GGG, lattice constant = 12.383Å) and GCGMZG (lattice constant = 12.496Å) [12], 

meanwhile the Ce:YIG lattice constant is approximately 12.57Å. Therefore, the optical characteristic of 

Ce:YIG thin films can be grown on the GCGMZG substrate completely. 

 

3.2.2 Gadolinium calcium gallium magnesium zirconium garnet (GCGMZG) 

 

The magnetic garnet single crystal film grown on the substrate is desired to have a large Faraday 

rotation coefficient to obtain desired magneto-optic effects. In order to form a high quality single crystal 

film by epitaxial growth, it is required that a lattice constant difference between the substrate and the 

single crystal to be grown is as small as possible in a temperature range from a film forming temperature 

to the room temperature. The Faraday rotation coefficient of the magnetic garnet single crystal film 

remarkably increases by substituting, so that a substrate material used for the film forming is also 

required to have a larger lattice constant i.e. gadolinium gallium garnet (GGG) added with Ca, Zr, Mg, 

etc. by obtaining a large lattice constant is used as the single crystal substrate material. 

 

 

 



 
 

3.3  Magneto-optic effect  
 

The interaction of light is affected by the magnetic state of the medium and involves the electronic 

structure. The interaction between electromagnetic radiation and magnetically polarized materials 

results in magneto-optic effects. The important role of these effects of electromagnetism, providing an 

experimental support to the electromagnetic theory of light, as well as to both classical and quantum 

theory of matter including the motions of electron spin and spin-orbit coupling. The light is transverse 

electromagnetic wave which can be linearly, elliptically, or circularly polarized. A polarized light is 

included as a wave of electric field vector, oscillating along a given direction, and perpendicular to the 

propagation direction. The phenomena of magneto-optic effect can be explained by Faraday effect, 

Cotton-Mouton effect, and Kerr effect.  
    

3.3.1 Faraday effect 
 

M. Faraday [13] proposed the polarization of a linearly polarized light beam that is rotated upon 

propagating through a media which is placed in a magnetic field parallel to the propagation direction as 

shown in figure 2.2. The longitudinal magnetic field in the medium becomes optically active. The simple 

form of rotation (∅) is proportional to the strength of the magnetic field (B) and the length of the structure 

(l) as shown in Eq. 1. 

                                                      ∅ = 𝑉 ∫ 𝐵𝑑𝑙 = 𝑉𝑙𝐵
𝑙

0
                                                (1) 

V is noted as the Verdet constant that depends on the properties of medium, the ambient temperature, 

and the wavelength of the incident light [14]. The angle of the rotation depends on the applied magnetic 

field. V is positive when the magnetic field is generated by positive current.   

 

Figure 2.2 Operation principle of Faraday effect. 

The electromagnetic wave in the medium are considered by Maxwell’s equation as follow: 

                                                                 ∇.𝐷⃗⃗ = 0                                                               (2) 

                                                                ∇.𝐵⃗ = 0 (3) 
l 
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                                                            ∇ × 𝐻′⃗⃗⃗⃗ =  
1

𝑐

𝑑𝐷⃗⃗ 

𝑑𝑡
 (4)                                                                                         

∇ × 𝐸′⃗⃗  ⃗ =  −
1

𝑐

𝑑𝐵⃗ 

𝑑𝑡
 (5) 

where 𝐷⃗⃗  is the electric displacement, 𝐵⃗  is the magnetic induction, 𝐻′⃗⃗⃗⃗  is the macroscopic magnetic 

field, and 𝐸′⃗⃗  ⃗ is the electric field. The electric displacement and the magnetic induction are related with 

the electric (𝜇 ) and magnetic (𝑚⃗⃗ ) moments. They are induced by the electromagnetic wave as follow: 

                                                      𝐷⃗⃗ =  𝐸⃗ + 4𝜋 ∑ 𝑁𝑎𝑚𝑎⃗⃗⃗⃗⃗⃗ 
𝑎  (6)                                                             

𝐵⃗ =  𝐻⃗⃗ + 4𝜋 ∑ 𝑁𝑎𝜇𝑎⃗⃗ ⃗⃗  
𝑎  (7) 

where 𝑁𝑎 is the number of molecules per unit volume in state a. For the first component, the complex 

induced moment vectors are shown: 

                                                            𝑚𝑥 = 𝛼𝑥𝑦𝐸′𝑦 + 𝛽𝑥𝑦𝐻′𝑦 (8)                                                                    

𝜇𝑥 = 𝛾𝑥𝑦𝐸′𝑦 + 𝜒𝑥𝑦𝐻′𝑦 (9) 

where 𝛼 and 𝜒  are the electric and magnetic polarizability tensors, respectively. There are also 

complex functions of the external magnetic field 𝐻⃗⃗ . The polarizability tensors can be explained: 

                                                            𝛼𝑥𝑦 = 𝛼𝑥𝑦
(0)

+ 𝛼𝑥𝑦
(1)

𝐸𝑧 + ⋯                                     (10) 

                                                            𝜒𝑥𝑦 = 𝜒𝑥𝑦
(0)

+ 𝜒𝑥𝑦𝑧
(1)

𝐻𝑧 + ⋯ (11) 

The electric and magnetic moments can be explained: 

                                    𝑚⃗⃗ =  𝛼(0)𝐸′⃗⃗  ⃗ + 𝛽(0)𝐻′⃗⃗⃗⃗ + 𝛼(1) (𝐸′⃗⃗  ⃗𝑥𝐻⃗⃗ ) + 𝛽(1) (𝐻′⃗⃗⃗⃗ 𝑥𝐻⃗⃗ )  (12) 

                                    𝜇 =  𝛾(0)𝐸′⃗⃗  ⃗ + 𝜒(0)𝐻′⃗⃗⃗⃗ + 𝛾(1) (𝐸′⃗⃗  ⃗𝑥𝐻⃗⃗ ) + 𝜒(1) (𝐻′⃗⃗⃗⃗ 𝑥𝐻⃗⃗ ) (13) 

A complex index of refraction 𝑛±̃ is solved by Maxwell’s equation: 

𝑛±̃ = 1 + 2𝜋 ∑ 𝑁𝑎{𝛼(0)
𝑎 + 𝜒(0)

𝑎 ∓ 𝑖𝛽(0)
𝑎 ± 𝑖𝛾(0)

𝑎 [±𝑖𝛼(1)
𝑎 + 𝑖𝜒(1)

𝑎 + 𝛽(1)
𝑎 − 𝛾(1)

𝑎 ]𝐻𝑧}𝑎  (14) 

The Faraday rotation is  described by this equation: 𝜙 =  ω(𝑛−̃ − 𝑛+̃)/2𝑐. Therefore, the Faraday 

rotation can be written as follow: 

                              𝛷̃ =  −
2𝑖𝜋𝜔

𝑐
∑ 𝑁𝑎{−𝛽(0)

𝑎 + 𝛾(0)
𝑎 + [𝛼(1)

𝑎 + 𝜒(1)
𝑎 ]𝐻𝑧}𝑎  (15) 



 
 

The part of 𝛼(1)
𝑎  and 𝜒(1)

𝑎  are proportional to 𝐸′⃗⃗  ⃗ and 𝐻′⃗⃗⃗⃗  of the incident light and responsible for 

magnetic optical activity when the external magnetic field is biased. For normal condition, 𝛼(0) ≫

𝛽(0), 𝛾(0), 𝜒(0), 𝛼(1)𝐻𝑧; and 𝛼(1) ≫ 𝛽(1), 𝛾(1), 𝜆(1), the Eq. 14 can be approximated as follow; 

                                                     𝑛̃ = 1 + 2𝜋 ∑ 𝑁𝑎𝛼(0)
𝑎

𝑎  (16) 

In term of the atomic vector polarizability, the Faraday rotation beam of linearly polarized light in z 

direction through a medium of length l will be shown as: 

                                                     𝛷 = −
2𝜋𝜔𝑙𝑁

𝑛𝑐
𝛼𝑣 < 𝐼𝑧 > (17) 

where n is the index of refraction, N is the density number of atoms, and < 𝐼𝑧 > is the average 

nuclear spin of the atom [15]. 

 

 

 

3.3.2 Cotton-Mouton effect 
 

The Cotton-Mouton effect is the double refraction (birefringence) of light in a liquid in a magnetic 

field at direction of light propagation with the right angle. At first, J. Kerr and C. Majorana observed the 

colloidal solution. After that, A. Cotton and H. Mouton, who are French scientists, studied the detail of 

this solution. The Cotton-Mouton effect was observed by considering the monochromatic light that is 

polarized in 45 degrees with the magnetic field direction. It is passed through a transparent isotropic 

specimen lying between the poles of a strong electromagnetic. The material of the specimen becomes 

elliptically anisotropic in the magnetic field, and the light becomes elliptically polarized owing to the 

propagation in the substance. There are two waves, consisting of the ordinary and extraordinary waves, 

which have different phase velocities. The difference of refractive indices of ordinary beam (n0) and the 

extraordinary beam (ne) are called the double refraction value, it is   

                                                         𝑛𝑒 − 𝑛0 = 𝐶𝐻2𝜆 (18) 



 
 

where C is the Cotton-Mouton constant that depends on the substance, and temperature. H is the 

magnetic field strength, and 𝜆  is the wavelength of the light. The value 𝑛𝑒 − 𝑛0  has not yet been 

measured reliably in gases because the effect is very small. 

The Cotton-Mouton effect is related with the magnetic phenomena group that includes Zeeman and 

Faraday effects. The theory of the Cotton-Mouton effect is analogous with the Kerr effect that will be 

explained later. The study of the Cotton-Mouton effect can inform the molecular structure, the formation 

of molecular aggregates, and molecular mobility. 

 
3.3.3  Kerr effect 

 

In 1963, an optical electromagnetic field was capable of producing a measurable modification of the 

dielectric properties, inducing a birefringence effect: the first experimental observation of the optical 

Kerr effect was reported [16]. The polarization of the refracted wave becomes elliptical and rotation of 

polarization is proportional to both magnetization and media thickness. The origin of microscopic is 

based on the spin-orbit interaction and relativistic effects [14]. These effects are greater for material with 

a particular symmetry that is refracted in the form of the dielectric tensor. Considering the relationship 

of a polarized monochromatic wave in the visible range, with pulsation 𝜔  and wave number 𝑘 , 

propagating in the air and incident perpendicularly on a ferromagnetic material, its electric field is 

𝐸(𝑡, 𝑧) 𝛼 𝑒−𝑖(𝜔𝑡−𝑘𝑧). The electric displacement (D), the magnetization (M), and the magnetic induction 

(B) are related with the magnetic field (H) as follow: 

                                                         𝐷𝑖 = 𝜀𝑖𝑗(𝜔)𝐸𝑗 (19) 

                                                         𝐵𝑖 = 𝜇𝑖𝑗(𝜔)𝐻𝑗 (20) 

where 𝜀, 𝜀𝑟 , 𝑎𝑛𝑑 𝜇 are the tentorial permittivity, relative permittivity, and permeability, respectively. 

The permeability at the optical frequency is close to the vacuum permeability (𝜇0) for magnetic and non-

magnetic media. The Maxwell equations are used by assuming the medium that is electrically neutral as 

follow: 

                                                                          ∇𝑥𝐸 = −𝜕𝑡𝐵 (21) 

                                                              ∇𝑥𝐻 = 𝑗 + 𝜕𝑡𝐷 (22) 

The current density (j) takes into account of the conductivity tensor, 𝜎: 𝑗 = 𝜎𝐸. Defining an effective 

permittivity by 𝜖′ = 𝜀 + 𝑖
𝜎

𝜔
, Eq. 2, Eq. 21, and Eq. 22 derives: 

                                                              1

𝜇0
∇𝑥𝜕𝑡𝐵 = 𝜕𝑡𝑗 + 𝜕𝑡

2𝐷 (23) 



 
 

                                                        −∇𝑥∇𝑥𝐸 = 𝜔2𝜇0 (𝑖
𝜎

𝜔
+ 𝜀)𝐸 (24) 

                                                              𝑘2𝐸 − (𝑘, 𝐸) =
𝜔2

𝑐2
𝜀′𝐸 (25) 

This last equation can be reformulated by using the complex index, 𝑛𝑖 =
𝑐

𝜔
𝑘𝑖: 

                                                    (𝑛2𝛿𝑖𝑗 − 𝑛𝑖𝑛𝑗 − 𝜀𝑖𝑗
′ )𝐸𝑖 = 0 (26) 

The nonzero solution is given by zeros of the determinant of the pre-factor and leads to the Fresnel 

formula for the calculation of normal modes of propagation.  

It is noteworthy that the importance of off-diagonal terms, which are functions of M and are the 

reasons of the magneto-optic effect. The Eigen modes are found by replacing these eigenvalues in Eq. 

26, and then it can be demonstrated that 𝐸𝑥 = ±𝑖𝐸𝑦 = 𝑒±𝑖
𝜋

2𝐸𝑦. This means that there are two waves 

presenting with a circular polarization, propagating with the index 𝑛+ and 𝑛−. The induction is, 

                                          𝐷+ = 𝑛+
2 (𝐸𝑥 + 𝑖𝐸𝑦), 𝐷− = 𝑛−

2(𝐸𝑥 − 𝑖𝐸𝑦) (27) 

Light is elliptical after refraction. Fresnel coefficients 𝑟??  for s and p of reflected field 𝐸𝑟 , are 

calculated with incident field 𝐸𝑖 and the boundary conditions on the interface. s or p denotes polarization 

when the electric field of light is orthogonal or parallel to the plane of incidence.  

                                               (
𝐸𝑟,𝑝

𝐸𝑟,𝑠
) = (

𝑟𝑝𝑝 𝑟𝑝𝑠

𝑟𝑠𝑝 𝑟𝑠𝑠
) (

𝐸𝑖,𝑝

𝐸𝑖,𝑠
) (28) 

The Kerr rotation, 𝜃𝑘𝑒𝑟𝑟 and Kerr helicity, 𝜂𝑘𝑒𝑟𝑟 for s and p lights for all magneto-optic Kerr effect 

modes are defined as, 

                                                            𝜃𝑘𝑒𝑟𝑟,𝑠 = 𝑅𝑒 (
𝑟𝑠𝑠

𝑟𝑠𝑝
) (29) 

                                                            𝜂𝑘𝑒𝑟𝑟,𝑠 = 𝐼𝑚 (
𝑟𝑠𝑠

𝑟𝑠𝑝
) (30) 

                                                                 𝜃𝑘𝑒𝑟𝑟,𝑝 = 𝑅𝑒 (
𝑟𝑝𝑠

𝑟𝑝𝑝
) (31) 

                                                                 𝜂𝑘𝑒𝑟𝑟,𝑝 = 𝐼𝑚 (
𝑟𝑝𝑠

𝑟𝑝𝑝
) (32) 

 



 
 

3.4  Nonreciprocal phase shift 
 

The nonreciprocal phase shift (NRPS) [17] is used for enhancing magneto-optic effect in waveguides. 

The NRPS needs to shift the backward resonance spectrum away from the forward peaks as a scale of 

half maximum bandwidth. The multilayered magneto-optic waveguide system can be derived to 

calculate the NRPS. NRPS can be calculated by using Maxwell equations. The dimensionless rotation 

can realize by normalizing a physical length and assume the time and 𝑧 dependent phase factor to be 

exp [𝑗2𝜋𝜈(𝑡 − 𝛾𝑧)], where 𝜈 is the normalized frequency and 𝛾 is the normalized propagation constant. 

It will be negative for the backward propagation wave. The Faraday’s law and Ampere’s law can be 

written as below: 

                                                  ∇ × 𝐸 = −𝑗2𝜋𝜈𝐻  (33) 

                                                  ∇ × 𝐻 = 𝑗2𝜋𝜈𝜀𝑟𝐸 (34) 

The three dimensional field vectors E and H are scaled to the same magnitude in free space 

impedance. For magneto-optic effect, the general expression of relative permittivity tensor,  𝜀𝑟 is shown 

as follow: 

                                         𝜀𝑟 = [

𝜀𝑥𝑥 𝑗𝜀𝑥𝑦 𝑗𝜀𝑥𝑧

−𝑗𝜀𝑥𝑦 𝜀𝑦𝑦 𝑗𝜀𝑦𝑧

−𝑗𝜀𝑥𝑧 −𝑗𝜀𝑦𝑧 𝜀𝑧𝑧

]   (35) 

The first-order of magneto-optic effect denotes the coupled field components. The 𝜀𝑥𝑦 is induced by 

a longitudinal magnetic induction (𝐵𝑧) that gives an increment to the coupling between two transverse 

electric field components. The other two, 𝜀𝑥𝑧 from the y-directed magnetization and 𝜀𝑦𝑧 from x-directed 

produce an NRPS by coupling the longitudinal component (𝐸𝑧) with one transcendental electric field 

component 𝐸𝑥 and 𝐸𝑦, respectively. Since the element 𝜀𝑦𝑧 can be treated similar to 𝜀𝑥𝑧, it can assume 

that 𝜀𝑥𝑦 = 0 and 𝜀𝑦𝑧 = 0 and only to analyze the NRPS induced by the transverse magnetic (TM) mode. 

For such modes, the longitudinal magnetic field component is missing (𝐻𝑧 = 0) and there are only three 

non-trivial components 𝐻𝑦, 𝐸𝑥 and 𝐸𝑧.  

                                           𝜕𝑧𝐸𝑥 − 𝜕𝑥𝐸𝑧 = −𝑗2𝜋𝜈𝐻𝑦 (36) 

                                (
−𝜕𝑧𝐻𝑦

𝜕𝑥𝐻𝑦
) = j2πν (

𝜀𝑥𝑥 𝑗𝜀𝑥𝑧

−𝑗𝜀𝑥𝑧 𝜀𝑧𝑧
) (

𝐸𝑥

𝐸𝑧
) (37) 

The Eq. 37 can be inverted as 

                         (𝐸𝑥

𝐸𝑧
) =

1

𝑗2πν

1

𝜀𝑥𝑥𝜀𝑧𝑧−𝜀𝑥𝑧
2 (

𝜀𝑥𝑥 −𝑗𝜀𝑥𝑧

𝑗𝜀𝑥𝑧 𝜀𝑧𝑧
)(

−𝜕𝑧𝐻𝑦

𝜕𝑥𝐻𝑦
) (38) 



 
 

 

By replacing Eq. (38) into Eq. (36), the differential equation for 𝐻𝑦 component can be 

demonstrated as follow: 

                          𝜕𝑥
2𝐻𝑦 − (2𝜋𝜈)2 [

𝜀𝑧𝑧

𝜀𝑥𝑥
𝛾2 − (𝜀𝑧𝑧 −

𝜀𝑥𝑧
2

𝜀𝑥𝑥
)]𝐻𝑦 = 0 (39) 

The properties of 𝐻𝑦  are conserved and NRPS exists except for a minor modification to the 

propagation constant. The NRPS must be attributed to the coupling of the two electric fields at the 

magneto-optic material interfaces. By defining 𝜀𝑒 = 𝜀𝑧𝑧 −
𝜀𝑥𝑧
2

𝜀𝑥𝑥
 and recalling the momentum conservation, 

the normalized transverse wave vector 𝜅 is explained 

                                                   𝜅 = +√
𝜀𝑧𝑧

𝜀𝑥𝑥
𝛾2 − 𝜀𝑒 (40) 

From Eq. 38, the solution of magnetic field 𝐻𝑦 can be separated to a forward wave and backward 

wave and take the form of 

             𝐻𝑦
(𝑛)

= {𝐴𝑛𝑒𝑥𝑝[−2𝜋𝜅𝑛(𝑥 − 𝑥𝑛)] + 𝐵𝑛𝑒𝑥𝑝[2𝜋𝜅𝑛(𝑥 − 𝑥𝑛)]}𝑒
−𝑖2𝜋𝜈𝛾𝑧 (41) 

The positive sign in Eq. 40 assures that the 𝐴𝑛 term is for the forward wave with phase retardation 

along x direction. Subsequently, by using 𝜕𝑧 = −𝑗2𝜋𝜈𝛾 and substituting Eq. 41 for Eq. 38, the field 𝐸𝑧 

can be written as 

                                        𝐸𝑧 =
1

𝑗𝜀𝑒
(

1

2𝜋𝜈
𝜕𝑥𝐻𝑦 − 𝛾

𝜀𝑥𝑧

𝜀𝑥𝑥
𝐻𝑦) (42) 

At the interface between any two layers, both tangential field components 𝐸𝑧  and 𝐻𝑦  must be 

continuous, so 

                                                   𝑓(𝑛)(𝑑𝑛) = 𝑓(𝑛+1)(0) (43) 

where 

                           𝑓(𝑛)(𝑥) = (
1 1
1

𝜀𝑒(−𝜅−
𝜀𝑥𝑧𝛾

𝜀𝑥𝑥
)

1

𝜀𝑒(𝜅−
𝜀𝑥𝑧𝛾

𝜀𝑥𝑥
)
)(

𝐴𝑒𝑥𝑝(−2𝜋𝜈𝜅𝑥)
𝐵𝑒𝑥𝑝(+2𝜋𝜈𝜅𝑥)

)
(𝑛)

 (44) 

The label (𝑛) should be added to all of the local variables on the right hand side except for 𝛾. The 

origin of 𝑥 is chosen as the left boundary of the 𝑛-th layer. From Eq. 43, it is able to extract the transfer 

matrix 𝑆𝑛 of the 𝑛-th layer, which relates to the weighted indices 𝐴𝑛 and 𝐵𝑛 with 𝐴𝑛+1 and 𝐵𝑛+1 by 



 
 

                                               (𝐴
(𝑛+1)

𝐵(𝑛+1)
) = 𝑆𝑛 (𝐴

(𝑛)

𝐵(𝑛)
) (45) 

By simple algebraic manipulation, the transfer matrix can be written as 

                     𝑆𝑛 =
1

2
(
(1 + 𝑎 − 𝑏)exp (−𝜙𝑛) (1 − 𝑎 − 𝑏)exp (𝜙𝑛)
(1 − 𝑎 + 𝑏)exp (−𝜙𝑛) (1 + 𝑎 + 𝑏)exp (𝜙𝑛)

) (46) 

where the transverse phase delay in the 𝑛-th layer, 𝜙𝑛 = 2𝜋𝜈𝜅𝑛𝑑𝑛 . The full expression of 𝑎 and 𝑏 

describes the jumping process from layer 𝑛 to layer 𝑛 + 1, which can be written as 

                                                  𝑎𝑛,𝑛+1 =
𝜀𝑒
(𝑛+1)

𝜅𝑛

𝜀𝑒
(𝑛)

𝜅𝑛+1

 (47) 

and                                        𝑏𝑛,𝑛+1 = (
𝜀𝑥𝑧
(𝑛+1)

𝜀𝑥𝑥
(𝑛+1) −

𝜀𝑒
(𝑛+1)

𝜀𝑒
(𝑛)

𝜀𝑥𝑧
(𝑛)

𝜀𝑥𝑥
(𝑛))

𝛾

𝜅𝑛+1
, (48) 

respectively. If 𝑏 = 0, the above equation returns to the case of non-magnetized medium. A nonzero 𝑏 

breaks the time-reversal symmetry and gives an increment to the NRPS. Let us assume 𝐴0 = 1 to 

normalize all the weighted indices. The reflection coefficient (𝑅) and transmission coefficient (𝑇) can 

be obtained from the cascaded transfer matrix 𝑆𝑇 = 𝑆𝑁𝑆𝑁−1 …𝑆1 by 

                                              (𝐴𝑁

0
) = 𝑆𝑇 (

1
𝐵0

). (49) 

In the two-port network indicated by the above equation, the physical meaning of 𝐵0 =
𝑆𝑇,21

𝑆𝑇,22
 is the 

reflection coefficient, whose poles correspond to the guided modes that exponentially decay away from 

the cladding boundaries. Hence, in essence, the calculation of NRPS involves solving the equation 

𝑆𝑇,22 = 0 and to obtain the two roots 𝛾 corresponding to backward and forward propagating waves. 

Subsequently, the NRPSs of unit length are obtained by the difference of normalized propagation 

constants ∆𝛾 by 𝑁𝑅𝑃𝑆 = 2𝜋𝜈∆𝛾. 

 

3.5  Nonreciprocal guided-radiation mode conversion 
 

 When a magnetic field is applied transversely to the direction of light propagation in an optical 

waveguide, a nonreciprocal phase shift occurs and can be used in an interferometric configuration to 

result in unidirectional propagation. By using the nonreciprocal phase shift the nonreciprocal guided 



 
 

mode to radiation mode conversion has been demonstrated. [18] Figure 2.3 shows the relationship of 

propagation constant between TE and TM mode. TM modes traveling in the magneto-optic waveguide 

have distinct propagation constants for the forward- and the backward-travelling waves owing to the 

nonreciprocal phase shift. By adjustment of waveguide parameters, the following relationship is 

satisfied as y
f

x
c

y
b   , where y

f  and y
b  denote the propagation constants of the forward- and the 

backward-traveling TM modes respectively, and x
c  denotes the cut-off of transverse electric (TE) 

modes. Only the backward-traveling TM modes can couple to the TE radiation modes so that the device 

acts as the TM-mode optical isolator.  

 

 

Figure 2.3 The relationship of propagation constant. 

3.6 Fabrication processes 
 

The magneto-optic waveguide can be fabricated by using several techniques. In this section, several 

techniques will be described, that is, surface activated bonding, photosensitive adhesive bonding, plasma-

enhanced chemical vapor deposition, spin coating, electron beam lithography, ultraviolet lithography, and 

etching.   

 

3.6.1 Surface activated bonding 

  

The surface activated bonding (SAB) process is used to clean the material surface. This process removes 

adsorbed atoms and compound layers, typically oxides, which stabilize the surface [19]. Therefore, after the 

cleaning process, the surfaces become unstable “active” states. The SAB process has been developed for wafer 

bonding at low temperature. The advantage of SAB is to directly bond a different kinds of material at room 

temperature. It will create new field of different materials, like a solar battery and a surface acoustic wave 

(SAW) filter. 

At first, ions or atoms are bombarded at room temperature in an ultra-high vacuum as shown in figure 2.4. 

This process will remove the oxide film and contaminants on the bonding surface by Ar ions or atoms 

bombardment, then create dangling bond on bonding interface for the connection of atoms. Atomic level 



 
 

bonding among dangling bonds is carried out by having the bonding interface contacted with each other in an 

ultra-high vacuum. By this process, bonding of different materials at room temperature is achieved, such as 

chemical compound semiconductors and the similar one which is normally hard to bond. 

 

Figure 2.4 Schematic process flow of surface activated bonding technique. 

 

3.6.2 Photosensitive adhesive bonding 

 

Adhesive wafer bonding [20–22] uses an intermediate layer for bonding two substrates. The advantages of 

this approach are low temperature processing (the maximum temperature lower than 400℃), surface 

planarization, and tolerance to particles contamination. Regardless of the polymer materials for wafer bonding 

process, there are two important categories based on their behavior during bonding: one is represented by 

materials which become viscous and flow during bonding process while the second category is formed by 

material which remains rigid after baking process and subsequently during bonding. The two different behaviors 

are very important for wafer bonding due to their major impact on process results. The critical parameter for 

wafer bonding process is film thickness and uniformity across wafer surface.  

The adhesive bonding has a simple process property and the ability to form micro structure with high aspect 

ratio. The intermediate layer is applied by spin-on, spray-on, screen-printing, embossing, dispensing, or block 

printing on one or two substrate surfaces. The adhesive thickness and spinning speed curve have been studied to 

generate a repeatable process that yields reliable film thickness across a substrate, with known film thickness 

uniformity. The procedural steps of adhesive bonding are divided as shown in figure 2.5.  

The cleaning and pre-treatment of substrate surfaces is the first step for bonding technique in which there 

are three requirements. First, the weak boundary layer of the given material must be removed or chemically 

modified to create a strong boundary layer. Second, the surface energy of the adhered should be higher than that 

of the adhesive for good wetting. Lastly, the surface profile can be improved to provide mechanical 

interlocking. These techniques are available to help produce a desirable surface for adhesive bonding. The 

second step is to connect the adhesive layer. The most adhesive materials are polymers. The polymers enable to 

connect with different materials at low temperature. After that, these structures will be contracting with the 

substrate and hardening the adhesive layer.  

 

Figure 2.5 Schematic process flow of photosensitive adhesive wafer bonding technique. 



 
 

 

3.6.3 Plasma-enhanced chemical vapor deposition 

 

Plasma-enhanced chemical vapor deposition (PECVD) [23] is a chemical vapor deposition (CVD) 

technology that utilizes a plasma to provide some of the energy for the deposition reaction to take place. The 

plasma, which is used in the PECVD technique, allows the usage of a wide range of precursors [24]. Plasma is a 

partially or fully ionized gas and generally is a mixture of electrons, charged particles, and neutral atoms. 

Therefore, the plasma state has high energy. The energy that is available in a plasma discharge is used for 

various applications, one of these applications is the deposition of thin films and coatings.  

Figure 2.6 shows the PECVD process. An external energy source is required for the ionization of atoms and 

molecules, a pressure reduction system, and finally, the existence of a reaction chamber. The plasma induces 

radical or plasma polymerization in the monomers. Neutral molecules will be ionized or excited when the 

electrons and ions in the plasma interact with them, so they will become chemically reactive. The monomers 

that are used in this procedure are mainly in the gas or liquid states, which can be evaporated. Meanwhile, 

utilization of solid monomers requires inclusion of sublimation apparatus by which the solid monomer can 

sublime for deposition and this capability allows the use a vast range of materials as monomers [25]. When a 

gaseous or liquid precursor with high vapor pressure is introduced into the PECVD reaction chamber, 

dissociation, and activation of the precursor occur and in the presence of the plasma, which allows the 

deposition to happen at much lower temperatures compared to CVD. When the plasma comes in contact with 

the surface of a polymer substrate, modification of the surface can occur in different ways (etching). After that, 

the plasma treatment leads to the removal of materials from the surface (deposition) where precursors in the 

plasma stream are deposited as a plasma polymerized thin layer on the surface (cross-linking and 

functionalization), which involves modifications of the plasma polymers on the surface [26]. The advantages of 

the PECVD are operating at low temperature, low chances of cracking deposited layer, good dielectric 

properties of deposited layer, good step coverage, and less temperature dependent. [27] 

 

Figure 2.6 Schematic of plasma-enhanced chemical vapor deposition technique. 

 

3.6.4 Spin coating 

 



 
 

Spin coating is a common method for coating the substrate with photoresists. In this technique, the few 

volume of the resist are dropped on a substrate, while the substrate is rotating with speed. Due to the centrifugal 

force, the dispensed resist spreads into a uniform resist film of desired film thickness, excess resist is spin off 

the edge of the substrate. At the same time, a part of the solvent evaporates from the resist film, so that its 

thinning stopped on the one hand and on the other hand, the resist film becomes sufficiently stable to suppress 

its elapsing during the handling of the wafers after coating.   

 

3.6.5 Electron beam lithography 

 

Electron beam lithography (EBL) is a process that uses electron beam (EB). EBL is one of the key 

fabrication techniques that allow us to create patterns at the nanoscale. The EBL working principle is relatively 

simple and very similar to photolithography: A focused beam of electron is scanned across a substrate covered 

by an electron-sensitive material (resist) that changes its solubility properties according to the energy deposited 

by the electron beam. Areas exposed, or not exposed according to the tone of the resist, are removed by 

developing.  

EBL consists of a chamber, an electron gun, and a column. Column and chamber are maintained in high 

vacuum by a suitable set of pumps. The column contains all the electron optical elements needed to create a beam 

of electrons, to accelerate it to the working voltage, to turn it on and off, to focus, and to deflect it as required by 

the pattern to be written. The samples are normally loaded via a load lock into the main chamber and are typically 

placed on an interferometric stage for accurate positioning of the working piece. Figure 2.7 shows the computing 

system, the pattern generator, the operator interface, and all the electronics needed to control and operate the 

machine with EBL system. 

 

Figure 2.7 Schematic of electron beam lithography. 

 

3.6.6 Ultraviolet lithography 

 

Photoresist is an organic polymer which changes its chemical structure when exposed to ultraviolet light. It 

contains a light-sensitive substance whose properties allow image transfer onto a print circuit board. There are 2 

types of photoresist that included positive photoresist and negative photoresist as shown in figure 2.8. For 

positive resists, the exposed regions become more soluble and are thus more easily removed in the development 



 
 

process. The net result is that the patterns formed (also called images) in the positive resist are the same as those 

on the mask. For negative resist, the exposed regions become less soluble and the patterns formed in the 

negative resist are the reverse of the mask patterns. 

 

 

Figure 2.8 Schematic of ultraviolet lithography. 

 

3.6.7 Etching 

 

Etching is the process of using strong acid into remove material on the surface to create a design the pattern. 

Different etching processes are selected depending on the particular material to be removed. Etching is divided 

into "wet etching" and "dry etching" when chemical reactions of chemicals, reaction gases, and ions are used. 

Wet etching is a purely chemical process that removes material from a wafer using liquid-phase etchants. Dry 

etching is one of the most widely used processes in semiconductor manufacturing since it is easier to control, is 

capable of defining feature in small size, and produces highly anisotropic etching. It may remove the materials 

by chemical reactions, by purely physical method, or the combination of both chemical reaction and physical 

bombardment.  

Reactive ion etching (RIE) is a directional etching process utilizing ion bombardment to remove material. 

RIE uses both physical and chemical mechanisms in order to achieve high levels of resolution. Figure 2.9 shows 

the RIE process. The process uses a chemically reactive plasma in a vacuum chamber to aggressively etch in a 

vertical direction. Horizontal etching is purposefully minimized in order to leave clean, accurate corners. RIE 

systems are used to remove organic material and etch away treated surfaces. Controlling ion density, electron 

temperature, and the plasma potential are of the utmost importance for ensuring a uniform etch. The chamber is 

set to vacuum. The electrode holds the materials to be treated and is electrically isolated from the vacuum 

chamber. Air or gas enters the chamber through a control valve on the front and is quickly evacuated by the 

vacuum pump installed in the rear. The type of gas used varies depending on a number of factors. Carbon 

tetrafluoride (CF4) and oxygen are commonly used for etching. 

 

Figure 2.9 Schematic of reactive ion etching. 
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CHAPTER 3 MAGNETO-OPTIC WAVEGUIDES 

FABRICATED BY BONDING TECHNIQUE 

 

 

3.1 Introduction 

 

 In this chapter, the optical isolator with the Si guiding layer fabricated by bonding techniques is 

described. In the magneto-optic waveguide of the optical isolator, the Si guiding layer is connected with 

the magnetic garnet cladding layer by bonding techniques. As for the bonding technique, surface 

activated bonding and photosensitive adhesive bonding are employed. The rib waveguides with the Si 

guiding layer are investigated for the optical isolator employing the nonreciprocal guided-radiation mode 

conversion. Preliminary experiments of the bonding techniques are discussed.   

 

3.2 Device structure 

 

An optical isolator employing a nonreciprocal guided-radiation mode conversion has been 

investigated. This device consists of a straight rib-type magneto-optic waveguide with a Si guiding layer. 

A magneto-optic waveguide in the optical isolator has a magnetic garnet / Si / SiO2 structure, as shown 

in figure 3.1. A Ce:YIG is used as a magnetic garnet cladding layer. Ce:YIG has a Faraday rotation 

coefficient qF of approximately –4,500 deg/cm at 1.55 m. The refractive indices of Ce:YIG, Si, SiO2 

are 2.22, 3.50, and 1.44, respectively at 1.55 µm. Nonreciprocal phase shifts represent unequal phase 

shifts for the forward and backward propagating waves in the magneto-optic waveguide; therefore, both 

waves exhibit distinct propagation constants. The differential equation of TM modes obtained from 

Maxwell’s equations includes a nonzero linear term in the propagation constant β, which indicates that 

there are nonreciprocal solutions.  



 
 

 

Figure 3.1 Optical isolator fabricated by bonding technique. 

 

3.3 Isolator design 

 

The magneto-optic waveguide with the Si guiding layer can be realized by bonding between Si and 

a magnetic garnet. The magneto-optic waveguides fabricated by surface activated bonding process and 

photosensitive adhesive bonding were compared. The optical isolator was designed at a wavelength of 

1.55 µm. The relationship of waveguide parameters for isolator operation was clarified for the magneto-

optic waveguide with various gaps between Si and the magnetic garnet.  

 

3.3.1    Surface activated bonding  

 

Figure 3.2 shows cross-section of the magneto-optic waveguide fabricated by surface activated bonding. 

Owing to the surface activated bonding, bonding between Si and Ce:YIG with no gaps can be expected. 



 
 

  

Figure 3.2 Cross-sectional structure of magneto-optic waveguide fabricated by surface activated bonding. 

Figure 3.3 shows the calculated nonreciprocal phase shift as a function of thickness of the Si guiding layer. 

The magneto-optic waveguide has a structure of Ce:YIG/ gap (Air)/ Si/ SiO2. When the gap between the 

magnetic cladding layer and Si is 0 nm, the magneto-optic waveguide exhibits the largest nonreciprocal phase 

shift. However, when the gap increases to 10 nm, 25 nm, and 50 nm, the Si guiding layer thickness for the 

largest nonreciprocal phase shift increases to 219 nm, 228 nm, and 238 nm, respectively. It is also seen from 

figure 3.3 that the amount of the nonreciprocal phase shift decreases as the gap increases. Similar to figure 3.3, 

figure 3.4 shows the relationship of waveguide geometric parameters, namely rib height and rib width at various 

gaps that satisfies propagation constant condition. Once the rib height is set, the range of the rib width for the 

isolator operation that satisfies follow propagation constant condition, is given. The filled and open circles 

represent the cases where y
f  and x

c  are equal and y
b  and x

c  are equal, respectively. The isolator operation is 

limited in the magneto-optic waveguide whose rib width ranges between filled and open circles. When the rib 

width is less than the filled circles, both the forward- and backward-traveling waves couple to the TE radiation 

modes. When the rib width is larger than the open circles, neither the forward- nor backward-traveling waves 

couple to the TE radiation modes. The impact of gap and rib dimensions on the waveguide tolerance is also 

demonstrated. For example, when the gap is 0 nm and the rib height is 79 nm, the rib width is ranged between 

4.78 µm and 6.14 µm, that means there is a tolerance of 1.36 µm. When the gap is 10 nm and the rib height is 83 

nm, the tolerance reduces to 0.4 µm.  



 
 

 

Figure 3.3 Calculated nonreciprocal phase shift depending on Si thickness when the waveguide is 

fabricated by surface activated bonding. 
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Figure 3.4 Relationship of waveguide parameters for isolator operation when the waveguide is 
fabricated by surface activated bonding. 

3.3.2    Photosensitive adhesive bonding  

 

Figure 3.5 shows cross-section of the magneto-optic waveguide fabricated by photosensitive adhesive 

bonding. The nonreciprocal phase shift in the magneto-optic waveguide is calculated at the wavelength of 1.55 

µm. 

 

Figure 3.5 Cross-sectional structure of magneto-optic waveguides fabricated by photosensitive 

adhesive bonding. 

 

Figure 3.6 shows the calculated nonreciprocal phase shift as a function of thickness of the Si guiding layer. 

When the gap between the magnetic cladding layer and Si is 0 nm, the thickness of the Si guiding layer for the 

maximum nonreciprocal phase shift is the same as that of the surface activated bonding. When the gap increases 

to 25 nm, 50 nm, and 100 nm, the Si guiding layer thickness for the largest nonreciprocal phase shift increases 

to 210 nm, 220 nm, and 230 nm, respectively. Figure 3.7 shows the relationship of the waveguide parameters 

that satisfies by propagation constant condition. When the gap is 0 nm and the rib height is 86 nm, the rib width 

is ranged between 2.26 µm and 2.38 µm, that means there is a tolerance of 120 nm. When the gap is 25 nm and 

the rib height is 99 nm, the tolerance reduces to 60 nm. Similar trends are confirmed for both magneto-optic 

waveguides. 

 



 
 

 

Figure 3.6 Calculated nonreciprocal phase shift depending on Si thickness when the waveguide is fabricated by 

photosensitive adhesive bonding. 
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Figure 3.7 Relationship of waveguide parameters for isolator operation when the waveguide is 

fabricated by photosensitive adhesive bonding. 

3.4 Calculation of isolation ratio 

 

The isolation ratio of the optical isolator with Ce:YIG/ Si/ SiO2/ Si structure is calculated. Figure 3.8 shows 

the cross-section of the magneto-optic waveguide with Si guiding layer. The isolation of the optical isolator 

employing the nonreciprocal guided-radiation mode conversion is calculated by simulating the electric field of 

TM guided mode and the electric field of TE radiation mode. The rib height and rib width are set equal to 0.097 

m and 6 m, respectively for the isolator operation. For calculation, the boundary condition which defines the 

analysis region in the horizontal direction is located at (L) 5 m. The equivalent refractive index (Ng) of this 

structure is 2.596431. The equivalent refractive index for TM mode in region 1 (ng1) and 2 (ng2) of this structure 

are 2.211418 and 2.585433, respectively. For TE mode, the equivalent refractive index in region 1 (nr1) and 2 

(nr2) are 2.590765 and 2.965026 respectively.  

 

Figure 3.8 Cross-section of magneto-optic waveguide for calculating isolation ratio. 

 

 



 
 

 

 

3.4.1   The electric field of TM guided mode 

 

Following the structure, the electric field of TM guided mode (Eg) is simulated by COMSOL Multiphysics. 

The simulated electric field is shown in figure 3.9. The normalization equation of the electric field is explained 

as below: 

              (170.8256 exp(2.3r1x))    ; x < 0 

Egy   =   (9.774×103 cos(0.535jr2x +1.55319))   ; 0 < x < W        (1) 

  (170.8256 exp(-2.3r1(x-W)))    ; W < x 

Where Egy is the electric field of the TM guided mode in y direction. 𝑟1 = 𝑘0√𝑁𝑔
2 − 𝑛𝑔1

2 , 𝑟2 =

𝑘0√𝑛𝑔2
2 − 𝑁𝑔

2 , and 𝑘0 is the free space wave number given by 𝑘0 = 𝜔 𝑐⁄ . 

The TM guided mode is normalized by this equation: 
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Figure 3.9 The electric field of TM guided mode. 

 

3.4.2   The electric field of TE radiation mode 

 

Following this structure, the electric field of TE radiation mode (Er) is simulated by COMSOL Multiphysics. 

The simulated electric field is shown in figure 3.10. The normalization equation of the electric field is explained 

as below: 

   1.8623(|4.5𝑘1𝑥|sin(3.9k1x) +4)   ; x < 0 

Erx   =    0.2673((1.2k2(x-(𝑊
2

))) sin(1.92k2(x-(𝑊
2

)))  ; 0 < x < W             (3) 

   1.8623 ((4.5𝑘1(x-W)) sin(3.9𝑘1(x-W))+4)  ; W < x 

Where Erx is the electric field of the TE radiation mode in x direction. 𝑘1 = 𝑘0√𝑛𝑟1
2 − 𝑁𝑟

2, 𝑘2 =

𝑘0√𝑁𝑟
2 − 𝑛𝑟2

2  , and 𝑁𝑟 = 𝑁𝑔 . 

The TE radiation mode is normalized by this equation (width = 6.1 µm): 
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Figure 3.10 The electric field of TE radiation mode. 

 

 

3.4.3   The conversion of TM guided mode to TE radiation mode 

 

The coupling coefficient of TM guided mode and TE radiation mode is given by 



 
 

                  𝐾(𝛽) =  
1

4
𝑗𝜔𝜀0

2𝑁𝑔𝜃𝐹

𝑘0
∫ (−𝐸𝑔𝑦𝐸𝑟𝑥 sin𝜃 + 𝐸𝑔𝑦𝐸𝑟𝑧 cos 𝜃)𝑑𝑥

∞

−∞
                 (5) 

Owing to the Erx is larger than Erz, the Faraday effect that depends on sin 𝜃 rather than the nonreciprocal phase 

shift effect has a stronger influence on the coupling coefficient 𝐾(𝛽). 

Therefore: 

                             𝐾(𝛽) =  
1

4
𝑗𝜔𝜀0

2𝑁𝑔𝜃𝐹

𝑘0
∫ (−𝐸𝑔𝑦𝐸𝑟𝑥 sin𝜃)𝑑𝑥

∞

−∞
                                (6) 

The radiation loss coefficient can be expressed by 

                                                    2𝛼 = 2𝜋|𝐾(𝛽)|2                                                      (7) 

The power propagation in z direction is described as below 

                                              𝑃(𝑧) = 𝑃(0)exp (−2𝛼𝑧)                                               (8) 

The power attenuation per unit can be calculated by 

                                            10 log10 exp (−2𝜋|𝐾(𝛽)|2)                                            (9) 

Figure 3.11 shows the calculation of the power attenuation as a function of an angle of the external magnetic 

field. The result shows that the power attenuation is increasing when 𝜃 increases. However, in order to generate 

the mode, the nonreciprocal phase shift is necessary to utilize the mode conversion. Since the nonreciprocal effect 

depends on 𝜃, it must be as small as possible in order to obtain the largest nonreciprocal phase shift effect. From 

figure 3.11, the isolation ratio is approximately 15.6 dB/mm and 18.9 dB/mm at the angle of 40 º and 45 º, 

respectively. When the angle is around 40-45 degrees, a very compact optical isolator can be realized. 

 

Figure 3.11 The power attenuation of optical isolator depending on the angle of external magnetic field. 

 

3.5 Fabrication processes 

 

The fabrication process of the magneto-optic waveguide with Si guiding layer was demonstrated. 

The magnetic garnet and Si were connected with each other by bonding technique. The detail of the 

bonding techniques, that is surface activated bonding and photosensitive adhesive bonding, was 

explained.  



 
 

   

3.5.1    Surface activated bonding  

 

Preliminary experiment of surface activated bonding was conducted. Ar ion beam was irradiated 

over the surfaces of Si and Ce:YIG and then, the two wafers were bonded at room temperature. The 

atmosphere for bonding condition was 3x 10-5 Pa in 3 minutes. Figure 3.12 shows a photograph of Si / 

Ce:YIG realized by surface activated bonding. Partial bonding between Si and Ce:YIG was confirmed, 

however, further experiment must be conducted for achieving intimate bonding. 

 

Figure 3.12 Photograph of Si/ Ce:YIG fabricated by surface activated bonding. 

 

3.5.2    Photosensitive adhesive bonding 

 

 The magneto-optic waveguide was fabricated by photosensitive adhesive bonding. The proposed optical 

isolator needs a layer of the adhesive material for bonding the magnetic garnet onto the Si guiding layer. TMMR 

N-A1000 by Tokyo Ohka Kogyo and a thinner are used as the photosensitive adhesive material and diluent, 

respectively. The temperature and pressure for bonding are approximately 160ºC and 600 g / cm2, respectively. 

In the process, the adhesive can be diluted to reduce its thickness. The dilution consists of the thinner mixed with 

TMMR N-A1000. The dilution is dropped at a certain amount on the spinning SOI substrate that is placed in the 

chamber. Although it is difficult to adjust the thickness and uniformity of the adhesive owing to its viscosity, this 

type of adhesive ensures excellent chemical resistance to numerous acids, alkalines, and solvents. Pressure is 

applied to ensure intimate contact of the surfaces of the adhesive layer and the substrate. The dilution is then cured 

with ultraviolet (UV) light. A scanning electron microscope (SEM) is used to measure the adhesive layer thickness. 

Figure 3.13 shows the quadratic regression profile of adhesive layer thickness as a function of the percent dilution 

ratio. Note that at 2% dilution, that is, 1 part of the adhesive material: 49 parts of the diluents, the thickness of the 

adhesive layer is smallest at approximately 0.66 µm. If the adhesive material is diluted more than 49-fold, no 

bonding takes place. Therefore, by this technique, the adhesive layer thickness can be reduced to below 1 μm. 

Figure 3.14 shows the magneto-optic waveguide with a Ce:YIG/ TMMR N-A1000/ Si/ SiO2 structure observed 

by using SEM. 



 
 

 

Figure 3.13 Thickness of the adhesive layer as a function of dilution ratio. 

 

Figure 3.14 Magneto-optic waveguide fabricated by photosensitive adhesive bonding. 

 

3.6 Conclusion 

 

The magneto-optic waveguide with a Si guiding layer fabricated by surface activated bonding and 

photosensitive adhesive bonding technique was investigated. For both waveguides, the nonreciprocal 

phase shift was calculated at a wavelength of 1.55 m. The isolation ratio of the magneto-optic 

waveguide with Si guiding layer was simulated by the COMSOL Multiphysics program. By using the 

electric field of TM guided mode and that of TE radiation mode, the coupling coefficient of these modes 

were calculated. The isolation ratio depending on the angle of the external magnetic field was clarified. 

The waveguide parameters for isolator operation was considered for the magneto-optic waveguide with 

various gaps between Si and the magnetic garnet. Relationship of waveguide parameters were clarified 

for isolator operation.   
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CHAPTER 4 MAGNETO-OPTIC WAVEGUIDES WITH  

a-Si:H GUIDING LAYER 

 

 

4.1 Introduction 

 

 In this chapter, the optical isolator with the a-Si guiding layer is described. In the magneto-optic 

waveguide of the optical isolator, the a-Si guiding layer is deposited on the magnetic garnet cladding 

layer by PECVD. The rib waveguides with the Si guiding layer are investigated for the optical isolator 

employing the nonreciprocal guided-radiation mode conversion. The mathematical model of the electric 

field of TM guided mode and that of TE radiation mode are built in order to calculate the isolation ratio.  

 

4.2 Device structure 

 

Figure 4.1 shows an optical isolator with a-Si:H guiding layer deposited on a magnetic garnet 

cladding layer. Ce:YIG is used as a magnetic-garnet lower cladding layer. The refractive indices of 

Ce:YIG and a-Si:H are 2.22 and 3.48 respectively, at 1.55 m. The optical isolator is comprised of a 

straight rib waveguide with the air/ a-Si:H/ Ce:YIG/ GCGMZG structure. 



 
 

 

Figure 4.1 Optical isolator with a-Si:H guiding layer. 

 

4.3 Isolator design 

 

The optical isolator employing the nonreciprocal guided-radiation mode conversion is designed at 

the wavelength of 1.55 µm. Figure 4.2 shows the calculated nonreciprocal phase shift of the three-layer, 

air/ a-Si:H/ Ce:YIG, slab waveguide as a function of the a-Si:H thickness. It can be seen that at 0.22 µm 

a-Si:H thickness, the nonreciprocal phase shift obtains its maximum value. In this case, the thickness of 

the Ce:YIG cladding layer is assumed to be infinite in the air/ a-Si:H/ Ce:YIG waveguide. Figure 4.3 

shows the calculated nonreciprocal phase shift of the four-layer, air/ a-Si:H/ Ce:YIG/ GCGMZG, slab 

waveguide as a function of the Ce:YIG thickness. The a-Si:H thickness of 0.22 µm obtained previously 

is selected. The calculation of the nonreciprocal phase shift indicates that the magnetic garnet of 0.5 µm 

thickness is sufficient to obtain the nonreciprocal phase shift equivalent to that of the infinitely thick 

magnetic garnet. Note that, if the optical isolator shown in figure 4.1 is taken to fabrication, the magnetic 

garnet cladding layer with a thickness greater than 0.5 µm will be required to achieve uniform 

nonreciprocal phase shift. 



 
 

 

Figure 4.2 Calculated nonreciprocal phase shift for slab waveguide with air/ a-Si:H/ Ce:YIG structure 

depending on a-Si:H thickness. 
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Figure 4.3 Calculated nonreciprocal phase shift for slab waveguide with air/ a-Si:H/ Ce:YIG/ GCGMZG 

structure depending on Ce:YIG thickness. 

The optical isolator employing the nonreciprocal guided-radiation mode conversion is then designed at 1.55 

m. Figure 4.4 shows the cross-section of the magneto-optic waveguide in the optical isolator. The a-Si:H 

guiding layer thickness of 0.22 m is selected in order to maximize the nonreciprocal phase shift. Figure 4.5 

shows the relationship of the waveguide parameters that satisfies the condition of the propagation constants. 

Once the rib height is set, the range of the rib width for the isolator operation, which means that the propagation 

constants satisfy the relationship denoted by propagation constant condition, is given. The isolator operation is 

limited in the magneto-optic waveguide whose rib width ranges between filled marks and open marks. 

 

Figure 4.4 Cross-sectional structure of magneto-optic waveguide with a-Si:H guiding layer 
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Figure 4.5 Relationship of waveguide parameters for isolator operation. 

4.4 Calculation of isolation ratio 

 

 The isolation ratio of the optical isolator with air/ a-Si:H/ Ce:YIG structure is calculated. The cross-section 

of the magneto-optic waveguide is shown in figure 4.6. The isolation of the optical isolator employing the 

nonreciprocal guided-radiation mode conversion is calculated by simulating the electric field of TM guided mode 

and the electric field of TE radiation mode. The rib height and rib width are set equal to 0.11 m and 2.1m, 

respectively for the isolator operation. For calculation, the boundary condition which defines the analysis region 

in the horizontal direction is located at (L) 2m. The equivalent refractive index (Ng) of this structure is 2.48431. 

The equivalent refractive index for TM mode in region 1 (ng1) and 2 (ng2) of this structure are 2.147758 and 

2.481105, respectively. For TE mode, the equivalent refractive index in region 1 (nr1) and 2 (nr2) are 2.481165 

and 2.484792, respectively.  

+  

Figure 4.6 Cross-section of magneto-optic waveguide for calculating isolation ratio. 

 

4.4.1   The electric field of TM guided mode 

 

Following the structure, the electric field of TM guided mode (Eg) is simulated by COMSOL Multiphysics. 

The simulated electric field is shown in figure 4.7. The normalization equation of the electric field is explained 

as below: 



 
 

             (3.3205×103 exp(2.3𝑟1x))    ; x < 0 

Egy   =   (1.6249×104 cos(2.67j𝑟2(x-𝑊
2

)))   ; 0 < x < W              (1) 

  (3.3085e×103 exp(-2.3𝑟1(x-W)))   ; W < x 

 Where Egy is the electric field of the TM guided mode in y direction. 𝑟1 = 𝑘0√𝑁𝑔
2 − 𝑛𝑔1

2 , 𝑟2 =

𝑘0√𝑛𝑔2
2 − 𝑁𝑔

2 , and 𝑘0 is the free space wave number given by 𝑘0 = 𝜔 𝑐⁄ . 

The TM guided mode is normalized by this equation: 
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Figure 4.7 The electric field of TM guided mode. 

 

4.4.2   The electric field of TE radiation mode 

 

Following this structure, the electric field of TE radiation mode (Er) is simulated by COMSOL Multiphysics. 

The simulated electric field is shown in figure 4.8. The normalization equation of the electric field is explained 

as below: 



 
 

   (3.604|2.59𝑘1xπ − 3| sin(2.59𝑘1xπ − 3))   ; x < 0 

Erx   =    (-3.4238((12𝜋𝑘2(x-(𝑊
2

))) sin(12𝜋𝑘2(x-(𝑊
2

))))-8888)  ; 0 < x < W  (3) 

   (5.0456(2.59𝑘1π(x-W)) sin(2.59𝑘1π(x-W)))   ; W < x 

Where Erx is the electric field of the TE radiation mode in x direction. 𝑘1 = 𝑘0√𝑛𝑟1
2 − 𝑁𝑟

2, 𝑘2 =

𝑘0√𝑁𝑟
2 − 𝑛𝑟2

2  , and 𝑁𝑟 = 𝑁𝑔 . 

The TE radiation mode is normalized by this equation (width = 6.1 µm): 
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∫ ( 𝐸𝑟𝑥
∗ 𝐻𝑟𝑦)𝑑𝑥 = 2

∞

−∞

 

∫ 𝐸𝑟𝑥
∗ 𝐸𝑟𝑥𝑛(𝑥)2

∞

−∞

𝑑𝑥 =
2𝑐𝜀0

𝑁𝑟
 

       

Figure 4.8 The electric field of TE radiation mode. 

 

4.4.3   The conversion of TM guided mode to TE radiation mode 

 

The coupling coefficient of TM guided mode and TE radiation mode is given by 

                  𝐾(𝛽) =  
1

4
𝑗𝜔𝜀0

2𝑁𝑔𝜃𝐹

𝑘0
∫ (−𝐸𝑔𝑦𝐸𝑟𝑥 sin𝜃 + 𝐸𝑔𝑦𝐸𝑟𝑧 cos 𝜃)𝑑𝑥

∞

−∞
                 (5) 



 
 

Owing to the Erx is larger than Erz, the Faraday effect that depends on sin 𝜃 rather than the nonreciprocal phase 

shift effect has a stronger influence on the coupling coefficient 𝐾(𝛽). 

Therefore: 

                             𝐾(𝛽) =  
1

4
𝑗𝜔𝜀0

2𝑁𝑔𝜃𝐹

𝑘0
∫ (−𝐸𝑔𝑦𝐸𝑟𝑥 sin𝜃)𝑑𝑥

∞

−∞
                                (6) 

The radiation loss coefficient can be expressed by 

                                                    2𝛼 = 2𝜋|𝐾(𝛽)|2                                                      (7) 

The power propagation in z direction is described as below 

                                              𝑃(𝑧) = 𝑃(0)exp (−2𝛼𝑧)                                               (8) 

The power attenuation per unit can be calculated by 

                                            10 log10 exp (−2𝜋|𝐾(𝛽)|2)                                            (9) 

Figure 4.9 shows the calculation of the power attenuation as a function of an angle of the external magnetic 

field. The result shows that the power attenuation is increasing when 𝜃 increases. However, in order to generate 

the mode, the nonreciprocal phase shift is necessary to utilize the mode conversion. Since the nonreciprocal effect 

depends on 𝜃, it must be as small as possible in order to obtain the largest nonreciprocal phase shift effect. From 

figure 4.9, the isolation ratio is approximately 0.90 dB/mm and 1.1 dB/mm at the angle of 40 º and 45 º, 

respectively. When the angle is around 40-45 degrees, a very compact optical isolator can be realized. 

  

Figure 4.9 The power attenuation of optical isolator depending on the angle of external magnetic field. 

4.5 Fabrication processes 
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The fabrication process of the nonreciprocal guided-radiation mode conversion with a-Si:H guiding layer is 

shown in the figure 4.10. 

 

  Figure 4.10 The fabrication process of the magneto-optic waveguide with a-Si:H guiding layer. 

 

4.5.1   Plasma-enhanced chemical vapor deposition  

 

The optical isolator with air/ a-Si:H/ Ce:YIG/ GCGMZG structure is fabricated by using the PECVD method 

to emit the a-Si:H guiding layer. The a-Si:H is incorporation of atomic hydrogen into the Si network. However, 

the material prepared in a way that contains a very high density of neutral threefold-coordinated Si dangling 

bonds, which prevent doping, carrier transport, and many other characteristics that are desirable for a useful 

optoelectronic device. The incorporation of hydrogen can decrease the Si dangling bonds. When the a-Si layer is 

deposited on the magnetic garnet, it is necessary to use the buffer layer. As for the buffer layer 1, Si nitride (SiNx) 

is employed. Table 4.1 shows the conditions of PECVD process.  

 



 
 

Table 4.1 PECVD’s conditions 

 Buffer 1 a-Si:H Buffer 2 

Thickness 50 nm 0.2 µm 50 nm 

Gas flow SiH4S 5 sccm 

H2 8 sccm 

N2 500 sccm 

He 500 sccm 

 

SiH4 100 sccm 

Ar 100 sccm 

 

O2 300 sccm 

TEOS 2 sccm 

Time 1 min 48 sec 11 min 3 sec 4 min 

Power 50 W 100 W 120 W 

Temperature 250 ºC 300 ºC 300 ºC 

 

4.5.2   Spin coating, Baking, and Espesor   

 

A spin coating is used for coated the resist layer. The coating film thickness control is determined by the 

viscosity of the resist, the acceleration of the disk, the rotation speed and time. In this study, ZEP 520A was used 

for resist. The spin’s condition is shown in table 4.2. 

 

Table 4.2 Spin coat’s conditions 

 Initial value After accelerated 

Speed 1000 rpm 6000 rpm 

Time 3 sec 120 sec 

 

Then, the substrate is heated in order to remove the solvent of the resist. Place the substrate on a hot plate and 

raise the temperature. The temperature is set to 180℃ in 15 minutes.  If the baking process is not performed, it will 

cause defects in the subsequent process.  

A spin coater is used for applying the Espesor in the same manner as the resist coating. Spin coater initial 

conditions and after accelerated are shown in table 4.3. 

 

Table 4.3 Espesor spin coat’s conditions 



 
 

 Initial value After accelerated 

Speed 300 rpm 1000 rpm 

Time 3 sec 210 sec 

 

4.5.3   Electron beam lithography   

 

The resolution of the electron beam lithography technique is determined by the scattering of the electron 

beam. Since electrons are generally accelerated at high voltage, they are scattered by collisions with atoms 

constituting the resist. A part of the scattered electrons penetrates the resist layer and reaches the substrate. 

Electrons that have penetrated the resist layer and reached the substrate collide with atoms constituting the 

substrate. A part of the electrons scattered by the substrate bounces back to the resist layer and exposes the 

resist. 

 

4.5.4   Ultraviolet lithography  

 

The sensitivity of the resist depends on the type of solute and the temperature. The ZEP 520A is used as the 

solute in this research. It immerses the substrate in a solution to remove anything other than the necessary resist.  

 

4.5.5   Etching   

 

Reactive ion etching (RIE) is used in this research. Table 4.4 shows the RIE’s conditions. It uses a gas feed 

into a chamber in order to generating plasma (activation gas). Etching is performed by applying ions generated 

by separation of the gas to the wafer placed on the electrode. 

Table 4.4 RIE’s conditions 

Gas CF4 O2 SF6 

Flow rate 20 sccm 20 sccm 3.5 sccm 

Pressure 3.2 Torr 50 Torr 3 Torr 



 
 

RF Power 10W 20 W 20 W 

Time 24 min 2 min 2 min 4 sec 

 

4.6 Evaluation of magneto-optic waveguide 

 

The fabricated waveguide was observed by SEM. Figure 4.11 shows the cross-sectional SEM image 

of the magneto-optic waveguide with a-Si:H/ buffer/ Ce:YIG structure.  

 

Figure 4.11 The magneto-optic waveguide with a-Si:H/ buffer/ Ce:YIG structure observed by SEM 

Figure 4.12 shows the experimental setup for the optical waveguide. The lightwave from a tunable 

laser diode is launched into the fabricated waveguide via an optical fiber. The output from the waveguide 

is observed by a TV monitor through an infrared camera. The optical power is measured by an optical 

power meter. Figure 4.13 shows the near-field pattern observed at the output facet of the waveguide with 

a-Si:H guiding layer. It was confirmed that lightwave was well confined in the waveguide.  



 
 

 

Figure 4.12 Experimental setup for optical waveguide. 

 

Figure 4.13 Near-field pattern form the waveguide with a-Si:H guiding layer. 

 

 

 

4.7 Conclusion 



 
 

 

The magneto-optic waveguide with a-Si:H guiding layer was investigated. The nonreciprocal phase 

shift was calculated at a wavelength of 1.55 m. The waveguide parameters for isolator operation was 

considered for the magneto-optic waveguide. Relationship of waveguide parameters were clarified for 

isolator operation. The isolation ratio of the magneto-optic waveguide with a-Si:H guiding layer was 

simulated by the COMSOL Multiphysics program. By using the electric field of TM guided mode and 

that of TE radiation mode, the coupling coefficient of these modes were calculated. The isolation ratio 

depending on the angle of the external magnetic field was clarified. The magnet-optic waveguide with 

a-Si:H/ buffer/ Ce:YIG/ GCGMZG structure was fabricated and evaluated.  

 

 

  



 
 

CHAPTER 5 ATHERMAL OPERATION OF OPTICAL 

ISOLATOR 

 

 

5.1 Introduction 

There are no reports on the temperature dependence of the optical isolator employing the 

nonreciprocal guided-radiation mode conversion in rib type structure. The performance of the device 

may be deteriorated due to the temperature fluctuation because the effective refractive indices of the 

magneto-optic waveguides are dependent on the operating temperature. In this chapter, temperature 

dependence of the magneto-optic waveguide with the a-Si:H guiding layer is considered. Athermal 

condition of the magneto-optic waveguide with the a-Si:H guiding layer is proposed.  

 

5.2 Temperature dependence of isolator design 

 

The optical isolator with air/ a-Si:H/ Ce:YIG structure is designed at 1.55 µm at room temperature 

and temperature dependence of the optical isolator was investigated. Temperature dependences of the 

refractive indices are 1.86×10 － 4 |/K| and 2.5×10 － 4 |/K|, respectively, for a-Si:H and Ce:YIG. 

Temperature dependence of the magneto-optic coefficient dθF/dT is 13 deg/cm/K at room temperature 

[1]. Figure 5.1 shows relationship of waveguide parameters for isolator operation from 0ºC to 50ºC. It 

was found that the waveguide parameters were slightly shifted when the temperature was varied. 



 
 

 

Figure 5.1 Relationship of waveguide parameters depending on operating temperature. 

 

The athermal condition of the optical isolator employing the nonreciprocal guided-radiation mode 

conversion is next investigated. The magneto-optic waveguide structure comprising upper cladding/ a-

Si:H/ Ce:YIG/ GCGMZG is considered. According to Yokoi and Sasaki [1], the refractive index of the 

upper cladding layer is varied usually between 1.0 and 3.0, and the large nonreciprocal phase shift is 

realized with the refractive index around 1.0 or 1.5. Therefore, in this paper, the refractive index of the 

upper cladding layer is assumed to be 1.5. At first, the temperature dependences of effective refractive 

indices are calculated. The temperature dependence of the refractive index of the upper cladding layer 

has a large impact on the shift of the relationship of waveguide parameters, which, in turn, affects the 

isolator operation. [2] The effective refractive index of the TM mode, neffTM, is proportional to the TM 

mode propagation constant that is located between y
f  and y

b . The effective refractive index of the TE 

cutoff mode, ncutoffTE, is proportional to x
c . If neffTM and ncutoffTE vary in a similar manner with the 

operating temperature, it is expected that the relationship expressed by propagation constant condition 

will be satisfied for a wide temperature range. Figure 5.2 shows neffTM and ncutoffTE dependences on the 

operating temperature. The temperature dependence of the refractive index of the upper cladding layer 



 
 

is assumed to be ±5.0×10-4 |/K| since the differences between neffTM and ncutoffTE are small at these values. 

It is found that for the negative temperature dependence of the refractive index of the upper cladding 

layer, the difference in neffTM and ncutoffTE is smaller than that for the positive temperature dependence of 

the refractive index of the upper cladding layer. The result suggests that the negative temperature 

dependence of the refractive index of the upper cladding layer is more effective for the athermal 

condition.  

      

Figure 5.2 Effective refractive indices of TM mode and TE cutoff depending on the operating temperature. The 

temperature dependences of the refractive index of the upper cladding layer are assumed to be (a) +5.0×10-4 |/K| 

and (b) -5.0×10-4 |/K|. 

 

Figure 5.3 shows neffTM and ncutoffTE with the temperature dependences of the refractive index of -

5.5×10-4, -6.0×10-4, -6.5×10-4, and -7.0×10-4 |/K|. From the aforementioned refractive index temperature 

dependences, the average differences in effective refractive index are around 1.7×10-4, 0.75×10-4, 

0.73×10-4, and 0.77×10-4, respectively. In these cases, it was found that the neffTM and ncutoffTE with the 

refractive index temperature dependences of -6.0×10-4, -6.5×10-4, and -7.0×10-4 |/K| vary in a similar 

way. Figure 5.4 shows the relationship of waveguide parameters for magneto-optic waveguides with the 

upper cladding layer with the temperature dependences of the refractive index of +6.0×10-4, and -6.0×10-

4 |/K|. For the latter case, the shift of the relationship of waveguide parameters for the isolator operation 

is negligible. 
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Figure 5.3 Effective refractive indices of TM mode and TE cutoff with the temperature dependences of the 

refractive index of (a) -5.5×10-4 |/K|, (b) -6.0×10-4 |/K|, (c) -6.5×10-4 |/K|, and (d) -7.0×10-4 |/K|.  
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Figure 5.4 Relationship of waveguide parameters for magneto-optic waveguides with upper cladding layer when 

the temperature dependences of the refractive index are (a) +6.0×10-4 |/K|, and (b) -6.0×10-4 |/K|. 

5.3 Material for upper cladding layer 
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The candidate material for the upper cladding layer is considered. From the above simulation, the 

results show that the investigated structure associated with the assumed refractive index of 1.5 for the 

upper cladding layer achieves the optimal temperature dependence of the refractive index of the upper 

cladding layer at -6.5×10-4 |/K|. It is found that there are 2 materials that possesses properties close to 

the simulated results. The first one is Titanium dioxide (TiO2) [3] which has the refractive index of 2.13 

and temperature dependence of the refractive index of -3×10-4 |/K|. Figure 5.5 shows the relationship of 

waveguide parameters for the magneto-optic waveguide with TiO2. It is found that the TiO2 can be used 

for the upper cladding layer for the athermal operation since the shifts of waveguide parameters are very 

small. The fabrication of the TiO2/ a-Si:H/ Ce:YIG/ GCGMZG magneto-optic waveguide can be easily 

achieved by metal-organic chemical vapor deposition. [4]  

The second one is methylcyclohexane (C6H11CH3) compound [5], that has the refractive index of 

1.4231 and temperature dependence of the refractive index of -5.018×10-4 |/K|. [6,7] Figure 5.6 shows 

the relationship of waveguide parameters for the magneto-optic waveguide with C6H11CH3.The result 

shown in figure 5.6 indicates that the relationship of waveguide parameters for the isolator operation 

shifts only slightly. In order to achieve athermal operation of the optical isolator employing the 

nonreciprocal guided-radiation mode conversion, consideration of the effective refractive indices of the 

TM mode and TE cutoff is then significant. The fabrication of the C6H11CH3/ a-Si:H/ Ce:YIG/ 

GCGMZG magneto-optic waveguide can be easily achieved by plasma-enhanced chemical vapor 

deposition method (PECVD). [7,8]  
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Figure 5.5 Relationship of waveguide parameters for magneto-optic waveguides with TiO2. 
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Figure 5.6 Relationship of waveguide parameters for magneto-optic waveguides with C6H11CH3. 

 

 



 
 

 

5.4 Conclusion 

 

The temperature dependences of the optical isolator employing the nonreciprocal guided-radiation 

mode conversion was simulated by considering the effective refractive index of the TM mode and that 

of the TE cutoff mode. By selecting an appropriate material as an upper cladding layer, athermal 

condition of the magneto-optic waveguide can be achieved. The material for the upper cladding layer, 

that is close to the parameter of the simulated results, was proposed. The relationship of waveguide 

parameters for the magneto-optic waveguide with TiO2 or C6H11CH3 was clarified for their athermal 

operation. The TiO2/ a-Si:H/ Ce:YIG/ GCGMZG magneto-optic waveguide can be fabricated by metal-

organic chemical vapor deposition. Meanwhile, the C6H11CH3/ a-Si:H/ Ce:YIG/ GCGMZG magneto-

optic waveguide can be fabricated by PECVD method.   
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CHAPTER 6 CONCLUSIONS 
 

 

6.1 Conclusions 

This research proposes an optical isolator employing the nonreciprocal guided-radiation mode 

conversion for Si photonics. The magneto-optic waveguide of the optical isolator has the Si guiding 

layer. Two types of the magneto-optic waveguide were investigated. One is the magneto-optic 

waveguide with the Si guiding layer by bonding technique. Surface activated bonding and photosensitive 

adhesive bonding were considered for bonding between Si and the magnetic garnet. The other is the 

magneto-optic waveguide with the a-Si:H guiding layer deposited on the magnetic garnet.  

As for the magneto-optic waveguide fabricated by surface activated bonding, the nonreciprocal phase 

shift in the magneto-optic waveguide was calculated at the wavelength of 1.55 µm. Relationship of 

waveguide parameters for isolator operation was clarified. The simulation results show that the larger 

tolerance of the waveguide geometric parameters can be achieved at smaller gaps between Si and the 

magnetic garnet. As the preliminary experiment, surface activated bonding between Si and Ce:YIG was 

conducted. Successful bonding was achieved with the heat treatment at 25 °C. However, the surface 

activated bonding process is not reproducible at present. 

As for the magneto-optic waveguide fabricated by photosensitive adhesive bonding, the 

nonreciprocal phase shift in the magneto-optic waveguide was calculated at the wavelength of 1.55 µm. 

Relationship of waveguide parameters for isolator operation was clarified. Similar tendency was 

confirmed for the magneto-optic waveguide fabricated by both bonding techniques. In order to obtain 

photosensitive adhesive bonding with smaller gap, dilution of the adhesive was studied. From the 

experimental results, at 2% dilution, that is, 1 part of the adhesive material and 49 parts of the diluents, 

the thickness of the adhesive layer is the smallest at approximately 0.66 µm. If the adhesive material is 

diluted more than 49-fold, no bonding takes place. Therefore, by this technique, the adhesive layer 

thickness can be reduced to below 1 µm. At this dilution, the photosensitive adhesive bonding is 

reproducible for the bonding between the magnetic garnet layer and guiding layer. However, this 

technique also has the drawback. It is difficult to predict the thickness of the adhesive layer during 

fabrication process.  



 
 

The isolation ratio of the optical isolator with Ce:YIG/ Si/ SiO2/ Si structure was calculated by 

simulating the electric field of TM guided mode and that of TE radiation mode. The COMSOL 

Multiphysics program was used in order to design mathematical model. It is confirmed that the power 

attenuation increases when the angle of the external magnetic field increases. When the angle of the 

magnetic field is 45 º, 18.9 dB/mm isolation is obtained.  

Moreover, the isolation ratio of the optical isolator with air/ a-Si:H/ Ce:YIG structure was calculated 

by simulating the electric field of TM guided mode and that of TE radiation mode. The COMSOL 

Multiphysics program was used in order to design mathematical model. It is confirmed that the power 

attenuation increases when the angle of the external magnetic field increases. When the angle of the 

magnetic field is 45 º, 1.1 dB/mm isolation is obtained. The isolation ratio of both structures is different 

because of their equivalent refractive indices. The power attenuation of the optical isolator with a-Si:H 

guiding layer is lower than the power attenuation of the optical isolator with Si guiding layer. A 

waveguide isolator with high isolation ratio in a wider wavelength range is desired. 

The magneto-optic waveguide with a-Si:H guiding layer was fabricated. The high quality a-Si:H 

layer was not deposited on the Ce:YIG directly. Therefore, Silicon Nitride (SiNx), was used as a buffer 

layer between a-Si:H and Ce:YIG. The lightwave emitted from the laser diode was launched into the 

fabricated waveguide. The lightwave was well confined in the waveguide.  

Temperature dependence of the optical isolator employing the nonreciprocal guided-radiation mode 

conversion was investigated. The optical isolator consists of the magneto-optic waveguide that has the 

air/ a-Si:H/ Ce:YIG/ GCGMZG structure. The refractive index of the upper cladding layer is assumed 

to be 1.5. The relationship of waveguide parameters for isolator operation was analyzed for various 

operating temperatures simulated by considering the effective refractive index of the TM mode (neffTM) 

and that of the TE cutoff mode (ncutoffTE). The temperature dependence of refractive index was considered 

in term of positive and negative value in order to study the relationship between neffTM and ncutoffTE. It 

was clarified that the athermal condition of the optical isolator employing the nonreciprocal guided-

radiation mode conversion can be achieved when the upper cladding layer of the magneto-optic 

waveguide with the temperature dependence of the refractive index is equal to -6.5×10-4 |/K|.  

For athermal operation, two candidates, TiO2 and C6H11CH3 compound were proposed for the upper 

cladding layer of the magneto-optic waveguide. For the magneto-optic waveguide with TiO2 or 

C6H11CH3 compound upper cladding layer, relationship of waveguide parameters for the isolator 



 
 

operation was investigated. It was found that the shift for the isolator operation was very small for both 

magneto-optic waveguides. TiO2 and C6H11CH3 are promising candidates for the athermal operation of 

the optical isolator employing the nonreciprocal guided-radiation mode conversion.  

 

6.2 Suggestions for the future work 

 

The optical isolator employing nonreciprocal radiation mode conversion for silicon photonic has 

been studied for various applications that include the optical isolator with a Si guiding layer integrated 

with a garnet cladding on silicon-on-insulator (SOI) and the magneto-optic waveguides with a-Si:H 

guiding layer. There are several scopes to study about an optical isolator for Si photonics. In order to 

increase the efficiency of these structures, the research can be enhanced as follow: 

The optical isolator with a magnetic garnet / Si / SiO2 structure should be evaluated by the lightwave 

propagation in the waveguide. In addition, the optical isolator with an SOI substrate should be 

considered in term of the athermal operation. The temperature dependence of refractive indices should 

be considered to increase the performance of the device due to the temperature fluctuation. If this 

structure cannot operate in various temperature, this structure can be adjusted by changing the SiO2 layer 

to another material. 

The another structure is the magneto-optic waveguide with a-Si:H guiding layer employing the 

nonreciprocal phase shift. The upper cladding layer will embed on the optical isolator with a-Si:H/ 

Ce:YIG structure in order to achieve athermal operation. In addition, these structures will be evaluated 

by the lightwave propagation in the waveguide. The isolation ratio of the magneto-optic waveguide with 

a-Si:H guiding layer should be calculated by changing the upper cladding layer material. Moreover, the 

mathematical model should be developed or adapted to several kinds of material for the optical isolator 

employing the nonreciprocal guided-radiation mode conversion in rib type structure. 

 

 


