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ABSTRACT 

Recently, metal hydrides are widely considered and studied as materials for use as the 

hydrogen storage materials in mobile and on-boards applications. One of the most interesting 

is the magnesium hydride, because of high storage capacity (~7.5 wt. %, or 110 g/L), low cost 

and availability. However, its applications are limited by poor reaction kinetics and high 

decomposition temperature. Several methods, such as nanostructuring, alloying or addition of 

catalyst are often used to improve MgH2 performance.  

This dissertation is focused on designing and development of a new method of introducing 

catalytic elements by forming a thin layer of catalyst on the surface of magnesium hydride 

particles using technology of magnetron sputtering on powdery substrates. Thin films of nickel, 

niobium and vanadium were successfully deposited on the as-purchased and the ball milled 

magnesium hydride powders. SEM observations and EDS elements mapping show metallic 

layers of 80-320 nm thickness formed on hydride particles. It was proven by measurements 

with Sievert’s method that such surface modification increases the H2 

dissociation/recombination speed and effectively enhances hydrogenation/dehydrogenation 

reaction rate. The DSC study performed shows a reduction of the activation energy and a 

decrease of the decomposition temperature.  

In order to improve the heat transfer during hydrogen charging/discharging, special 

anisotropic composites of magnesium hydride and graphite, with thermal conductivity 

enhanced through their anisotropy, were prepared. Interaction of graphite flakes with the 

applied strong electric field gives rise to an induced polarization which results in a torque acting 

on the graphite particles and causes their reorientation and alignment. Samples of magnesium 

hydride with graphite suspended in a special high temperature proof resin were prepared in this 

way. A study of their thermal conductivity compared with hydrogenation/dehydrogeneration 

kinetic measurements shows that alignment enhances heat transfer in such composite materials 

making them prospective candidates for applications. 
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1. INTRODUCTION 

Recently, hydrogen has been a widely studied and developed material to be used as the 

energy carrier. It offers a high energy density and provides clean and ecologic power with 

limited amount of pollution. Much research work is performed in areas of hydrogen production 

and its convertion to electric energy in fuel cells. The key technology for practical applications, 

especially for mobile and on-boards use is the efficient and safe storing of hydrogen, which a 

lot of studies is focused on. Chapter 1 of this Disseration contains a review of hydrogen storage 

methods, starting from simple mechanical options, such as compressing the gas and 

liquefaction, physisorption on high surface materials, or storage via chemical reactions in metal 

hydrides. Each method has some advantages and drawbacks.  

Mechanical methods are simple, but require advanced materials to withstand low 

temperatures or high pressure. They also require a good thermal insulation, possessing low 

permeability for small hydrogen molecules. Also the mechanical work needed to compress or 

liquefy hydrogen gas is large and can reach ~20-40 % of hydrogen heating value (the amount 

of energy released in reactions such as combustion or fuel cell conversion). Van der Waals 

based adsorption is limited by small binding energy, but low temperature options and high 

surface metal organic frameworks can be considered for application.  

Finally, a variety of metal hydrides, both binary, intermetallic and complex compounds, are 

possible to use. They are characterized with wide range of capacities and operating 

temperatures. One of the most interesting is the magnesium hydride. It possesses relatively high 

storage capacity (~7.5 wt. %, or 110 g/L) it is light, low cost and magnesium is easy available 

element. However, its applications are limited by two problems: poor reaction rate coming from 

thermodynamic (high enthalpy of formation) and kinetical (high activation barrier for hydrogen 

dissociation on magnesium surface) constrains.  

Several methods for improvement of the MgH2 performance have been developed. 

Nanostructuring or nanocofinement can decrease particle size and, thus, increase active area, 

improving reaction kinetics and reducing decomposition temperature. Another approach is to 

form magnesium based alloy with less stable hydride forming element, such as nickel, silicon, 

or titanium. By changing the reaction pathway the effective enthalpy of reaction can efficiently 

be decreased. The main disadvantage here stems from the fact, that the introduction of large 

amounts of heavy elements makes the hydrogen capacity smaller (1-3 wt. %).  

It was found, that doping even few percent of additives can improve hydrogen kinetics 

through catalytic reduction of the activation energy via spillover method (Chapter 1). Transition 
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metals and their compounds, as well as other inorganic materials are effectively applied for this 

purpose.  

The method most commonly used for introducing catalytic elements is their ball milling in 

rotary mills together with magnesium hydride powder. It causes improvements not only through 

catalytic effects, but also through nanostructurization. The disadvantage is a low repeatability 

of the process and a need of using large amounts of dopants to achieve good contact between 

magnesium hydride and catalyst. 

This Dissertation is focused on designing and developing new methods of introduction of 

catalytic elements to magnesium hydride and preparation of its composite enabling effective 

hydrogen charging-discharging. Catalytic elements were deposited onto magnesium hydride 

powders with magnetron sputtering. This method was previously used to produce magnesium 

thin films, often covered with the other layer of a catalytic material. Such sandwiched structures 

exhibit good reaction kinetics at acceptable pressure and temperature conditions. However, 

their applications are limited to switchable mirrors and sensors and it is difficult to use them as 

a bulk hydrogen storage material. The main idea developed in this Thesis is to form a thin layer 

of a catalyst on the surface of magnesium hydride grains (to coat hydride particles). Such a 

surface modification should reduce the kinetic barrier on the magnesium/magnesium hydride 

surface and improve reaction rate while keeping the amount of dopant low. The advantage is a 

precise control of film thickness, uniform coating and possibility of sputtering of different 

elements, alloys and compounds.  

A special equipment for deposition on powdery substrates was designed and constructed as 

a part of the work presented in the Dissertation (Chapter 2). The key issue here is the proper 

mixing of powder during sputtering in order to get uniform coating. It was achieved by using a 

special, round shaped cup, set in circular motion in vertical plane, below magnetron target, by 

an electric motor. The entire device was placed in the chamber of the magnetron sputtering 

setup, designed and constructed within this Thesis work.  

Thin films with submicron thickness of nickel, niobium and vanadium were sputtered 

(Chapter 3) on the magnesium hydride powder, both raw and ball milled. Differential Scanning 

Calorimetry was applied to determine the decomposition point and the activation energy. Next, 

volumetric, Sievert’s type apparatus was used to analyze the reaction kinetics of coated 

powders, as well as to collect the Pressure-Composition-Temperature dependences and to 

obtain thermodynamic parameters. The uniformity of layers and their thickness were studied 

with electron microscopy, and the phase composition, together with the structure of materials 
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was determined with X-Ray Diffraction method. As the problems occurred with the particles 

agglomeration and the oxidation of magnesium hydride, the experimental setup was modified 

in order to perform all the experimental procedures without exposing magnesium hydride 

sample to air, to obtain well defined, good quality materials. A thorough study has been carried 

out to determine if the proposed method of magnetron sputtering on powder substrates can be 

an effective way to introduce catalytic elements to metal hydrides and to determine usefulness 

of the materials obtained for hydrogen storage.  

Aiming of improvement of the heat transfer during hydriding/dehydriding, special 

composites of magnesium hydride and graphite were prepared, aiming at an improvement of 

the heat transfer (Chapter 4). Graphite has a very specific, layered crystal structure resulting in 

strong anisotropy of its electrical and thermal transport properties.  This enables ordering of 

graphite flakes by application of a strong electric field. Interaction of graphite flakes with the 

applied strong electric field gives rise to an induced polarization which results in a torque acting 

on the graphite particles and causing their reorientation and alignment. Samples of magnesium 

hydride with graphite suspended in a special, high temperature proof, resin were prepared in 

this way. A study of their thermal conductivity compared with 

hydrogenation/dehydrogeneration kinetics measurements was carried out to check if the 

alignment can enhance heat transfer in such composite materials making them suitable for 

applications. 

  



4 

 

 

2. HYDROGEN ECONOMY AND STORAGE METHODS 

Hydrogen gas is widely considered as the future energy carrier and as an alternative to the 

fossil fuels. Its use produces carbon and nitrogen oxides free waste, which fulfills the most 

restricted emission norms and fits into the preferred tendency of using low carbon fuels. 

Moreover, hydrogen is abundant and widely distributed in the world in different compounds 

(e.g. water, organic compounds) providing security in energy supply. It can be used for power 

generation either by burning in an internal combustion engine or electrochemically used in a 

fuel cell. It possesses high gravimetric energy content of 120 MJ/kg (33 kWh/kg), which is 

almost three times greater than diesel and gasoline (Fig.  2.1). The difference is even higher if 

we take into account the efficiency of  internal combustion engine (~30%) and maximal 

efficiency obtained from the fuel cell (~80%). The main disadvantage is the fact that hydrogen 

does not occur in a form of natural resources as coal/oil do, so that an efficient and cheap way 

of conversion/production of H2 gas has to be developed. It is worth noting that hydrogen should 

not be referred to as a fuel, but as the energy carrier. Another its disadvantage is a low energy 

density per volume, compared to conventional fuels, which limits all mobile/onboard 

application. 

 

Fig.  2.1. Comparison of the energy densities of different fuels.[1] 

 

The key issue the most of research work is focused on, is a proper method for storing of the 

hydrogen. In the next paragraphs basic methods of hydrogen storage are overviewed. There are 

two main parameters characterizing each method: the gravimetric capacity (density), expressed 

in % describing the mass of H2 which can be stored in the unit mass of the vessel; and the 

volumetric capacity, expressed in kg/L, describing the mass of H2 which can be stored inside 

the unit of the volume of the tank. Another parameters used, are related to the power obtained 
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from hydrogen stored in the mass unit (1 kg) or the volume unit (1 L) of the tank.  Desired 

operating parameters and conditions, suggested by the US Department of Energy as targets for 

mobile applications are presented in the Table 2.1. The ideal hydrogen tank should be able to 

store at least 2.2 kWh/kg and 1.7 kWh/L, which is equivalent to gravimetric and volumetric 

capacity of 6.5% and 50 g/L respectively. The operating temperature should be close to the 

room temperature (-40 to -60°C) and the filling time should be not more than 5 minutes.  

 

Table 2.1 DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles[1] 

Storage Parameter Units 2020 2025 Ultimate 

System Gravimetric Capacity 

Usable, specific-energy from H2 (net useful 

energy/max system mass) 

kWh/kg 

(kg H2/kg system) 

1.5 

(0.045) 

1.8 

(0.055) 

2.2 

(0.065) 

System Volumetric Capacity 

Usable energy density from H2 (net useful 

energy/max system volume) 

kWh/L 

(kg H2/L system) 

1.0 

(0.030) 

1.3 

(0.040) 

1.7 

(0.050) 

Durability/Operability 

Operating ambient temperature ºC -40/60 (sun) 
-40/60 

(sun) 

-40/60 

(sun) 

Min delivery pressure from storage system bar (abs) 5 5 5 

Max delivery pressure from storage system bar (abs) 12 12 12 

Charging/Discharging Rates     

System fill time min 3–5 3–5 3–5 

 

2.1. Overview of hydrogen storage methods 

Hydrogen storage methods can be classified into two main categories (Fig.  2.2): Physical 

(mechanical) based, where the change of physical conditions, such as pressure and temperature, 

is used to densify the hydrogen; and material based, where hydrogen is bonded to the active 

material of vessel. The first group includes compressing of the gas, liquefaction and 

combination of these methods in cryo-compressed tanks. On the other side – hydrogen can be 

adsorbed on carbon surfaces or in other materials, bonded to the elements and to the organic or 

inorganic compounds to form different types of hydrides.  
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Fig.  2.2. Overview of different hydrogen storage methods [1].  

 

Compressed gas 

The most conventional way to store hydrogen is to compress the gas [2]–[9] in cylindrical 

bottles at high pressure. It is the simplest and the most natural way, with fast fill/release 

properties (80% in 5min), however, it requires specific technology and materials.  Depending 

on the tank design (Fig.  2.3, Table 2.2), the maximal safe pressure varies typically from 50 to 

70MPa.  Type I vessels made from stainless steel have the pressure limited to 50MPa because 

of the limit being the strength of the walls. Type II is additionally reinforced by partial metal or 

composite wrapping. Pressure tanks made from metal liner fully wrapped with the fiber resin 

composites can also be used. When the metal liner inside the vessel contributes to the 

mechanical resistance, the vessel is of type III, and when the mechanical strength is provided 

by the polymers we can talk about the type IV pressure vessel. In that case, metal layer is 

responsible mainly for limiting the hydrogen diffusion through walls. Type V containers, whole 

made from light composites are at present at the research stage [2]. Type II and IV vessels 

provide high pressure, enabling us to achieve  higher volumetric concentrations, however the 

cost of such vessels is high because of using expensive carbon fiber composites for their 

construction[5]. 
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Fig.  2.3. Representation of different types of hydrogen gas pressure tanks [2]. 

 

Table 2.2. Key characteristics of pressure vessels for compressed gas storage [2]. 

Type Technology maturity 

Type I Pressure limited to 50 MPa 

Type II Pressure not limited 

Type III For P _ 45 MPa (difficulty to pass pressure cycling requirements for 70 MPa, 

Type IV For P _ 100 MPa First commercial series to be further studied 

 
1 e Key characteristics of compressed gas storage pressure vessels. 

The volumetric density of stored hydrogen increases with pressure and reaches a maximum 

above 70-100MPa depending on the materials used [8]. On the other hand, the gravimetric 

density is going low because of the weight of the vessel walls. Therefore, the increase in 

volumetric storage density is obtained on the cost of a reduction of the gravimetric density in 

pressurized gas systems. At a pressure of 30-70 MPa the gravimetric density is found to be 4.5-

5 wt. %, and  volumetric capacity is 26.3-36 g/L[4], [8], [9]. Another issue is the need to 

compress the gas from atmospheric to high pressure of ~100 MPa. Currently, reciprocating 

(piston or membrane) compressors with multistage setups are used. Dynamic compressors 

(centrifugal and axial) are not yet available for hydrogen because of the high number of 

compressor stages required (in comparison with positive displacement machines) due to the 

low density of hydrogen gas, the corresponding complexity and cost. Main problem is the 

amount of energy needed to compress the hydrogen. Because the machines are using nearly 

isothermal process, the energy in the form of the compression heat is usually transferred to 

environment (cooling water or cooling air) and is therefore lost. The compression of H2 gas 

from 0.1 to ~70-100 MPa consumes around 2.2-3.6 kWh/kg, which is between 6 and 10% of 

the lower heating value for hydrogen burning reaction (~33 kWh /kg). Taking into account the 

efficiency of compressing process and tendencies for move for adiabatic process, the energy 

loses can reach 15% of the energy stored in hydrogen gas [5], [8], [9]. There is also a significant 

concern related to the very high pressure in the system causing safety problems and leakage 
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risk. To sum up, the relatively low hydrogen density and compression problems make storing 

hydrogen as a compressed gas not the most practical method, especially in mobile applications, 

however it is well established on the laboratory scale.  

 

Liquid hydrogen 

Hydrogen gas can be liquefied at the temperature below 21 K at ambient pressure.  A high 

volumetric density of hydrogen (70.8 g/L) can easily be achieved [4], [5], [8]. The gravimetric 

capacity depends strongly on the size of the vessel, but values  about 10-12% can be 

successfully reached[3]. Except of the price and material requirements, liquid hydrogen tanks 

have considerable limitations and disadvantages. First of all, there is no way to prevent the 

boiling off of liquid hydrogen because of the residual heat inflow through the walls of the 

container. Despite using special technologies (including the double wall, vacuum insulated 

constructions and thin metal films preventing thermal radiation), the leakage rate is relatively 

high for long-term storage. It depends strongly on the size of the vessel and ranges between 

0.4% per day for 50 m3 tanks and 0.06% for 20 000 m3 tanks [5], [6], [8]. In addition to that, as 

hydrogen has a critical temperature of 33K [4]–[6], above which it behaves as a non-

condensable gas, it is necessary to keep the liquid hydrogen (LH) in open dewars for safety 

reasons. Overheated hydrogen can expand its volume 104 times. Second problem is related to 

the energetic efficiency of liquefaction of the hydrogen gas. Hydrogen cannot be liquefied with 

conventional Linde cycle (isoenthalpic expansion) because of low inversion temperature [4]. It 

is usually precooled with liquid nitrogen and then goes through several expansion cycles. The 

theoretical energy used is 3.23 kWh/kg and the mechanical work is about 15.2 kWh/kg which 

is of 45% of the lower heating value of hydrogen combustion [2], [5], [8]. Because of these two 

effects, combined with high price of the cryogenic vessels, this technology has applications 

limited to the space programs, stationary storage and short-term onboard storing. Further 

development of insulation technology and cooling systems may open this technology for wider 

mobile applications. 

 

Cryo-compressed gas 

Cry-compressed gas tanks are one of the improvements of high pressure tank technology by 

combining it with cryogenic technologies. Compressed hydrogen tank is connected to cooling 

system keeping the temperature around 50K [6], which allows increasing the volumetric density 

of H2 by a factor of ~2 comparing to ambient temperature compressed gas (Fig.  2.4). The key 
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feature is that tank walls can withstand high pressure, which allows  keeping hydrogen at these 

conditions, over the boiling point, in order to limit the boil-off loses present in the liquid 

hydrogen technology. Moreover, the cryogenic gas possesses 27% larger density than that in 

the LH tank. Cryo-compressed tanks can be filled with hydrogen at any temperature between 

the ambient one and 20K, which is more flexible, effective and less expensive than filling the 

tank with liquid H2.  BMW Group have started development of such tanks for mobile 

applications, especially for cars and other vehicles [2], [5]. The tank consists of a type III 

composite pressure vessel with a metallic liner that is encapsulated in a secondary, insulating 

jacket, which role is to limit heat transfer between the hydrogen and the environment. 

 

 

Fig.  2.4. Hydrogen density versus pressure and temperature from BMW report [2] 

 

Storage by physisorption  

Hydrogen particles can be adsorbed with van der Waals forces to the high specific area 

porous materials [4]–[6], [8]. The binding energy is generally low, in range of 0.1-10 kJ/mol 

[8]. Because of the weak interaction, the effective capacity depends strongly on the active 

surface area, operating pressure and temperature, since the bonding is getting more effective 

with cooling the system. The room temperature and ambient pressure yield unsatisfactory 

results – usually there is no significant adsorption. However, it turns out that the use of not very 

high pressures (5–15 MPa) and liquid nitrogen temperatures (77 K) can increase the capacity 

to 5-7.5 wt. % [4], [6], [8]. Materials suggested for applications here include activated carbon, 

nanotubes, graphene/graphite, zeolites and metal-organic frameworks (MOFs). Carbon based 
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structures exhibit maximum sorption of 2 wt. %  for the highest specific area graphene sheets 

[6]. Recent works are focused on catalyst assisted adsorption via spillover mechanism. Metals 

and their oxides are suggested to be used as dopants to increase the binding energy to 15 kJ/mol 

[10] in order to make the material more stable. Zeolites, usually alumosilicates or 

aluminophosphates are used here to build microporous frameworks. The adsorption energies in 

the narrow pores are very low, allowing for thermal cycling to be used for adsorption and 

desorption of hydrogen.  The capacities of 1.5% were reported, and  maximal expected 

capacities are of 2.5 wt. % [6]. Metal-organic frameworks are compounds formed of metal ions 

connected by organic molecules such as e.g. carboxylic acids. They posses very high specific 

area, in the range of 5000m2/g [4] leading to high capacities up to 7.5-11 wt. % at 77 K [1], [6]. 

Such physisorption materials also exhibit short hydrogen absorption and desorption times and 

are fully reversible, which attracts large interest in this type of tanks.  In addition, these materials 

work in cryogenic storage tanks at liquid nitrogen temperature, 77 K, which is much less 

demanding than direct liquid state storage of hydrogen in tanks, at 21 K. Storing physisorbed 

hydrogen in porous materials solves the boil-off problem, but since the physisorption process 

is exothermic, thermal management issues arise with respect to the adsorption process. All these 

reasons make physisorbed hydrogen unsuitable for mobile applications. 

 

Chemical hydrogen storage  

The name “chemical hydrogen” is usually used for description of the group of materials with 

hydrogen bonded by strong covalent bonds [1], [5], [6], [8]. They generally have the highest 

density of hydrogen. Typical examples are: amino borane (NH3BH3 – 6.5 wt. %) or alane (AlH3 

-10%) and a variety of amides and imides [6], [8]. The dehydrogenation can be accomplished 

either by reaction with water or thermolytically by heating the compound to temperatures of 

363-373 K. Some of these materials exhibit multistage decomposition (NH3BH3 – 363/420/970 

K) which causes problems with handling of the material because of possible reaction pathways 

that may not be easily predicted.  In addition to solids, many liquid organic hydrogen carriers 

(LOHC) have been studied. The reaction of hydrogenation/dehydrogenation is based on 

hydrogen saturation of organic unsaturated carbon-carbon bonds. The examples are the 

toluene/metylcyclohexane (6.1 wt. % H2), n-ethylcarbazole (5.7 wt. %) and methyl-

cyclopentane (4.7 wt. %) with the reaction temperatures around 120-200 °C  [5], [11], [12].  

The reactions have usually exothermic or weak endothermic character, thus rehydrogenation 

requires special chemical processes performed off-board. This limits applications to single use 
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cycle. In addition, some of the difficulty in working with these materials is that the material can 

solidify/liquefy during different decomposition stages. 

 

Metal hydrides 

Hydrogen reacts with many metals at elevated pressure and temperature conditions to form 

the hydrides [2], [3], [5], [6], [8], [13]. Instead of weak adsorption on the surface, hydrogen 

atoms are bonded with ionic, metallic or covalent bond to the metal host. It is possible to achieve 

high volumetric and good mass capacities and long lasting thermodynamic stability, while 

providing full reversibility of reaction. Moreover, metal hydride tanks can filter most of the 

impurities from gaseous hydrogen, providing clean fuel for powering fuel cells which are very 

sensitive to the pollutions.  

Single, elemental metals, such as Mg, Li, Ti, V, Ni, La, Fe, etc. form the group of binary 

hydrides. Most of them are formed at temperatures and pressures well beyond the range for any 

application (Fig.  2.5) or have capacities too low to prove useful. It ranges around 2 wt. %, 

because of a high density of these metals. There exist some light metal hydrides: MgH2, LiH 

with reasonable theoretical capacities of 7.5 and 12.7 wt. %, however, their applications are 

limited because of high desorption temperatures (450 °C and 910 °C respectively). Most of the 

research there is focused on decreasing the decomposition temperature of magnesium hydride. 

 

Fig.  2.5. Van’t Hoff plots for various metal hydrides, showing hydrogen dissociation pressures 

and temperatures (rectangular area represents desirable operating conditions).[6], [13] 

 

Except of the binary hydrides, in attempt to alter extreme conditions of reaction caused either 

by their low or high stability, hydriding of alloys is possible. The materials used  generally 

consist of two metals: metal A (stable), exothermically reacting with hydrogen, (typically Mg, 
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Ti, La); and metal B (unstable) with endothermic reaction type, typically Ni, Fe, Co, Mn. 

Stoichiometric alloys (intermetallic compounds) include the types: AB5, AB2, AB, A2B (Fig.  

2.5, Table 2.3) and others, but it is possible to obtain non-stoichiometric compositions, such as 

e.g. vanadium solutions or doped intermetallics, which give opportunity to tune alloy properties 

to get suitable reaction conditions near ambient temperatures. The hydrides formed with 

intermetallics are generally characterized by low hydrogen storage capacities (~ 2 wt. %) due 

to the mass of heavy elements they are composed of. 

 

Table 2.3. Examples of different interstitial, metal alloys hydrides.[6], [13] 

Type A B Compounds Example 
H2 capacity 

(wt. %) 

Temperature (K) 

for desorption 

A2B Mg, Zr Ni, Fe, Co Mg2Ni, Mg2Co, Zr2Fe Mg2Ni 3.6 528 

AB Ti, Zr Ni, Fe TiNi, TiFe, ZrNi TiFe 1.86 265 

AB2 
Zr, Ti, Y, 

La 

V, Cr, Mn, 

Fe, Ni 

LaNi2, YNi2,YMn2, 

ZrCr2, ZrMn2,ZrV2, 

TiMn2 

ZrMn2 1.77 440 

AB5 
Ca, La, 

Ce 

Ni, Cu, Co, 

Pt, Fe 

CaNi5, LaNi5, CeNi5, 

LaCu5, LaPt5, 

LaFe5 

LaNi5 1.49 285 

 

Light elements from groups 1, 2 and 3 form a family of complex hydrides, such as 

borohydrides and alanates. They are built from complex anions containing hydrogen as terminal 

ligand, such as the BH4
– or AlH4

– anions and counter-anions such as Mg, Na, K, Li, etc. This 

storage method offers very high gravimetric and volumetric densities (up to 18.4 wt. %, Table 

2.4) due to the use of lightweight metals, however, due to the strong character of the bonds, 

kinetics are very slow and high temperatures (200-300 ˚C) are required to achieve hydrogen 

desorption. Reaction reversibility is also poor because of exothermic reaction character, 

multistage decomposition process and high pressure needed.  

 

Table 2.4. Overview of characteristics of some of the borohydrides and alanates for hydrogen 

storage[6] 

Material 
H2 capacity 

(wt. %) 

Dehydrogenation 

temperature (K) 

Dissociation enthalpy 

(kJ/mol H2) 

NaBH4 10.8 670 -217 to -270 

LiBH4 13.4 650 -177 

Mg(BH4)2 13.7 530-670 -39.3 to -50 

Ca(BH4) 2 9.6 620 32 

NaAlH4 5.6 
480-490 (I step) 

>525 (II step) 

37 (I step, 3.7 mass% H2) 

42 (II step, 1.9 mass% H2) 

LiAlH4 7.9 
430-450 (I step) 

450-490 (II step) 

-10 (I step, 5.3 mass% H2) 

25 (II step, 2.6 mass% H2) 

Mg(AlH4) 2 9.3 380-470 (I step) 41 (I step, 7 mass% H2) 
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510-650 (II step) 76 (II step, 2.3 mass% H2) 

KAlH4 5.7 

570 (I step) 

610 (II step) 

650 (III step) 

55 (I step, 2.9 mass% H2) 

70 (II step, 1.4 mass% H2) 

Ca(AlH4) 2 5.9 
400 (I step) 

520 (II step) 

-7 (I step, 2.9 mass% H2) 

28 (II step, 2.9 mass% H2) 

 

2.2. Hydrogen in metal hydrides 

The process of absorption of gaseous hydrogen molecule is usually described with classical 

repulsive/attractive Lennard-Jones potential, plotted in Fig.  2.6. 

  

 

Fig.  2.6. Potential energy of the hydrogen molecule during the absorption in metal[8]. 

 

Far from the metal surface, the potential of a hydrogen molecule and that of two hydrogen 

atoms are separated by the dissociation energy (435.99 kJ/mol H2). The first attractive 

interaction of the hydrogen molecule approaching the metal surface is the Van der Waals force, 

leading to a physisorbed state. The physisorption energy is typically about 6 kJ/mol H2. The 

interaction is composed of an attractive term, which diminishes with increasing distance of the 

hydrogen molecule and the solid metal in the power of 6, and a repulsive term diminishing in 

the power of 12. In result, the minimum of the potential energy of the molecule appears, 

approximately at a distance of one molecular radius (~0.2 nm).  

When the hydrogen particle is getting closer to the surface, the potential energy increases 

and it is energetically preferable to dissociate into two atoms.  Hydrogen atoms sharing their 
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electron with the metal atoms at the surface are then in the chemisorbed state. The 

chemisorption energy is typically in the range of ~50 kJ/mol H2 and, thus, significantly higher 

than the respective energy for physisorption. Hydrogen has to overcome the activation barrier 

for dissociation and formation of the hydrogen metal bond. The height of the activation barrier 

depends on the surface elements involved. The chemisorbed hydrogen can jump into the 

subsurface layer and diffuse through the bulk metal to form solid solution referred to as α-phase. 

In the conventional room temperature metals / metal hydrides, hydrogen occupies interstitial 

sites (usually tetrahedral or octahedral) in the metal host lattice (Fig.  2.7). After the hydrogen 

content corresponding to its maximum solubility the α-phase is reached, hydride phase (β-

phase) begins to form.  

 

 

Fig.  2.7. Octahedral (O) and tetrahedral (T) interstitial sites in fcc-, hcp- and bcc-type metals. 

 

From the thermodynamic point of view, the hydride formation from gaseous hydrogen and 

solid metal is possible when the standard Gibbs free energy of products is equal or lower than 

that of substrates. The change of the standard Gibbs free energy is related to the pressure and 

temperature of the system with the equation [14]: 

∆𝐺0 = 𝑅𝑇 ln
𝑝𝐻2

𝑝0 
 

where 𝑝0  is the reference pressure (1 bar), 𝑝𝐻2
 is the real hydrogen pressure, 𝑇  is the 

temperature and 𝑅 is gas constant. It is also defined as:  

∆𝐺0 = ∆𝐻0 − 𝑇∆𝑆0 

where ∆𝐻0 and ∆𝑆0 are the change of enthalpy and entropy, respectively. From conjunction of 

the above equations we can derive the van't Hoff formula,  
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ln
𝑝𝐻2

𝑝0
=

∆𝐻0

𝑅𝑇
−

∆𝑆0

𝑅
 

which is the basic law describing thermodynamics of hydrides, used for estimation of 

thermodynamic parameters such as entropy and enthalpy of reaction and to estimate the 

equilibrium pressure and temperature conditions, including often used parameter 𝑇1 𝑏𝑎𝑟,  

𝑇1 𝑏𝑎𝑟 =
∆𝐻0

∆𝑆0
 

i.e. the temperature of desorption under ambient pressure. The entropy change [3], [8] is similar 

for most metal hydrides as it describes the entropy change from gaseous (~130 J /(mol K) ) to 

solid state (~0 J/(mol K)).  To reach an equilibrium pressure of 1 bar at a moderate temperature 

of 25 °C the decomposition enthalpy should be ~40 kJ/mol.  

To determine experimentally the reaction enthalpy and entropy, the pressure-composition-

temperature (PCT) plot is created (Fig.  2.8). The PCT curve shows how the equilibrium 

pressure depends on the hydrogen content at given temperature.  

 

 

Fig.  2.8. Schematic PCT-diagram and van’t Hoff plot.  

 

At low pressures, a solid solution is formed between the metal and hydrogen (the α-phase), then 

nucleation and growth of the metal hydride initiate. The two phases coexist, with the amount 

of β-phase increasing very fast with further uptake of hydrogen at a constant pressure and the 

PCT curve is in the plateau region. The length of the plateau determines practical amount of 

hydrogen stored. As the content of the β-phase reaches saturation point, the pressure starts to 
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increase strongly. By plotting the data of ln
𝑝𝐻2

𝑝0
 versus 

1

𝑇
 from the mid-points of the plateau (Fig.  

2.8), the enthalpy and entropy of the dehydrogenation reaction can be derived from the slope 

and intercept of the straight line fitted to the data points (van’t Hoff plot).  

There are two interesting phenomena of practical importance regarding PCT curves: 

hysteresis and sloping of the plateau region. The absorption plateau is located at a higher 

pressure than the desorption one. This is caused mainly by stresses which appear in the course 

of growth of hydride phase inside the metal matrix. For practical on-board vehicular 

applications, hysteresis would increase the required service (recharge) pressure. Thus, it is 

desirable that the magnitude of hysteresis would be as small as possible. Sloping originates 

from inhomogeneity in the sample. The negative impact of plateau sloping is a reduction in 

reversible capacity, defined by the width of the plateau region. That is, the amount of hydrogen 

to be extracted (introduced) is dependent on the on-board operation pressure range. Significant 

plateau sloping results in a reduction of the amount of hydrogen accessible in the prescribed 

operating pressure window. 

 

2.3. Properties of magnesium hydride and their tuning strategies  

Magnesium hydride is one of the most promising materials proposed to be used for hydrogen 

storage. It possesses a high gravimetric and volumetric capacity (~7.5 wt. % and 110 g/L 

respectively), low specific gravity and easy availability. The main application limits are its poor 

reaction kinetics and high decomposition temperature (Tdec ~ 470 °C). The reasons causing 

those problems are: 

 High thermodynamic stability – enthalpy of hydride formation is very high (ΔH = -74.5 

kJ/mol) – high amounts of energy are required to deliver/dissipate during 

dehydrogenation/hydrogenation reaction. Together with a low thermal conductivity of 

powdered hydride (0.09-0.4 W/m·K) it leads to unsatisfactory heat management [16]. 

Also, basing on van’t Hoff equation, to obtain material with the decomposition point 

near ambient conditions, the enthalpy should be not higher than 50 kJ/mol. 

 Slow diffusion of hydrogen through the surface, limits reaction rate for bigger Mg 

particles due to MgH2 forming. Diffusion  constants are 1.5·10−16 m2/s for MgH2 and 

4·10−13 m2/s for Mg [15]. 

 Effectiveness of dissociation/recombination of hydrogen at the magnesium metal 

surface is slow due to a high activation energy of hydrogen on magnesium surface (Ea 

= 156-206 kJ/mol) [15].  
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 Easy oxidation of magnesium surface causes formation of surface oxides shells 

affecting both the activation energy and the diffusion of hydrogen atoms. 

There exists several methods to enhance thermodynamic and kinetic properties, such as 

nanoscaling, alloying and use of additives affecting hydride kinetics, thermodynamic and heat 

transfer performance [4], [15]–[19]. 

First approach lies in the extreme reduction of Mg/MgH2 particle size, which increases 

effective contact surface, decreases diffusion distance for hydrogen and changes hydride 

thermodynamics – the surface energy of the nanostructure contributes in the van’t Hoff 

equation. Additionally, grain boundaries act as favorable nucleation sites for the formation and 

decomposition of the hydride phase. It results in a reduction of the activation energy and the 

enthalpy of reaction and in better sorption kinetics [4], [15], [16], [18]. Large specific surface 

increases the rate of surface reaction with hydrogen. The small powder particle size may also 

be a solution to the problem of the ‘blocking’ layer of MgH2 as the Mg powder can be fully 

hydrogenated. On the other hand, the smaller particle size and therefore larger surface area of 

the Mg powder causes the material to be more susceptible to oxidation. Technologies used for 

nanostructuring of the magnesium include ball milling, melt spinning, chemical vapor 

deposition etc... By comparing of the properties of different size MgH2 (from 60 µm to 3 nm) 

it was found that reaction was faster when the particle size was smaller [17] (Fig.  2.9). Also 

the enthalpy of reaction was going down to 55 kJ/mol while decreasing the particle size[18]. 

Magnesium nanowires [19], as well as fibered magnesium [20] of 30 nm thickness were found 

to have the lower activation barrier of 33.5 kJ/mol and 116 kJ/mol, respectively. A high surface 

energy of nano-magnesium may result in aggregation problem during the cycling.   

 

 

Fig.  2.9. Effect of grain size on hydrogen absorption of ball-milled magnesium powders and 

fibers [17], [18], [20]. 
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The other method proposed to keep magnesium in nanoscale is the nanocofinement, which 

relies in embedding the magnesium nanoparticles into a stable scaffold. The most scaffolds 

used are porous carbons, metal-organic frameworks, porous polymers, etc. Scaffold material is 

required to be chemical resistant (not reacting with many reactants) and it should be stable 

during hydriding cycling. Additionally, high surface area, high volume ration and uniform pore 

size distributions will help to tolerate higher loadings of active materials. For example, carbon 

aerogels (CA) with the pore size from 6 nm to 20 nm were successfully used as a scaffold for 

magnesium nanoparticles with size closed to the size of the pores [21] . They release hydrogen 

at temperatures of 140 °C lower than the bulk MgH2 and the existence of CA effectively protects 

the particles from aggregation during the cycling. The other examples here are graphene nano-

sheets decorated with TiB2 (Tdec=319 °C, Ea =90.8 kJ/mol)[24], NiCo (TDec=313 °C, Ea =105 

kJ/mol) [25], Mg (TDec=334 °C, Ea =76.2 kJ/mol) [26] or multi-walled carbon nanotubes with 

Ni and TiF3 supported on them [27]. In [22] the authors reported on the synthesis of 

monodispersed magnesium hydride nanoparticles on graphene sheet (Fig.  2.10). When doped 

with Ni, the material demonstrates better hydrogen storage performance with ultra-long cycling 

life and fast sorption kinetics. Basic reasons for improved hydrogen storage performance are: 

enlarged contact surface of reactants, increased grain boundaries, decreased diffusion distance 

and resistance to the particle agglomeration. The hydrogen capacity of nanoconfined MgH2 is, 

however, decreased due to its limited loading ability. The kinetics is also relatively poor 

compared with e.g. the catalyzed MgH2.  

 

 

Fig.  2.10. (a) Schematic illustration of the self-assembling MgH2 nanoparticles on graphene, 

(b) C6H12 and (c) (C4H9)2Mg on a graphene sheet under the most stable configuration, (d) 

binding energy curves based on density functional theory (DFT) calculations. (e) Reversible H2 

sorption, (f) cycling of Ni doped MgH2 nanoparticles on graphene, pure MgH2 nanoparticles 
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on graphene and ball milled magnesium hydride at 200 °C. (g) thermal conductivity of MgH2 

nanoparticles on graphene [22]. 

 

Another approach is the formation of a metastable γ-phase of magnesium hydride. During 

hydrogenation, the hydrogen atoms are introduced into the hexagonally close-packed (HCP) 

magnesium metal lattice (Fig.  2.11).  

 

 

Fig.  2.11. Evolution of the crystalline structure of (a) hcp Mg when it is transformed to (b) γ-

MgH2, and (c) β-MgH2 upon hydrogen absorption. As the hydrogen atoms are introduced, the 

Mg atoms of the A and B stacking slide, as indicated by the arrows in result the length of the 

Mg-Mg bond increases. 

 

The hydrogen atoms first occupy the tetrahedral interstitial sites, forming the α-phase, then 

addition of hydrogen leads to the formation of the β-phase with tetragonal lattice structure (Fig.  

2.11) of α-TiO2 type, of the space group P42/mnm and lattice parameters: a=0.452 nm and 

c=0.302 nm.  At the high pressure (0.39 GPa) [23]–[25] the compound forms orthorhombic 

structure (α-PbO2) of γ-MgH2 with the space group Pbcn and lattice parameters: a=0.450 nm, 
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b=0.542 and c=0.492 nm. The volume of hcp lattice of magnesium expands by approximately 

31.4 % for α-MgH2 and 29.1 % for γ-MgH2.  Due to the differences in the crystal structure, 

faster hydrogen diffusion and lower formation enthalpy (44.6 kJ/mol [26]) for γ-MgH2 are 

predicted [27], [28]. This phase can be formed by mechanical stressing of the β-phase. It is 

usually achieved in high energy ball milling process [16], [23], [26], [29].  Unfortunately, it is 

not stable during hydrogen cycling and reverts back to β-phase. 

The next effective method to reduce the thermodynamic barrier of high enthalpy of reaction 

is alloying of magnesium with elements forming less stable hydride, including mainly rare earth 

and transition metals. Formation of such alloys changes the reaction path and may reduce the 

enthalpy (Fig.  2.12) to practical ranges of 30-60 kJ/mol [4], [15], [30]. Examples of magnesium 

based alloys are listed in Table 2.5. Typical examples are here Mg2Ni (64.5 kJ/mol [31]), and 

Mg2Si (36.4 kJ/mol[32]). However, alloying was found to reduce the hydrogen capacity to 3.6 

wt. % and 5.0 wt. % respectively.  

 

 

Fig.  2.12. A scheme of destabilization of metal hydrides through alloy formation. 

 

Table 2.5. Examples of magnesium-based hydrogen storage alloys and their fundamental 

properties [15]. 

Name Ea (kJ/mol) ΔH (kJ /mol H2) Capacity (wt. %) T (°C) 

Mg – 74.5  7.6  300  

Mg (2–7 nm) –  71.2 7.6  276 

Mg90Ce10Ni10  109.2  77.9  5.4  284 

Mg2Ni  –  64.5  3.6  254 

Mg3LaNi0.1  –  81  2.73  284 

Mg3Cd  69 65.5  2.8  – 

MgH2-Ti  30.8  75.2  6.7  278 

Mg0.95In0.05  –  68.1 5.3 –  

Mg3Ag  –  68.2  2.1  – 

Mg2Si  –  36.4  5.0  – 

Mg5Ga2  149  68.7  5.7  300  
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Another approach for enhancing the hydride properties is adding catalysts. Small amounts 

of dopants can reduce the activation barrier owing to the spillover mechanism: after the 

hydrogen molecule dissociate on the catalyst, some hydrogen atoms attach to the catalyst, and 

some atoms diffuse through, gradually penetrating and interacting with the metal (Fig.  2.13) 

[15], [33], [34]. 

 

Fig.  2.13. Diagram illustrating the spillover mechanism. 

 

Numerous materials such as transition metals metal oxides, halides and other compounds have 

been successfully applied. Doping of 5% of Ti, V, Mn, Ni and Fe improved reaction kinetics 

(Fig.  2.14) by reducing the activation energy down to 62.3-88.1 kJ/mol[35] . Pressure- 

composition – temperature test suggests that the thermodynamic s of samples is not changed, 

so the improvement of the kinetic is directly connected with the reduction of activation energy.  

 

 

Fig.  2.14. Hydrogen desorption - absorption curves of Mg–Tm composites at  473 K and van’t 

Hoff plots for Mg–Tm composites  [35]; 
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Metal oxides systems, including Nb2O5 [36]–[38], Cr2O3  [36], [39] and CeO2 [39], as well as  

non-metallic compounds such as silica and silicon carbide [40], [41] are often considered as 

effective catalysts. Different types of Ti-based materials ( Ti-metal, TiO2, TiF3, TiN) ball milled 

with MgH2 lower the onset temperature down to 257 °C, 216 °C, 173 °C, 280 °C and decrease 

the kinetic barrier to 103.9 kJ/mol, 118.9 kJ/mol, 75,0 kJ/mol and 144.7 kJ/mol for  Ti-metal, 

TiO2, TiF3 and TiN, respectively[42]. The most common way to introduce the catalytic 

elements and compounds is the ball milling, but chemical methods, such as reaction in THF 

solution[43], sol-gel [44] and nanoparticles precipitation [45] were also successfully applied. 

These methods usually combine with nanoscaling effects due to the  preparation route used. 

Carbon-based materials show a great potential in improving MgH2 performance.  Graphite, 

MWCNTs, nanofibers and activated carbon were milled with magnesium hydride [46], [47] 

and the best results obtained for nanofibers show a shift of the decomposition peak temperature 

from 363 °C to 322 °C. Carbon nanostructures may serve both as catalyst and dispersion 

matrix/support (as mentioned before in nano-confinement part) for magnesium, catalytic metals 

and their compounds.  

Nanostructured metal hydrides may also be manufactured in the form of thin films. It offers 

a different path of achieving a high surface area that will enhance hydrogen storage properties 

and the application of catalytic thin film overlayer provides additional benefits by enhancing 

the sorption kinetics. The study of pure magnesium films has been carried out [48]–[50] as well 

as different multilayered structures of Mg with Ti, Ni and Pd .  It was shown that thin film 

multilayered structures of Pd and Mg [51]–[54], exhibit remarkable enhancement of 

thermodynamic and kinetic properties. The presence of the uniform thin catalytic film on the 

surface of magnesium hydride increases among others the H2 dissociation rate by reduction of 

the activation energy of hydrogen desorption. The formation of a multilayered thin film 

complex has been shown to lower the temperature of hydrogen desorption for magnesium as 

well as boost the sorption kinetics. A tri-layered (Pd/Mg/Pd) hydrogen storage system (Fig.  

2.15) [51] which absorbs ~ 5 wt.% hydrogen at 100 °C under 1 bar pressure and is fully 

dehydrogenated at about 90 °C. The authors suggested that the reduced temperature of hydrogen 

desorption is effect of interaction between the Pd and Mg layers in their interface regions: 

Hydrogen is initially desorbed from the Pd films because of the lower desorption temperature 

of Pd, as compared to Mg. This causes a contraction of the Pd films and induces compressive 

stress on both sides of the Mg layer, which causes destabilization of hydrogenated magnesium.  
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Fig.  2.15. Schematic diagram of the cooperative phenomena on a hydrogenated Pd/Mg/Pd film 

[51]. 

 

What is interesting, increasing the thickness of the magnesium layer results in a decrease in the 

temperature of dehydrogenation (Fig.  2.16). This is confirmed by the thermal desorption 

spectroscopy (TDS) profiles showing a shift of the peak position to lower temperatures with 

increasing thickness of Mg. On the other hand, no dependence on the thickness of Pd film has 

been observed for the hydrogen sorption properties of Mg. 

 

 

Fig.  2.16. TDS spectra of several hydrogenated Pd (50nm)/Mg(x nm)/Pd (50nm) films with x 

= 25, 50, 200, 400 and 800nm [51] 

 

An interesting approach was proposed by Cui and Wang [43], where ball milled magnesium 

hydride was coated with the multi-valence, titanium-based film. The coating of 10 nm thickness 

(Fig.  2.17a) was prepared by chemical reaction between Mg particles and titanium chloride 

solution in THF.  
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Fig.  2.17. a) Schematic illustration of magnesium particle coated with the catalyst layer. b) 

TPD profiles for undoped ball milled MgH2 (BM - blue points), MgH2 ball milled with TiCl3 

(BM-Mg-TiCl3 – red points) and ball milled MgH2 coated with catalyst layer (BM-R-Mg-TiCl3 

– black points) [43]. 

 

Properties of obtained samples were compared there with more conventional ball milling 

technology: temperature programmed desorption (Fig.  2.17b) shows that the decomposition of 

coated powders starts at the temperature of 175 °C, about 60 °C lower than for ball-milled 

sample and gives 6.7 wt. % hydrogen storage capacity. The activation energies were derived to 

be 30.8 kJ/mol for titanium-coated and 77.6 kJ/mol for titanium-milled one. This work was a 

direct motivation for this Thesis. The main is to modify of the surface of each particle in 

magnesium hydride powder by coating of the particle with the transition metal layer using 

magnetron sputtering. It should reduce the kinetic barrier on the magnesium/magnesium 

hydride surface and improve reaction rate while keeping dopant amount low. Nickel, vanadium 

and niobium metals were chosen to sputter. The key advantages of using magnetron sputtering 

are easy control of thickness of the films, which allows to introduce precise amount of dopants 

and possibility to achieve very uniform coating. Also, this technology is clean, does not require 

volatile chemicals and it is possible to sputter different alloys and catalytic materials 

combinations.   

Large enthalpy of reaction for magnesium hydride leads to large amount of heat needed to 

be dissipated or supplied. When hydrogen is required, heat is supplied to the metal hydride bed 

and the reaction is reversed. Dissipation of the released heat and absorption of the supplied heat 

(about 2 kJ/mol per second to keep the magnesium hydride powder at constant temperature) 

controls the chemical equilibrium and hence the rate of absorption/desorption of hydrogen. 
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Therefore, effective heat transfer is essential for improving the performance of a metal hydride 

storage system. There are several factors governing this phenomena coming from basic heat 

transport and convection equations for heat flux q [55]: 

𝑞 = 𝑘𝐴
∆𝑇

∆𝑥
 

𝑞 = ℎ∆𝑇 

where: ∆𝑥 – distance, 𝐴 – exchange surface area, 𝑘 – thermal conductivity,  ℎ – convection 

coefficient, ∆𝑇 – temperature difference.  

Methods of improvement of heat transfer in metal hydride based tanks can be classified 

according to them: 

 Optimization  of the tank geometry (∆𝑥, 𝐴) 

 Optimization of mass and heat flow (ℎ, ∆𝑇) 

 Enhancement of thermal conductivity (𝑘) 

First method is to reduce the distance and increase the heat transfer area by addition of 

cooling pipes, radiators, exchange fins and other structures [56]–[60], which helps to take away 

waste heat from the hydride. For example, Askri et al. [57] carried out a numerical analysis of 

four cylindrical metal hydride tanks (Fig.  2.18): 

a) normal, cylindrical tank that loses heat through its surfaces, 

b) tank with plate fins on its lateral surface, 

c) cylindrical tank with the inner, concentric cooling/heating tube,  

d) similar to c), but with the addition of fins to the heat exchanger tube.  

On comparing the designs it was found that the time required for 90% storage reduced 

remarkably. An improvement of 10%, 56% and 80% in the hydrogenation profiles over the 

basic case was registered. 
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Fig.  2.18. Comparative study of four types of metal hydride reactors [57] 

 

Optimization or forcing of gas and mass flow is the next attempt. An interesting example is 

physical mixing of metal hydride in the tank (Fig.  2.19 [61]). Because of the fact that 

hydrogenation reaction starts faster in regions of the tank which are close to the gas inlet, a wide 

distribution of hydride temperature can be observed. The movement (which can be treated as 

convection) of the powdered material beds inside the vessel causes averaging of the temperature 

and “self-cooling” effect, which enhances the reaction rate. 

 

Fig.  2.19. Comparison of experimental and computed hydrogen absorption curves in the metal 

hydride tank with and without mixing [61] 

 

The key parameter in heat transfer phenomena is the thermal conductivity of hydride forming 

material. Despite the fact that conductivity of magnesium is relatively high because of its 
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metallic character, for the dielectric hydride the thermal conductivity is two orders of magnitude 

lower (Table 2.6). Moreover, because of the stress caused by the unit cell expansion/shortening 

a cracking effect is observed (Fig.  2.20) which causes the reduction of grain size of the metal 

hydride and limits the thermal conductivity to the level of 0.1 W/mK.  

 

Table 2.6. Thermal conductivity of different magnesium hydride structures.[62] 

Material type Thermal conductivity [W/m·K] 

Magnesium, bulk 156 

MgH2, as-received powder 0.11 

Ball milled MgH2, powder 0.09 

Compressed MgH2 pellets 1.21 

 

 

Fig.  2.20. MgNi sample surface before and after the six hydriding cycles[63] 

 

Highly conductive dopants, such as Al powders and foams [64]–[66], Cu powders and 

coatings[67], Ni foams[67] were applied to boost the thermal conductivity of metal hydrides. 

Many type of graphite-based materials were successfully used [68]–[72]. Graphite powders (up 

to 25 wt. %) are introduced to hydride by high pressure compacting to pellets. Fig.  2.21 presents 

thermal conductivity of magnesium hydride and sodium alanate composites with graphite 

flakes. It was shown, that thermal conductivity is increased by more than one order of 

magnitude and it can be tuned up to 40 W/mK. The pellets have good volumetric and 

gravimetric hydrogen storage capacity and are very stable during the reaction cycling. 

Especially, hydralloy based composites (Fig.  2.22) were found to be stable up to 85 cycles in 

a wide range of pressure/temperature conditions. Hydrogen gas permeability can be kept at 

sufficient level due to porosity of compacted pellets (~30%). High gas permeability and thermal 

conductivity in combination with a stable pellet structure indicate a high potential to use such 

materials composites for hydrogen storage. 
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Fig.  2.21. Thermal conductivity of chosen hydride based graphite composites pellets and the 

influence of cycling [68] 

 

 

Fig.  2.22. Hydrogen de- and absorption behavior of a hydralloy-ENG pellet with 12.5 wt.% 

ENG compacted at 75 MPa[69]. 

 

Graphite has a very interesting crystal structure leading to unusual transport properties. It is 

composed on stacked parallel layers (Fig.  2.23a) with carbon atoms arranged in a honeycomb 

lattice with their separation of 0.142 nm, and the distance between planes is 0.335 nm. Each 

atom in the plane is bonded covalently (σ-bond) to the three neighbors, owing to the sp2 

hybridization. Only three of the four potential bonding sites satisfied. The fourth electron is free 

to delocalize in the plane, making graphite electrically conductive. However, it does not conduct 

in the direction perpendicular to the plane. The adjacent two layers are bonded by van der Waals 

forces. Bonding between layers is much weaker (7 kJ/mol) comparing to the covalent bond (534 

kJ/mol) which allows layers of graphite to be easily separated, or to slide past each other. The 

spacing between the layer planes is relatively large, approximately twice of the van der Waals 

radius of carbon. The stacking layers order in two slightly different ways: hexagonal and 

rhombohedral (Fig.  2.23b). In the hexagonal α-graphite layers are superimposed over each in 
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A-B-A-B stacking order. The crystallographic description is given by the space group 

𝑃63/𝑚𝑚𝑐 space group. It is the most thermodynamically stable form of graphite and is found 

in all synthetic materials. The other structure is rhombohedral β-graphite with the stacking order 

A-B-C-A-B-C and the space group 𝑅3̅𝑚 . The carbon atoms in every third layer are 

superimposed. It makes graphite thermodynamically unstable (can be considered as an extended 

stacking fault of hexagonal phase) at it always occurs always in combination with hexagonal 

graphite, up to 40% in some natural and synthetic materials. It usually reverts to the hexagonal 

form during heat treatment above 1300°C 

 
Fig.  2.23. Crystal structure of graphite showing ABAB stacking sequence and unit cell (a). 

Perpendicular view of hexagonal and rhombohedral graphite crystal (b) [73].  

 

Different form of graphite, such as flaked, pyrolytic, carbon fibers, carbon black and others are 

actually aggregates of graphite crystallites and forms of polycrystalline graphites. These 

crystallites and their aggregates may vary considerably in size from nanometers to 

submillimeter scale. The thickness of the single crystallite or aggregate (along c-axis) is usually 

much smaller than particle size in the ab direction, which leads to common flake/plate/fiber 

shape of particles. Within each crystallite, a different types of imperfections, vacancies, 

stacking faults and declinations of the planes   may be found. The size, shape, numbers of 

imperfections, orientation of crystallites, as well as bulk characteristics, such as porosity and 

amount of impurities, may vary considerably from one material to another causing differences 

in the properties of these materials. Aggregates may be large, with limited number of defects 

and essentially parallel to each other, in this case its properties are close to the ideal graphite 

crystal. Such large aggregates are often found in pyrolytic graphite. When the aggregates, are 
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composed of small and randomly oriented crystallites (such as amorphous carbon) their 

properties are usually isotropic. The planar structure of graphite results in a considerable 

anisotropy, especially in electrical and thermal properties. The properties of the material differ 

when measured along the ab directions (within the plane) or the c direction (perpendicular to 

the planes). It is worth to note, that in case of powdered graphites, such as natural or flake 

graphite, the anisotropy occurs in microscale, in point of view of single grain, but in macroscale, 

a powder can be considered as an isotropic material [73]. 

Heat conduction in graphite is usually dominated by phonons, despite the presence of 

delocalized electrons. This is explained by the strong covalent sp2 bonding resulting in efficient 

heat transfer by lattice vibrations. However, electron conductivity can become significant in 

doped materials [74]. Thermal conductivity depends on the specific heat (Debye equation), 

group speed of phonons and mean free path related to their scattering. In polycrystalline 

materials, phonons are scattered by crystallite boundaries, defects, and other phonons. In the 

basal plane, the mean free path is high and thermal conductivity is high in the ab directions. On 

the other hand, in the direction perpendicular to the basal plane (c direction), the conductivity 

is two orders of magnitude lower since the amplitude of the lattice vibration in that direction is 

much lower than in the ab directions. The room temperature thermal conductivity of a graphite 

crystal has been reported as ~4200 W/mK in the ab directions and ~10 W/m·K in the c direction 

for highly crystalline pyrolytic graphite (Fig.  2.24).  

 

Fig.  2.24. Thermal conductivity of bulk carbon allotropes as a function of temperature.   

 

The average value for commercial pyrolytic graphite is near 400 W/m·K. The temperature 

dependence of the thermal conductivity clearly shows that with decreasing of graphite 
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crystallite size from pyrolytic, through flaked, to amorphous carbon the heat conduction 

characteristics changes from typical dielectric like curve with a maximum below 100 K to a flat 

curve typical for polycrystalline and amorphous materials. 

As mentioned before, graphite particles are introduced usually using pelletization methods. 

During the compacting of the plate/flake–like shape particles reorganize and become mostly 

orientated with normal directions to their planes parallel to the compression axis. Such 

alignment results in anisotropy of the thermal conductivity and thus, of hydrogen permeability 

through material. In the case of commonly used cylindrical pellets the thermal conductivity is 

enhanced in radial direction due to the better conductivity along graphitic planes. An example 

is shown on Fig.  2.25a [70]. Magnesium hydride was compressed with the expanded natural 

graphite under pressure of 100 MPa. Effective thermal conductivity increases with ENG 

contentment and for radial direction is nearly four times higher than along the pellet axis.  

 

 

 

Fig.  2.25. Axial and radial thermal conductivities: (a) and permeabilities (b) of compacted 

disks versus expanded natural graphite. Diffusion path of hydrogen in compacted disks 

containing ENG (c): axial flow (d) radial flow [70]. 

 

Hydrogen gas permeability (Fig.  2.25b) is poorer in axial direction, because the hydrogen 

molecules in motion face the non-permeable graphite flakes on their way this direction (Fig.  

2.25c,d). Varying of these two factors i.e. thermal conductivity and permeability to hydrogen 
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by changing the vessel geometry and graphite orientation degree allows to optimize effective 

heat and mass flow in metal hydride composites and to achieve the best reaction kinetics. 

Ordering of graphite flakes can achieved by using of strong electric field. Magnesium hydride 

with graphite particles were suspended in a special, high temperature silicone resin. Electric 

field induces torque acting on graphite particles suspended in the fluid and causing their 

reorientation and alignment in final composite material.  
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3. EXPERIMENTS AND SAMPLE PREPARATION 

Two main parts of the experimental work have been carried out: the one focused magnetron 

coating of magnesium hydride with catalytic layers and the other concerning composites of 

magnesium hydride and graphite with the thermal conductivity enhanced by electric field 

alignment of graphite flakes. This Chapter presents experimental methodology, as well as 

properties of starting materials. Morphology of the samples was examined with X-Ray 

diffraction method and Scanning Electron Microscopy. The study of hydrides thermodynamics 

and kinetics was performed using volumetric Sievert method followed by Thermogravimetry 

and Differential Scanning Calorimetry. Additionally, thermal conductivity of composites was 

evaluated using Thermal Transport Option of the PPMS apparatus. 

 

3.1. Magnetron sputtering of thin films on the powdery substrates 

Magnetron sputtering using powder substrates was recently reported in several papers [75]–

[86]. The key aspect is to get uniform coverage of each grain surface. In order to achieve that, 

the material particles need to be continuously mixed during the sputtering. There are three main 

approaches solving the problem: to place the powder in a rotating cup (Fig.  3.1a), polygonal 

barrel called Polygonal Barrel Sputtering (Fig.  3.1b) or to get fluidized particle bed by applying 

low or high frequency vibrations (Fig.  3.1c).  

 

  

Fig.  3.1. Scheme of magnetron sputtering equipment using rotating cup (a) [84],  polygonal 

barrel (b) [75] and vibrational stirrer (c) [77].  

 

It was found that each technique has some advantages and disadvantages. Methods using 

rotating vessels work well for big particles, but the finest particles get stick to the walls of the 

container and tend to agglomerate, which leads to a non-uniform coverage and presence of 

uncoated grains. It also requires specific construction of magnetron cathode placed inside the 
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rotating vessel. High frequency vibrations may prevent agglomeration, but the limitation is a 

relatively small amount of stirred powders (few milligrams) and problems with low efficiency 

of ultrasonic transducer working in vacuum.  

The laboratory equipment constructed in the course of realization of this Thesis (basic 

parameters in Table 3.1) consists of the magnetron cathode and powder mixer placed in the 

vacuum chamber (Fig.  3.2). In conventional magnetron sputtering the substrate has a form of 

bulk material, typically a plate placed near to the cathode.  In this study we used a container in 

the shape of a small bowl set in circular motion in the vertical plane by an electric motor 

connected with arm and crank mechanism (Fig.  3.2bc). It enables efficient shaking of relatively 

large amount of powder (~500 mg) with reduced effect of its sticking to container walls. The 

shaking frequency (up to 5 Hz) and amplitude (up to 10 mm) is controlled by adjustment of the 

motor speed and crank length. To reduce the problem of particle agglomeration a small metal 

ball is placed inside the vessel, which hits and disperses the agglomerates during motion of the 

container.  The vacuum chamber was evacuated with diffusion pump (Tepro PDO-300) and 

filled with 6N purity Ar gas. Maximal level of vacuum achieved was 10-3 mbar and the working 

pressure was 10-3 mbar. After coating, the chamber was vented with argon gas and the samples 

were immediately closed in glass jars under argon in a glove-box. However the contact of 

powder with air could not be avoided during initial stage of pumping and while moving it into 

glove box. The pumping system and shaking device was modified in the second stage of 

experiments, after oxidation problems were spotted (Chapter 4). A special, remote opened, 

sealed cover for powder container was developed and allowed to conduct entire process in argon 

atmosphere, starting from measuring of powder weight, to closing the sample in glass jars. Also, 

pumping system was changed and cleaned, so that higher vacuum (< 10-4 mbar) could be 

reached. 

 

Table 3.1. Overview of sputtering experiment conditions. 

Powder mass 500 mg 

Sputtering time 
Adjustable, with 5 min break after 15 

min of sputtering 

Magnetron power 260 W 

Cathode-substrate distance 5 cm 

Working pressure 3-5·10-3 mbar 

Pumping pressure < 10-3 mbar 

Argon flow ~ 25 ml/min 

Shaking amplitude ~ 5 mm 

Shaking frequency ~ 3 Hz 
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Fig.  3.2. Scheme of the equipment used for sputtering (a) and photo of practical realization. 

Photos presents general view of vacuum chamber (b), close view for cathode (c) and powder 

shaker – the cup (d) is mounted on the top of electric motor connector arm. Picture (e) shows 

powder container after the sputtering process. 

 

The magnetron is a planar source cathode placed 5cm above the stirrer. Designing and 

constructing of the sputtering source was a part of this PhD project. Its scheme is presented in 

Fig.  3.3a. Main body has the shape of a cylinder with one base hollow and it is made from 

copper to provide good electrical and thermal contact. Front wall is 1.5 mm thick and lateral 

surface is threaded. The target is mounted to the front by a threaded cap. The size of the cap 
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allows to use targets in the shape of disks with 25–30 mm diameter and 2–5 mm thickness. 

There is a permanent magnet (N50 grade) and a soft steel yoke placed inside the main body. 

Magnets produce magnetic field with its lines bending over the cathode front surface (Fig.  

3.3b). Radial component of the field induction depends on the distance from the center and to 

the cathode surface (Fig.  3.3c). Its value ranges from 80 to 120 mT for 5-3 mm distances from 

the cathode surface, which is sufficient for efficient plasma confinement. The maximum field 

intensity is located on the circle with ~19 mm diameter, so the plasma is confined only on the 

target surface and no sputtering of copper parts occurs. Main body is attached to PTFE 

insulating part with brass screw and then mounted in vacuum chamber wall. All parts are sealed 

with high vacuum O-rings. The cooling is provided by continuous water flow.  

 

 

Fig.  3.3. Scheme of magnetron source constructed for the experiments (a), magnetic field 

distribution around the cathode surface (b) and distance from the center dependence of the 

radial magnetic field component, at different positions from the cathode surface (c) 

 

The basics of magnetron sputtering process are as follows: A target made of the material desired 

to be deposited, is bombarded with energetic ions, typically of inert gas, such as e.g. argon 

(Ar+). Argon gas is introduced into a vacuum chamber at a pressure of 1 to 10 mTorr. A DC 
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voltage is placed between the target and substrate which ionizes argon atoms and creates a 

plasma in the process accompanied with the so called glow discharge due to the light emitted. 

These argon ions are now charged and they are accelerated towards the cathode target. The 

forceful collisions of these ions onto the target eject target atoms into the space. The ejected 

atoms then travel some distance until they reach the substrate being at the ground potential and 

start to condense into a film. Electrons released during argon ionization are accelerated to the 

anode, subsequently colliding with additional argon atoms, creating more ions and free 

electrons in the process, continuing the cycle. The strong magnetic field of a proper 

configuration present near the target area causes traveling electrons to spiral along magnetic 

flux lines near the target instead of being attracted toward the anode. The advantage of this is 

that the plasma is confined to an area near the target, without causing damages to the thin film 

being formed. Also, in such a way the electrons travel for a longer distance, increasing the 

probability of further ionizing argon atoms. This tends to generate a stable plasma with high 

density of ions near the target. More ions mean more ejected atoms from the target and, thus, 

increased efficiency of the sputtering process.  

The cathode in this set-up is driven with a pulsed DC DORA Power Systems magnetron 

power supply, which has specific construction and characteristics.  The power stage of the 

supply generates high voltage (1200V) pulses (85-100 kHz), current stabilized with group 

modulation at 0.1-4 kHz frequency (Fig.  3.4). Pulse duration modulation within group is 

controlled by a feedback loop to maintain constant current power. The supply responses to 

varying process conditions by change of number of pulses inside the group and by pulse peak 

voltage. Application of pulsed magnetron supply allowed for stable and repeatable conditions 

of the sputtering process 

 

Fig.  3.4. Current signal for DORA DPS pulsed magnetron power supply [87]. 
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For the power generated on the output two components are distinguished: the effective, which 

is the power transferred to plasma, and the circulating, which appears when the load impedance 

is unmatched (short circuit, change of the magnetic field, reactive process etc.). Monitoring of 

the circulating power may inform on the target surface state during the sputtering process. 

 

3.2. Electric field aligned graphite composites with enhanced thermal 

conductivity  

The anisotropy of composite material can be obtained by rearrangement of the filler particles 

in the liquid, uncured matrix by applying an aligning force. Properties of magnetic field aligned 

composites based on polymer resins and magnetic fillers, such as carbonyl iron [88], ferrite [89] 

and magnetite [90] were previously discussed. The aggregation of the filler particles into long, 

parallel chain-like structure enhances the effective thermal conductivity in the direction along 

the applied field. The alignment is poorer for higher filled (>40 vol. %) composites because the 

interparticle interactions becomes stronger than the influence of the external field. On the other 

hand, the enhancement of the thermal conductivity (TC of aligned composited compared to 

isotropic) is getting higher while increasing the filler content. This is because the distances 

between the filler particles become smaller thanks to the magnetic attraction and conduction 

paths can be created.  In the case of graphite, its magnetic susceptibility is generally too low (-

6.1×10−4 for ab plane and -1.4×10−5 for c-axis [91]) and strong magnetic field (9-16 T) would 

be necessary to use to generate magnetic torque and forces strong enough to achieve good 

alignment [92], [93]. However, literature reports successful alignment of  nanotubes in high 

magnetic field [94]–[96] but no data for graphite/graphene structures are found. The presence 

of magnetic impurities, typically Fe, which is the most abundant element in graphite or 

graphene, may increase actual susceptibility and promote effective reorientation [92]. Many 

works were focused on alignment of carbon structures (nanotubes, graphene) decorated with 

magnetic nanoparticles of iron oxide (magnetite, maghemite, magnetite) [97]–[100].  Graphene 

nanosheets (GNS) functionalized with Fe3O4 were fabricated by coprecipitation method and 

aligned in epoxy resin under field of 0.3 T induction (Fig.  3.5). Effective thermal conductivity 

measurements show better performance of aligned composites. Samples conduct heat more 

efficiently along the direction parallel to the applied aligning field. 
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Fig.  3.5. A scheme for the synthesis of epoxy/GNS–Fe3O4 composites by magnetic alignment 

and thermal conductivity for pure epoxy and graphene nanosheets (GNS) measured in different 

directions [99]. 

 

Electric field-induced alignment approach is an efficient and direct route to prepare materials 

with aligned filler particles and has successfully been applied to reorientation of pure 

graphite/graphene flakes in liquid polymer resin matrix [101]–[106]. Both, alternating (AC) 

and direct current (DC) electrical fields with amplitude in the range of 20-200 V/mm can be 

used to orient the GNs. Under the electric field the graphite structures undergo a polarization. 

Because of the crystalline anisotropy the component of polarization parallel to the graphite 

layers is larger than the perpendicular one. Such a polarization leads to a field-induced torque 

(Fig.  3.6) acting on the flake.  This torque rotates the graphite flakes against the viscous drag 

of the resin matrix in the direction of the electric field. In addition, Coulombic attraction is 

generated among the oppositely charged ends of different graphite flakes, causing formation of 

chain like structures [103]. 

 

       

Fig.  3.6. Schematic illustration of polarization of a flake in the electric field. Cross-sectional 

schematic illustration of electric field-induced orientation of the GNs. [101] 
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It has to be noticed, that for graphite flakes, which are 2-dimensional structures, the alignment 

along the field direction does not mean, that the graphite plates are parallel to each other (Fig.  

3.6). To achieve highly aligned composite, the process shown in Fig.  3.7 has to be applied. At 

the beginning, the graphite flakes were randomly dispersed in the polymer matrix (Fig. 4a). 

Directed by the first direction electric field, the graphite flakes were oriented along the electric 

field as an intermediate state (Fig. 4b). After being polarized by another electric field, the 

graphite flakes were highly aligned with their flakes parallel to each other (Fig. 4c). In practice, 

changing the direction of the field can be done by rotating of the electrodes or sample mold 

between them [102], [103].  

 

 

Fig.  3.7 Schematic illustration of alignment of graphite flakes induced by the electric field. (a), 

(b), and (c) exhibit the initial random state, intermediate state and aligned state, respectively 

[102]. 

 

Electrically oriented composites poses anisotropic transport properties (electric and thermal 

conductivity). Fig.  3.8 presents how the electrical resistivity of graphite filled composites 

depends on the filler content and direction of measurement. The resistivity along the plate plane 

is 2-3 orders of magnitude lower than perpendicularly to it. Usually, the structure anisotropy is 

evaluated using X-ray diffraction method, because of the fact, that the peak intensity depends 

on the sample texture. In the case of graphite plate-like structures, the <002> line intensity is 

boosted when the radiation scattering vector is perpendicular to the alignment direction. This 

indicates ordering of the flakes with their planes along the alignment direction. For well aligned 

materials, big differences in the <002> reflection intensity for different sample orientation are 

observed (Fig.  3.9). 
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Fig.  3.8.  Resistivity of the composites with the anisotropy induced by the alignment of the 

conductive graphite flakes [102].  

 

Fig.  3.9. XRD patterns for different planes of the aligned composite containing 5.0 wt. % 

graphite flakes. (a) and (b) show that the planes of graphite flakes in the sample were mostly 

parallel to the X-ray scattering direction during measurements; (c) represents the 

perpendicular sample plane case [102].  

 

Experimental setup for sample preparation was designed and constructed at the AGH 

University. It consists of (Fig.  3.10): 

 high dc voltage supply – based on high frequency, pulse transformer, producing 

adjustable voltage in range 200 – 1300 V, 
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 copper electrodes – rectangular plates, separated by 15mm distance, providing uniform 

electrical field, like in a flat capacitor, 

 PTFE molds for composites – they allow to cast cylindrical samples with 6mm diameter 

and 6-10 mm height, 

 Electric motor – rotates the molds with 6 rpm speed to obtain uniform alignment. 

The device was supplied from 9 V rechargeable battery and was designed to work inside argon 

filled chamber. 

 

Fig.  3.10. Scheme and photo of the setup constructed for aligned composites fabrication. 

 

Composites were manufactured from flake graphite, magnesium hydride and silicone resin. A 

detailed description of their properties is presented in paragraph 3.4. The experimental 

procedures are as follows: at first, the proper amounts of uncured silicon resin, filler powders 

and a thinner are mixed for 15 min (Fig.  3.11a). Using thinner, which is a silicone oil, is 

necessary to reduce high viscosity of resin in order to get better wetting of filler grains and to 

get easy castable mixture. Then hardener is added to the pot and mixed again for 15 min (Fig.  

3.11b). Next, the most important step is the curing of the resin (Fig.  3.11). The mixture is 

transferred to the PTFE molds, placed between parallel copper electrodes And connected to 

high voltage supply of 1.2 kV generating uniform electric field of intensity 80 V/mm passing 

cross the sample. Electric motor rotates the sample with 6 rpm speed to obtain high and uniform 

alignment. The curing process is performed in room temperature and it takes 24 hours. High 

voltage and rotation are on during entire process. The last step is outgassing of the hardened 
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composite (Fig.  3.11d) in vacuum at the temperature of 80 °C for 24 hours in order to remove 

remaining, non-cured of the sample. After that samples are cut and closed in argon-filled, sealed 

containers. 

 

Fig.  3.11. Sample preparation method for electric field aligned graphite composites. 

 

3.3. Methods of characterization 

X-Ray diffractometry 

The microstructure of coated powders and composites was examined by X-Ray diffraction 

method. Its principle is based on Bragg’s law. A monochromatic X-ray beam, typically Cu- Kα 

radiation with wavelength λ=1.5406 Å, is directed to the surface of the sample at a Bragg angle 

θ. This incident beam is diffracted by the atomic planes of the crystalline sample. The diffracted 

beam is then monitored by a moving detector measuring the reflexes at the θ angle, 

corresponding to different plane spacings, d. These are derived from the observed reflections 

through Bragg’s equation: 

𝑛𝜆 = 2𝑑 sin θ 
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Fitting and simulations of crystal structure to the experimentally obtained XRD peaks using 

Rietveld refinement method [107] provides a wide range of information about the sample phase 

composition, lattice constants and strain , crystallite size, orientation, etc.) Full fitting results 

(data, calculated profile, background and difference plots) are listed in the Appendix. In this 

work Rigaku Smartlab machine was used for the measurements [108]. It is equipped with 3 kW 

sealed X-ray tube with 20 – 60 kV accelerating voltage and a high resolution 2D detector. 

Measurements were performed at room temperature, with 2θ in the range of 10-120° and with 

40 kV voltage.  

 

Scanning Electron Microscopy and Energy Dispersive Spectrometry 

Scanning electron microscopy works by moving the electron beam (Thermionic or Field 

emitted), accelerated with high voltage (~30 kV) and confined with magnetic lenses, across the 

surface of a sample. The interaction between electrons and the sample material results in 

emission of different radiation and particles, including secondary electrons, backscattered 

electrons and X-rays. Low energy (<50 eV) secondary electrons, coming from inelastic 

scattering of the beam electrons from the area of few nanometers depth from the sample surface, 

provide information about the sample topography (SEI – Secondary Electrons Image). The 

electrons are detected by a scintillator-photomultiplier detector. The brightness of the signal 

depends on the number of secondary electrons reaching the detector. If the beam scans the 

sample perpendicular to the surface, the activated region is uniform about the axis of the beam 

and a certain number of electrons "escape" from this region the sample. As the angle of 

incidence increases, the interaction volume increases and the "escape" distance of one side of 

the beam decreases, resulting in more secondary electrons being emitted from the sample. Thus, 

steep surfaces and edges tend to be brighter than flat surfaces, which provides a well-defined 

image of surface topology. Backscattered electrons images (BEI) give information about 

sample composition according to the Z-number of scattering element. They are used to detect 

contrast between areas with different chemical compositions. High-energy electrons originating 

from the electron beam, are reflected or backscattered from the sample by elastic scattering 

interactions with specimen atoms. The heavy elements (high atomic number Z) backscatter 

electrons much more effectively than light elements and appear brighter in the image. Detection 

of BSE is limited in SE detectors because of energy and emitting angle range, and, to overcome 

this problem, dedicated backscattered electron detectors are used. They are positioned above 

the sample in a toroidal arrangement, concentric with the beam.  When all parts of the detector 
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are used to collect electrons symmetrically about the beam, atomic number contrast is produced. 

It is possible to use asymmetric, directional detector to produce topographic images.  

Backscattered electrons can also be used to form an electron backscatter diffraction (EBSD) 

image that can be used to determine the crystallographic structure of the specimen. 

An important method connected with SEM is the elemental analysis of characteristic X-rays 

from the specimen with Energy-dispersive X-ray spectroscopy (EDS, EDX). The incident beam 

excites an electron from inner atomic electron shell, ejecting it and creating an electron hole. 

Then, an electron from an outer, higher-energy shell fills the hole, and the difference in energy 

between two shells is released in emitted X-rays. Energy and intensity of the X-rays emitted 

from a specimen can be measured by an energy-dispersive or wavelength dispersive 

spectrometer. As the emission lines are characteristic for the emitting element, EDS allows the 

elemental composition of the specimen to be analyzed. By scanning the beam in a television-

like raster and displaying the intensity of a selected X-ray line, element distribution images or 

“maps” can be produced. The accuracy of quantitative analysis of the sample composition is 

possible, however, it requires the application of correction procedures, which are sometimes 

referred to as matrix corrections. Three main effects need to be taken into account and to be 

corrected (called ZAF correction): 

 Atomic number effect (Z) - penetration range of electrons into the specimen and the X-ray 

intensities depend on the atomic numbers of the elements. 

 Self-absorption effect (A) - measured X-ray intensities are a function of the escape depth 

and of the absorption characteristics of the specimen. Especially, for the specimens with 

higher Z and the X-rays at lower energies, this correction becomes even more important.  

 Fluorescence effect (F). - X-ray emission of low-Z elements (with low energy X-rays) is 

increased because of the presence of radiation of high-Z elements (with characteristic X-rays 

of a high energy) and the concentration of the low-Z elements can be overestimated, while 

the concentration of the high-Z elements can be  underestimated. 

In this work two types of SEM equipment were used: Thermionic emission JSM-5900LV type 

and field-emission JSM 7100F. Basic parameters of both systems are described in Table 3.2. 

Two types of samples were used: plain powders and cross-sections of powders and composites 

suspended in epoxy resin. Plain powders were stick to conductive carbon tape and placed 

directly on the sample holder. Observation of their surfaces, as well as EDS analyzing of 

panoramic view was performed. EDS element mapping, performed on chosen powder particles 

allowed us to determine the uniformity of the coating. In order to measure the thickness and 
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morphology of the layers, SEM images and EDS line scans of cross sections of powder grains 

were taken. Powders were prior suspended in liquid epoxy resin, then cured and polished with 

series of different grades sandpapers and diamond pastes. After outgassing and coating with 

conductive carbon layer samples were ready for the measurements. The same process was 

performed for preparation of composite samples. 

 

Table 3.2. Basic parameters of scanning electron microscope systems used for sample 

characterization 

Type JSM-5900LV JSM-7100F 

Resolution 
3 nm (30 kV, SEI) 

5 nm (30 kV, BEI) 
1.2 nm (30 kV, SEI), 3.0 nm (1 kV, SEI) 

Magnification ×180 to ×300 000 ×10 to ×1 000 000 

Accelerating voltage 0.3 to 30 kV 0.2kV to 30kV 

Specimen stage 
8" max., 125 mm X, 100 mm Y 

Tilt: -10 to +90°, Rotation: 360° 

5 axes specimen stage 

X-Y: 70 mm to 50 mm, Z: 3 mm to 41 mm 

Tilt: -5 to +70°, Rotation: 360° 

 

Thermal transport measurements with Physical Properties Measurement System. 

Thermal conductivity measurements for composite samples were performed by means of 

PPMS (Physical Property Measurement System) manufactured by Quantum Design Inc., using 

thermal transport option (TTO). Its basic parameters are listed in the Table 3.3. The cylindrical 

or cuboid sample is mounted in two probe configuration, with two copper leads glued to the 

parallel base planes by the electrically and thermally conductive epoxy adhesive. One lead is 

connected to the heater and hot thermometer, the opposite one - to the cold foot (ground) and 

the cold thermometer. Heat is provided by Joule heating and time response of two thermometers 

is monitored. Four point probe configuration is also available to use. Additionally, electrical 

resistivity measurements are possible to make. Current pulse (I+/-) flowing through the sample 

was monitored using leads (V+/-). 

 

Table 3.3. Basic parameters of Thermal Transport option of the PPMS apparatus [109]. 

Thermal Conductivity  0.03 to 100 W/m·K  

Thermal Diffusivity  Correlating limit mm2/s  

Specific Heat Capacity  Correlating limit MJ/m3K  

Measurement Time  2.5 to 640 seconds  

Reproducibility  Typically better than 2%  

Accuracy  Better than 5%  

Temperature Range  Cryogenic to 200 °C  

Min. Sample Dimensions  3 mm High, 13 mm Diameter or Square.  

Sensor Types Available  Kapton insulated with or without cable (from 

cryogenic temperatures up to 180 °C).  
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Fig.  3.12.  Sample puck with thermal and electrical connections [110] 

 

The thermal conductivity measurements have been performed using longitudinal steady-state 

method in the high vacuum conditions (10-4 Torr) at room temperature and additionally in 

temperature dependence from 4K to 300 K. During measurements the software uses algorithms 

which help to optimize parameters such as heater power or heat pulse duration. After the 

constant power heat pulse is applied (Fig.  3.13), the temperatures on both, the hot and the cold 

thermometers, as well as the sample chamber temperature is measured during the pulse duration 

and during cooling time. Within the heat pulse lifetime the temperature difference between the 

leads ∆𝑇 vs time is calculated using least-squares fitting routine and the equation below:  

∆𝑇 = ∆𝑇∞ (1 −
𝜏1𝑒−𝑡/𝜏1 + 𝜏2𝑒−𝑡/𝜏2

𝜏1 + 𝜏2
) 

where ∆𝑇∞ represents the asymptotic temperature drop across the sample, 𝜏1 and 𝜏2 are the 

long and short time constants. The heat flux cannot be measured directly. The conducted heat 

through the sample is presented as the power in the heater resistor 𝐼2𝑅 with the radiation losses 

on leads subtracted. Radiation loses are calculated with the Stefan-Boltzmann low: 

𝑃𝑟𝑎𝑑 = 𝜎𝑇

𝑆

2
𝜀(𝑇ℎ𝑜𝑡

4 − 𝑇𝑐𝑜𝑙𝑑
4 ) 

where 𝑆  is total surface area,  𝜀  – infrared emissivity of the radiating surface, 𝑇ℎ𝑜𝑡/𝑐𝑜𝑙𝑑  -

temperatures of thermometers during measurements, 𝜎𝑇 - Stefan-Boltzman constant. Finally, 

the thermal conductivity is calculated using conducted heat, sample length and cross-section 

area and the asymptotic temperature drop: 

λ =
𝐼2𝑅 − 𝑃𝑟𝑎𝑑

∆𝑇∞

𝑙

𝑆
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Fig.  3.13. Heat pulse, temperature response at the hot and the cold thermometer shoes in an 

idealized sample [110]. 

 

Thermogravimetry 

Amount of hydrogen released from the material can be measured using thermogravimetric 

method (TG). The mass of the sample is continuously measured while its temperature is 

changed over the time. A typical thermogravimetric analyzer consists of a precision balance 

with a sample pan located inside a furnace. It is usually sealed, which allows to use vacuum or 

gas atmosphere, typically neutral argon, but for some applications, reactive gases such as 

oxygen or hydrogen are used. The thermogravimetric data (mass, temperature, and time) are 

collected and plot of mass versus either temperature or time is drawn and referred as TG curve. 

Differential thermal analysis (DTA) is often coupled with TG experiments. A small amount of 

reference material (Al2O3) is placed next to the sample, under the same conditions and the 

difference of the temperature between sample and reference is measured by very accurate 

thermocouples. The signal (expressed as voltage difference in µV) is plotted versus the 

temperature or time and informs us about changes in the sample, either exothermic or 

endothermic, such as e.g. glass transitions, decomposition, crystallization, melting, etc.  
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An ULVAC TGD9600 [111] apparatus was used. The samples consist of 20 mg of material, 

placed in Al2O3 cup under constant high purity argon flow. The temperature is generally 

increased at a constant rate, typically 5 K/min. 

  

Differential Scanning Calorimetry. 

A Differential Scanning Calorimetry (DSC) measures the difference in heat flux going into 

and out of a sample and the reference material during the heating with programmed temperature 

run. It provides an information about the exothermic and/or endothermic nature and 

thermodynamics of a process. It generally consists of one or two furnaces with controlled 

atmosphere and temperature. The samples and reference material (Al2O3) is placed inside 

aluminum or copper pans, usually sealed by crimping. Two types of the DSC approaches are 

used:  

 Heat Flow (or Power Compensation) DSC – the temperature difference between the 

sample and reference is maintained constant during the scan. The resulting power 

difference is proportional to heat flow. It generally uses two independently heated 

furnaces – when a heat-consuming process takes place in the sample, the sample furnace 

increase the heating power to keep the temperature program. The signal measured in 

this type of apparatus is the heating power. 

 Heat Flux DSC – Single furnace, the temperature difference is allowed to vary, and the 

temperature difference signal is converted to heat flow through the mathematical 

calculations, knowing the thermal resistance of the transducer.  

A power compensation instrument can generally heat or cool faster (>200K/min), and provides 

better resolution for sharp peaks, but the signal is less stable, the baseline is less flat and the 

short-term noise is higher.  A heat flux instrument cannot achieve the rapid scan rates of a power 

compensation design, but baseline is usually straighter and more stable, providing higher 

sensitivity for subtle events.  While DSC measurements are often used for directly reporting the 

enthalpy values of hydrogen storage reactions, the process of extracting accurate information 

is often complicated by the multi-phase nature of the reaction, which can involve simultaneous 

heat and mass transfer (release/uptake of H2 gas) events.   

The laboratory equipment used was a heat flux Shimadzu DS-60 Differential Scanning 

Calorimeter [112]. Its basic parameters are listed in Table 3.4. Samples of 1 mg of hydride were 

sealed in aluminum pans in argon-filled glove box chamber. DSC scan was performed from 

room temperature to 500 °C with typically 5 °C/min heating rate. For chosen samples, 
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measurements with different heating rate (1-20 °C/min) were done in order to estimate the 

activation energy for hydrogen on the metal surfaces using the Kissinger method [113], [114]. 

 

Table 3.4. Basic parameters of the differential scanning calorimeter [112].  

Heat Flow Range ± 40µW 

Hold Time 0 - 999 min, hour 

Noise level 1µW 

Temperature Range -150 to 600 ° C 

Program Rate 0 – 99 K/min, K/hour 

Cooling Time about 6 min from 600 °C to 40 °C with LN2 

Atmosphere Inert gas or air 

 

Study of hydrogen absorption/desorption with Sievert’s type apparatus. 

An important part of this work are measurements of hydrogen desorption performance done 

with volumetric Sievert method [115]. This method allows us to determine the amount of 

hydrogen absorbed or released from material under equilibrium conditions, as well as to observe 

the reaction kinetics. The equipment (Fig.  3.14) consists of a set of reference tanks (called the 

dosing or reference) of known volume 𝑉𝑟𝑒𝑓 , and sample chamber with volume 𝑉𝑐𝑒𝑙𝑙 . The 

volume 𝑉𝑐𝑒𝑙𝑙 is calculated as the difference between the volume of empty chamber and volume 

of the sample. Both volumes are connected by the valve VS.  

The system is complemented with vacuum pumps, pressure sensor and hydrogen tank. The 

measurement starts with removing of the air by vacuum pumps and checking if there aren’t any 

leakages in the system. Next, a dose of hydrogen is let into the reference tank until reaching 

given pressure 𝑝𝑟𝑒𝑓. The sample chamber pressure 𝑝𝑐𝑒𝑙𝑙 is the pressure obtained by vacuum 

pump (first step) or the equilibrium pressure from previous step. The valve separating the 

sample from the system (VS) opens and the pressure in the system changes, and reaches a stable 

level 𝑝𝑠𝑦𝑠. After the system reached equilibrium the amount of hydrogen adsorbed or desorbed 

can be calculated from real gas equation. The molar amount of gas 𝑛 is given by: 

𝑛 =
𝑝𝑉

𝑧𝑅𝑇
 

where 𝑝 is the pressure, 𝑉 the gas volume, 𝑇 gas temperature, 𝑧 the compressibility factor and 

𝑅 is gas constant. Thus, the amount of hydrogen reacted in a single step is calculated as: 

∆𝑛 =
𝑝𝑠𝑦𝑠(𝑉𝑐𝑒𝑙𝑙 + 𝑉𝑟𝑒𝑓)

𝑧𝑅𝑇
−

𝑝𝑐𝑒𝑙𝑙𝑉𝑐𝑒𝑙𝑙 + 𝑝𝑟𝑒𝑓𝑉𝑟𝑒𝑓

𝑧𝑅𝑇
 

At the end of each step, the valve is closed, and the reference volume is prepared with a new 

amount of gas for the subsequent step. Changing pressure in the chamber requires expansion or 
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compression of the gas but this causes temperature changes due to the partly adiabatic 

conditions. The heated or cooled gas returns to the original temperature through contact with 

the walls of the pipes and the tanks. A suitable time delay for temperature equilibration is 

needed to be set. 

 

Fig.  3.14. A simplified scheme of Sieverts apparatus [115]. 

 

Sieverts apparatus allows us to observe reaction kinetics by plotting the amount hydrogen 

reacted versus time, to perform cycling of hydrogenation/dehydrogenation reaction or to obtain 

Pressure-Composition-Temperature (PCT) curves in order to analyze the thermodynamics of 

the active material. The experimental procedure involves a series of small step-change in 

pressure and allows us to establish the equilibrium in each step (Fig.  3.15a). Then, the data 

points of different hydrogen content from zero to full capacity are obtained until the full PCT 

curve is shown (Fig.  3.15b). In the next step, the series of similar experiments are performed 

for a set of temperatures (Fig.  3.15c). Finally, using middle points of the plateau regions the 

van’t Hoff plot is constructed (Fig.  3.15d). The above steps are repeated both for adsorption 

and desorption process.  

 

 

Fig.  3.15. Schematic summary of the experimental determination of thermodynamic properties 

using pressure-composition isotherms [10].  
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In this work, two types of machines were used. For kinetics and cycling test the Japan Metals 

& Chemicals Co. Ltd (JMC) manufactured one [116] and for PCT measurements a Setaram 

PCT-Pro [117] apparatus were used. The experimental procedures are as follows: 

 Kinetic and cycling:  

1. Preparation of 150-200 mg samples under argon atmosphere. 

2. Removing air with vacuum pumps for 1 hour, until 10-2 mbar vacuum is reached.  

3. Filling the system with 7 bars of hydrogen and pumping again in order to remove 

the residual gases. This step was repeated three times. 

4. Filling the system with 15 bars of hydrogen and monitoring the pressure for 30 

min to detect eventual leakage. 

5.  Activation of the hydride sample at 300 °C for 12 hours in continuous vacuum. 

6. Measurements of absorption/desorption/cycling at the temperature of 300 °C 

with initial pressure of 1 MPa and 0.001 MPa for absorption and desorption 

respectively. Measurements were continued until the equilibrium was reached 

and sample was fully hydrogenated/dehydrogenated at given conditions.  

 PCT curves: 

1. Preparation of ~30 mg samples under argon atmosphere. 

2. Flushing with helium gas and pumping for 30 hours. 

3. Activation of the hydride sample at 300 °C in continuous vacuum. 

4. Collecting of PCT curves for temperatures from 300 °C to 340 °C and pressures 

from 0.1 to 100 MPa. For single data point on the PCT plot it takes from 5 min. 

to 30 min. to reach the saturation level. 

 

3.4. Characterization of starting materials  

Flaked graphite 

Graphite powder, a MG-1599 grade was purchased in Sinograf company [118].  It contains 

at least 99.5 wt. % of pure carbon and consist of 10 µm flakes (Fig.  3.16). Main impurity 

fraction represents silicon, which is not typical for natural based graphite, where iron is the 

most commonly occurring element. Crystal structure parameters obtained from the Rietveld 

refinement of XRD patterns (Fig.  3.17) are consistent with the literature data The pattering is 

characterized of strong c-plane reflection near 27º and the lattice parameters are 2.46 Å and 

º6.71 for hexagonal cell. 
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Table 3.5. Impurities in graphite powder [119]. 

Element Content [wt. %] Element Content [wt. %] Element Content [wt. %] 

C  99.5 — 99.99  Ca  0.0 — 5.0E-5  Pb  0.0 — 1.0E-5 

Si  0.0016  Cr  0.0 — 5.0E-5  Sb  0.0 — 1.0E-5   

Mo  1.2E-4  Fe  3.2E-5  Zn  0.0 — 1.0E-5   

V  8.1E-5  Al  1.0E-5  Co  0.0 — 5.0E-6   

S  8.1E-5  Cu  0.0 — 1.0E-5  Ni  0.0 — 5.0E-6   

 

   

Fig.  3.16. SEM image of graphite powder used. 
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Fig.  3.17. XRD pattern of MG1599 graphite used as high thermal conductivity dopant 
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Magnesium hydride  

Magnesium hydride was purchased from Bio Coke Lab company. It was used in powder 

form, with nearly Gaussian grain size distribution of average size around 95 µm, however there 

is large fraction of small (< 30 µm) particles present (Fig.  3.18). The grains have very irregular 

shape. The surface of the grains is also decorated with small grains, which can belong to small 

particles fraction or be the effect of oxidation occurring during SEM sample preparation.  
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Fig.  3.18. SEM images of the pure magnesium hydride powder and its grain size distribution. 

 

The EDS spectra (Fig.  3.19) measured on panoramic view show only small signals from 

aluminum and silicon impurities - elemental analysis estimates their content at below 0.2 wt. 

%.  
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Fig.  3.19. EDS spectrum of the as received magnesium hydride 
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X-ray diffraction patterns (Fig.  3.20, Table 3.6) were collected for the as-received material. 

The results suggest, that there is a small amount of unreacted magnesium (~2 wt. %) remaining 

in the material. No visible oxidation effects are present. The peaks of the hydride phase are 

sharp, which suggest low amount of defects and stress inside the sample grains. Crystal 

structure parameters are consistent with the literature data – our magnesium hydrides consist of 

pure tetragonal β-MgH2 phase. 

 

Table 3.6. Rietveld refinement results for pure, as received magnesium hydride powder. 

Phase Parameter Value Error 

MgH2 Content [wt. %] 97.9  

a [Å] 4.51633 0.00005 

b [Å] 4.51633 0.00005 

c [Å] 3.02040 0.00005 

Mg Content [wt. %] 2.1  

a [Å] 3.2118 0.0002 

b [Å] 3.2118 0.0002 

c [Å] 5.2113 0.0006 
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Fig.  3.20. XRD pattern of the magnesium hydride from Bio Coke Lab company.  

 

The decomposition temperature, one of the most important parameters of the hydride, was 

evaluated using two methods: DSC and TG (Fig.  3.21). From thermogravimetry we know that 

magnesium hydride starts to decompose near 400 °C and the amount of desorbed hydrogen is 
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close to the theoretical capacity. Differential scanning calorimetry shows a sharp decomposition 

peak above 460 °C.  
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Fig.  3.21. DSC and TGA curves of the pure, as received, magnesium hydride. 

 

Decomposition peaks on DTA and DSC curves are shifted because of slightly different 

measurements setups. DTA (on TG device) uses open alumina pans with continuous argon gas 

flow, whereas DSC samples are sealed in closed aluminum containers. In result, during 

thermogravimetry experiment the pressure stays nearly constant, but when the calorimetric scan 

is taken pressure growths because of the hydrogen release, which increases effective 

decomposition temperature. Moreover, when the decomposition of MgH2 occurs, the 

temperature varies (usually drops) due to large amount of heat absorbed by the decomposing 

hydride. Together with possible unsealing of sample cells it causes that strongly asymmetrical 

and double decomposition peaks are present in the temperature plot.   

Part of the experiments was carried out using ball milled magnesium hydride (BM-MgH2). 

Powders were milled using rotary mill with 10 mm diameter steel balls, with 1:10 powder/ball 

ratio. Mill speed was set to 300 rpm and after each 30 min. of milling the process was paused 

for 30 min. in order to prevent the powder from overheating. 20 cycles were performed, which 

gives 10 hours of total milling time. The results of the  X-ray diffraction measurement and 

pattern refinement are presenten on Fig.  3.22 and  Table 3.7. MgH2 reflections are 

charactersited with wider peaks what suggests reduction of the crystalline size and introduction 

of strains during the milling. Williamson-Hall analysis shows reduction of the crystalline size 

from 1880 nm to 278 nm due to the milling. Except of the tetragonal β phase, orthorhombic γ-

MgH2 phase, with 5.8 wt. % content is present. A partial oxidation occurs during the milling, 

but the mount of the MgO do not exceed 5 wt. %.  
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Fig.  3.22. XRD pattern of the magnesium hydride after the ball milling. 

 

Table 3.7. Rietveld refinement results for ball milled magnesium hydride. 

Phase Parameter Value Error 

β-MgH2 Content [wt. %] 86.2  

a [Å] 4.517 0.002 

b [Å] 4.517 0.002 

c [Å] 3.020 0.001 

γ-MgH2 Content [wt. %] 5.8  

a [Å] 4.531 0.003 

b [Å] 5.389 0.004 

c [Å] 4.987 0.007 

Mg Content [wt. %] 2.9  

a [Å] 3.251 0.003 

b [Å] 3.251 0.003 

c [Å] 5.122 0.004 

MgO Content [wt. %] 5.0  

a [Å] 4.217 0.003 

b [Å] 4.217 0.003 

c [Å] 4.217 0.003 

 

SEM photos were taken in order to study the particle shape and size. Fig.  3.23 shows that a 

wide distribution of particles can be found after the milling. Nanoparticles of MgH2 are mixed 

together with their agglomerates and bigger, not milled grains. A Surface of such grains is 

usually decorated with a smaller nanoparticles. Size distribution, obtained using the computer 

software from the first picture of big grains and agglomerates, possesses maximum near 10 µm 
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(Fig.  3.24). On the other hand, when analysing a close-up  photos of nanoparticles, their average 

grain size stay around 130 nm. A wide size distribution and the agglomeration tendency may 

affect on the sputtering process and the uniformity of the coating.  

 

Fig.  3.23. SEM images showing ball milled powder of MgH2 under the different magnifications. 
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Fig.  3.24. Particle size distribution of the ball milled magnesium hydride, obtained from SEM 

images of agglomerates (a) and nanoparticles (b). 
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Results of the decomposition tests for BM-MgH2, performed with TG and DSC methods, are 

presented in Fig.  3.25. The decomposition occurs in lower temperatures comparing to as 

received one. Thermogravimetry and DSC shows the decomposition point near 365 °C  and 

376 °C respectively, which is 35-84°C lower. A hydrogen capacity obtained from TG plot is 

near 5.8 wt. %,  which is slightly samaller than non-modified MgH2 (7 wt. %). This is an effect 

of changed in phase content caused by the ball milling (Table 3.6). 
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Fig.  3.25. DSC and TGA curves of the ball milled magnesium hydride. 

 

Silicone resin 

Silicones are inorganic–organic polymers with the chemical formula [R2SiO]n, where R is 

an organic group such as  methyl, ethyl, phenyl, etc., which are polymerized siloxanes or 

polysiloxanes [120]. Silicone consist of an inorganic silicon-oxygen backbone chain (Fig.  3.26) 

with organic side groups attached to the silicon atoms. The (-SiO-) repeat unit is called as the 

“siloxane” bond.  

 

Fig.  3.26. Chemical structure of polysiloxane chain.  

 

Since the polymer backbone is “inorganic” in nature, while the substituents attached to the 

silicon atom are generally “organic” radicals, silicones form an important bridge between 

inorganic and organic polymers. Compared to the carbon-based polymers, silicone polymers 

display an unusual combination of physical and chemical properties, such as high backbone 

https://en.wikipedia.org/wiki/File:Pdms.png
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flexibility and very low glass transition temperatures (around −120 °C), good thermal and 

oxidative stability, high gas permeability, and good dielectric properties. The differences are 

coming from different properties of the (-C-O-) and (-SiO-) bonds. The siloxane bond displays 

an ionic character due to the large electronegativity difference between silicon and oxygen 

atoms and, at the same time, partially double bond character, due to pπ–dπ interaction between 

the silicon and oxygen atoms. It results in a large bond angle (142.5°) and provides flexibility 

of the chain and low glass transition temperature by reduction of rotation energy for organic 

groups attached to Si atom.  (-Si-O-) bonds are also stronger (dissociation energy of 460 

kJ/mole, compared with the (-C-O-) (345 kJ/mole) bond) which makes silicone polymers more 

chemically inert and more thermally stable.  

The partial ionic nature of the (-Si-O-) bond also provides great flexibility to chemists for 

the preparation of a wide range of backbone compositions. By varying the (-Si-O-) chain 

lengths, side groups, and crosslinking, silicones can be synthesized with a wide variety of 

properties and compositions from liquid to gel to rubber to hard plastic. One of the most 

common is linear polydimethylsiloxane (PDMS, a silicone oil). The oldest classical synthesis 

methods is the hydrolysis of dimethyldichlorosilane precursor:  

 

n Si(CH3)2Cl2 + n H2O → [Si(CH3)2O]n + 2n HCl 

 

The polymerization produces linear chains capped with Si-Cl or Si-OH (silanol) groups. Today, 

acetates are used instead of chlorides. The hydrolysis of the acetates produces the less 

dangerous acetic acid as the reaction product of a much slower curing process.  

A large group of silicone materials is based on the silicone resins, which are formed by branched 

and cross-linked cage-like structures (Fig.  3.27).  Silicone resins represent a broad range of 

products. Polysiloxane polymers with reactive side group functionality such as vinyl, acrylate 

or epoxy - are used to create thermoset polymer matrix composites, coatings and adhesives. 

 

https://en.wikipedia.org/wiki/Cross-link
https://en.wikipedia.org/wiki/Polydimethylsiloxane
https://en.wikipedia.org/wiki/Silicone_oil
https://en.wikipedia.org/wiki/Dimethyldichlorosilane
https://en.wikipedia.org/wiki/Silanol
https://en.wikipedia.org/wiki/Acetate
https://en.wikipedia.org/wiki/Acetic_acid
https://en.wikipedia.org/wiki/Silicone_resin
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Fig.  3.27. Chemical structure of the silicone resin. R is usually organic group: Methyl (Me) or 

Phenyl (Ph), or a functional group: Hydrogen (H), Hydroxyl group (OH), Chlorine (Cl) or 

Alkoxyl group (OR). 

 

In its uncured state, silicone rubber is a highly-adhesive gel or liquid. In order to convert to 

a solid, it must be cured, vulcanized, or catalyzed. There are two main approaches: condensation 

and addition curing. 

 Addition curing – it is based on reaction between two different chemical groups, usually 

with non-saturated carbon bonds, to form an ethyl bridge [CH2- CH2] and there are no 

byproducts. The reaction occurs only in presence of platinum catalyst, typically two 

separate components are mixed: one component contains platinum; the second 

component contains a siloxane polymer. Such silicone rubbers cure quickly, though the 

rate of or even ability to cure is easily inhibited in the presence of elemental tin, sulphur, 

and many amine compounds. For the platinum-catalyzed cure system, the curing 

process can be accelerated by adding heat or pressure. 

 Condensation curing – consists of two types: one-part and two-part systems. In one-part 

system a cross-linker exposed to ambient humidity undergoes hydrolysis reaction and 

is left with a hydroxyl or silanol group, which condenses with another group from the 

other polymer or cross-linker and the process continues until the system is fully cured. 

The reaction occurs at room temperature, so the materials are usually called RTV – 

Room Temperature Vulcanizing. The crosslinkers used in condensation cure systems 

are typically alkoxy, acetoxy silanes. Two-part condensation systems combine the 

cross-linker and condensation catalyst together in one part, while the polymer and any 

fillers or pigments are in the second part. Mixing of the two parts causes the curing to 

take place. 

https://en.wikipedia.org/wiki/File:Silicone_resin.svg
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In this work, room temperature addition cured Shin-Etsu K1310ST silicon molding resin 

was used as a composite matrix. It can withstand temperatures over 350 °C, cures at room 

temperature for 24 h but that process can be faster when the heat is provided. Pot life time for 

uncured resin, when the mixture stays in liquid form is around 80 min. Cured material exhibits 

expected mechanical strength, and, because of its elastic, rubber-like properties it can absorb 

tensions coming from the hydride expansion during the reaction. In the uncured state, the 

viscosity of the liquid is very  high (75 Pa·s) and during the sample preparation it is mixed with 

a silicone based thinner to tune the viscosity down to 0.1 Pa·s, which allows to get better wetting 

of the filler particles and to achieve higher loading. 

 

Sputtering targets 

Sputtering targets of vanadium, nickel and niobium were supplied by the Changsha Xinkang 

Advanced Materials Co. Ltd. [121]. They are of a disk shape (30mm x 3mm) and 3N purity. In 

the case of nickel, which is a ferromagnetic material and it cannot easily be sputtered using 

magnetron technology, a special, paramagnetic alloy of nickel and 7 wt. % of vanadium was 

used.  
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4. MAGNETRON COATING OF MAGNESIUM HYDRIDE POWDERS – RESULTS 

AND DISCUSSION 

This chapter presents results of the research focused on coating of magnesium powders with 

catalytic layers using magnetron sputtering technology. Thin films of nickel, vanadium and 

niobium were successfully produced and observed with the SEM microscopy. The structure 

and phase composition, as well as element content was analyzed with XRD and EDS methods. 

Thermodynamics and kinetics of coated magnesium hydride was studied using differential 

scanning calorimetry, thermogravimetry and volumetric Sieverts method. At the end, the 

hydrogenation/dehydrogenation cycling was studied.  

 

4.1. Samples overview 

Three series of samples, which differ in the substrate form, type of sputtered material and 

conditions were prepared (summary in Table 4.1):  

 Series 1- As received magnesium hydride was coated with the nickel and vanadium 

layers. Three samples with different sputtering times were produced for each target – 

15, 30, 45 min for nickel and 30, 60 and 90 min for vanadium. Times of sputtering are 

chosen using a previously prepared calibration curve of magnetron to obtain layers with 

similar thickness. Because the sputtering of the pure nickel is not possible with 

magnetron technology, due to its strong ferromagnetic properties, a special NiV7wt. % 

alloy, with paramagnetic properties was used. In this work, that materials will be called 

just “nickel” to simplify the samples nomenclature.  

 Series 2 - Magnesium hydride was ball milled in order to nanostructurize material, 

which results with its better kinetic and thermodynamic performance (Chapter 2).  

Powders were coated again with the nickel, but instead of vanadium, which had weaker 

impact on the reaction kinetics, more promising niobium was used. A three samples for 

each material were sputtered. Unfortunately, ball milled powders were much more 

reactive than the as-received one and easy getting oxidized during experiment, which 

provided a motivation to modify the equipment. However, basic measurements were 

also performed for this group of materials. 

 Series 3 - Sputtering equipment (Chapter 3) had been modified by adding remotely 

controlled, sealed cover for powder container and by improving high vacuum pumps, 

which can generate one order of magnitude better vacuum. Experiment could then be 

carried out without exposing MgH2 to the air. One sample for both niobium and nickel 
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target was prepared, with 60 and 30 min sputtering times, respectively. Moreover, to 

reduce agglomeration effect, which occurred for ball milled powder, metal balls 

crushing agglomerates during powder mixing were added.  

 

Table 4.1. Preparation parameters and naming of coated samples. 

Series 
Substrate 

type 

Coating 

material 

Sputtering 

time [min] 
Code 

1 As received MgH2 

Ni 

15 #1a 

30 #1b 

45 #1c 

V 

30 #1d 

45 #1e 

90 #1f 

2 
Ball milled MgH2 

(MgH2 – BM) 

Nb 

30 #2a 

45 #2b 

90 #2c 

Ni 

15 #2d 

30 #2e 

45 #2f 

3 
Ball milled MgH2 

(MgH2 – BM) 

Nb 60 #3a 

Ni 30 #3b 

 

4.2. Structural studies with X-Ray diffraction 

Right after the sputtering XRD patterns for all samples were collected in order to examine 

composition changes during the sputtering and to analyse sputtered material structure. Results 

for Series 1 powders are presented in Fig.  4.1 (nickel) and in Fig.  4.2 (vanadium). In addition, 

phase composition determined from the Rietveld refinement are listed in Table 4.1. Full fitting 

results (data, calculated profile, background and difference plots) are listed in the Appendix. 

There is no significant reflections of nickel or vanadium metal present (blue dots), which is 

possibly due to amorphous/nanocrystalline character and/or very low thickness of the sputtered 

films. To prove the presence of metal layers on the surface of the grains the EDS mapping was 

performed, as described in the next subsection. It is worth noting, that magnesium hydride does 

not oxidize during experiment. No significant reflections from MgO or Mg(OH)2 (black dots) 

were found. Also the decomposition of hydride resulting from plasma heating in vacuum is 

negligible. Rietveld refinement of the diffractograms shows that the samples contain from 2.6 

to 6.5% of pure magnesium, which is slightly more than in pristine MgH2 material. It is caused 

by the decomposition of magnesium hydride due to plasma bombardment or it could be the 

effect of presence of the catalyst on the surface grains. Partial decomposition is slightly stronger 

for nickel samples, which is the result of its good catalyzing performance.  
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Fig.  4.1. XRD pattern of the nickel coated magnesium hydride powders (Series 1). 
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Fig.  4.2. XRD pattern of the vanadium coated magnesium hydride powders (Series 1). 
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Table 4.2. Series 1samples - composition obtained from Rietveld refinement of XRD pattern. 

Code Sample Name 
Sample composition [wt. %] 

Mg β-MgH2 

#1a MgH2, Ni 15min, Series 1 2.1 97.9 
#1b MgH2, Ni 30min, Series 1 3 97 
#1c MgH2, Ni 45min, Series 1 6.5 93.5 
#1d MgH2, V 30min, Series 1 1.2 98.8 
#1e MgH2, V 60min, Series 1 2.2 97.8 
#1f MgH2, V 90min, Series 1 3 97 

 

Series 2 composed of coated ball milled powders exhibits more complex structure. Peaks 

coming from both sputtered materials, niobium (Fig.  4.3) and nickel (Fig.  4.4), are negligible 

like in Series 1 materials. What is new a strong magnesium oxide reflection (near 2θ = 42°) is 

present. Its wide shape is characteristic to surface shell oxidation layer present on oxidized 

magnesium and magnesium hydride. For niobium the amount of oxide keeps on the level of 20-

30 wt. %, but in case of nickel it is stronger, it can reach content near 70 wt. % (Table 4.3). The 

mount of MgO for Ni coated powders growths while increasing of sputtering time, what 

suggest, that the main problem may be related with proper vacuum level and impurities of the 

working gas during the sputtering.  Other interesting observation is the partial decomposition 

of the MgH2 to pure magnesium, which is stronger in case of ball milled powders. Coated 

hydride poses lower activation energy, which enhances desorption kinetics and magnesium 

hydride may partially decompose due to plasma heating. 

 

Table 4.3. Series 2 composition obtained from Rietveld refinement of XRD pattern. 

Code Sample Name 
Sample composition [wt. %] 

Mg β-MgH2 γ-MgH2 MgO 

#2a MgH2-BM, Nb 30min, Series 2 1.1 77.9 2.4 18.6 

#2b MgH2-BM, Nb 60min, Series 2 20.8 46.8 0.4 32.0 

#2c MgH2-BM, Nb 90min, Series 2 11.2 61.9 0.7 26.2 

#2d MgH2-BM, Ni 15min, Series 2 5.3 57.7 2.6 34.4 

#2e MgH2-BM, Ni 30min, Series 2 10.1 28.9 2.6 58.4 

#2f MgH2-BM, Ni 45min, Series 2 3.5 11.5 0.4 84.7 
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Fig.  4.3. XRD pattern of the niobium coated, ball milled magnesium hydride powders (Series 

2). 
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Fig.  4.4. XRD pattern of the nickel coated, ball milled magnesium hydride powders – (Series 

2). 



68 

 

 

 

Modification of the experiment equipment for Series 3 samples results in reduction of the 

oxidation problem, especially for nickel coated materials (Fig.  4.5 and Table 4.4).  The 

decomposition of magnesium hydride is also stopped, what is probably unexpected result of 

improving of the vacuum level – plasma heating is weaker. For niobium samples from both of 

Series 2 and 3 decomposition effect of magnesium hydride is slightly greater, what may result 

in better kinetic for hydride coated with that catalyst. On the other hand, nickel samples are 

more sensitive for presence of oxygen. The amount of Nb and Ni metals was too low to observe 

its diffraction peaks. 
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Fig.  4.5. XRD pattern of the nickel and niobium coated, ball milled magnesium hydride 

powders (Series 3). 

 

Table 4.4. Series 3 composition obtained from Rietveld refinement of XRD pattern. 

Code Sample Name 
Sample composition [wt. %] 

Mg β-MgH2 γ-MgH2 MgO 

#3a MgH2-BM, Nb 60min, Series 3 4.3 71.1 0.2 24.3 

#3b MgH2-BM, Ni 30min, Series 3 1.7 78.6 0.5 19.2 
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4.3. Observations of surface element distribution 

In order to prove the presence of thin films of Ni, V and Nb metal on the surface of 

magnesium hydride particles an EDS mapping was performed. Moreover, SEM observation 

allowed to check the character of films, i.e. if they are built from nanoparticles or flakes attach 

to the grain surface or if they are continuous layer.  It also allows to estimate the thickness of 

coatings and to analyze the distribution of elements (Subsection 4.4). Elemental analysis of 

EDS spectra of panoramic photos (containing many particles, not single grain) was used to 

estimate effective catalyst amount in the samples – obtained valued are presented on the plots 

together with the spectra.  For as received coated powders (Series 1), results are shown on Fig.  

4.6. Nickel and vanadium K-lines are clearly seen in the spectra, but their intensity is around 1-

2% of the intensity of magnesium line. It gives between 0.18 wt. % and 1.21 wt. % of nickel 

and 0.23 wt. % to 0.95 wt. % of vanadium in the sample. Based on literature data (Chapter 2) 

amounts of dopant are relatively low compared to the typical values reported in publications 

(5-15 wt. %). Magnesium, nickel and vanadium distribution maps for single, random picked 

grain are presented in Fig.  4.7 and Fig.  4.8. They show that the catalytic elements fully cover 

the surface of the grains and the intensity of catalytic metal signal increases with sputtering 

time, which indicates increasing layer thickness. The coating can be assumed as uniform – 

variations in the Ni or V intensity are related to the grain topography – edges, cracks, slopes 

poses slightly higher or lower signal intensity. 
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Fig.  4.6. EDS spectra of Series 1, nickel and vanadium coated powders. 
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Fig.  4.7. SEM image and EDS element map of the nickel coated magnesium hydride powder 

(Series 1). 

 

 

Fig.  4.8. SEM image and EDS element map of the vanadium coated magnesium hydride powder 

(Series 1). 
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A higher magnification image of single grain shows interesting phenomena. There are two types 

of particles: with the clear surface and with the surface decorated with ~60 nm size 

nanoparticles (Fig.  4.9). To check the possibility that nickel and vanadium are present in form 

of nanoparticles on the surface instead of a continuous layer the EDS measurements at different 

points were performed in order to check the chemical composition of observed structured (Fig.  

4.10). Vanadium lines are present on spectra collected for both clear surface and nanoparticle 

points. Line intensity on clear surfaces is stronger than for nanoparticle, so it can be assumed, 

that metal layer lays under the nano grains and is continuous. Visible nanoparticles can be 

results of surface oxidation occurring during SEM sample preparation, when powder is exposed 

to the air. Bigger grains (~1µm) present on the surface are coming from the finest phase of 

original, as received MgH2 powder. Observation confirming that theory is the strong peak   of 

silicon visible on Fig.  4.10a – Si impurities were found in the origin magnesium hydride 

powder (Chapter 3). 

 

 

Fig.  4.9. SEM close up images of V #1e sample showing vanadium coated grains with clear 

(a) and nanoparticle decorated surface (b).  
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Fig.  4.10. EDS spectra of #1e vanadium coated grains with clear (a) and nanoparticle 

decorated surface (b). 

 

Because the grains size was strongly reduced for the ball milled magnesium hydride, different 

effects are observed. First of all, fine powders easy undergo agglomeration while mixing during 

the sputtering – large conglomerates (~10-50 µm) of smaller (100 nm) grains are formed. Fig.  

4.11shows SEM images of #2d sample taken under different magnifications. On the two 

panoramic views (a, b) a wide distribution of particles, staring from fine nanoparticles to 100 

µm grains can be observed. More detailed images (c, d) shows that there are two type of 

structures with similar, nearly 10 µm size:  clear not milled grains (c) and aggregates (d) build 

of 100 nm nanoparticles (f). Except of conglomerates, a lot of irregular shape nanoparticles lays 

in the background of bigger structures (e). 

 

 

Fig.  4.11. SEM photos of #2d (MgH2 –BM, Ni 15min, Series 2) powders taken under different 

magnification to observe different particle types, size, and structures. 
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Coating of such agglomerates and structures is strongly not uniform. Fig.  4.12 and Fig.  4.14 

presents elements distribution maps for niobium and nickel samples. It is clearly seen that 

catalyst lines intensities poses very wide distribution – some of magnesium grains are fully 

covered with Ni or Nb, some of them are only partially covered.  When agglomerates are 

crushed, particles from their interior can be even clean. In result of pure uniformity, influence 

of catalyst on the magnesium hydride properties will be varied for different particles and the 

average properties and parameters of coated samples will poses wide range of values and large 

uncertainty. An example is the effective amount of dopant introduced to the MgH2 (Fig.  4.13), 

for nickel it is between 0.77 and 1.73 wt. %, but for niobium it is overestimated - it can reach 

7.6 wt. %, despite the fact, that the sputtering times were set using calibration curve to achieve 

similar thickness.  

 

 

Fig.  4.12. SEM image and ED’s element map of the niobium coated, ball milled magnesium 

hydride powder (Series 2). 
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Fig.  4.13. EDS spectra of Series 2, nickel and niobium coated, ball milled powders. 

 

 

Fig.  4.14. SEM image and EDS element map of the nickel coated, ball milled magnesium 

hydride powder (Series 2). 

 

After the modification of sputtering equipment by adding metal balls crushing the 

conglomerates samples of Series 3 were produced and studies (Fig.  4.15 and  

Fig.  4.16). The uniformity of the coating is better, however it still exists – future studies about 

the mixing process and development of anticaking system suited to work in high vacuum are 

needed.  Effective amount of dopant calculated from EDS spectra are 1.58 and 0.27 wt. % for 

niobium and nickel respectively. Nickel amount is much lower than expected (~1.5 wt. %), 

despite using the same conditions of time and power as in previous samples. This could be 
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effect of the target erosion, because this experiment was performed at last. Presence of deep 

race track on the target surface enhances redeposition of sputtered atoms on the target and in 

results, reduces the sputtering rate. This is confirmed when we look on the results of elemental 

analysis for #2d-#2f samples (Fig.  4.13). Sputtering times were growing linearly (15, 30 and 

45 min), but the difference in nickel content between #2e and #2f sample is three time lower 

than the difference between sample #2d and #2e, which has to be caused by erosion of the 

target. 
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Fig.  4.15. EDS spectra of Series 3, nickel and niobium coated, ball milled powders. 

 

 

Fig.  4.16. SEM image and EDS element map of the niobium and nickel coated, ball milled 

magnesium hydride powder (Series 3). 
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4.4. Measurements of the coating films thickness and its variation 

In order to determine the thickness of sputtered films, the cross-sections were prepared and 

their SEM images were obtained. Powder samples were suspended in the epoxy resin, cured, 

then cut and polished with the sandpaper and diamond pastes. Fig.  4.17 and Fig.  4.18 present 

the images of a single nickel-coated grain of the samples #1b and #1c. A glossy layer visible 

on the grain edge corresponds to Ni film and the EDS mapping confirms its metallic character 

 

 

Fig.  4.17. Cross section image of #1b powder and EDS mapping results showing magnesium 

and nickel distribution. 

 

 

Fig.  4.18. Cross section image of #1c powder and EDS mapping results showing magnesium 

and nickel distribution. 

 

Some may notice, that interior of the grains on the Ni – maps poses stronger intensities than 

inter-particle, resin filled spaces. It is due to the higher background coming from stronger 

electron interactions with magnesium than with the carbon from resin. To prove that, point EDS 

measurements were taken at point near glossy layer, in the interior and between the grains (Fig.  

4.19). On the pt. 1 spectra, nickel line is present in contrast to the pt. 2 and 3, which is result of 

thin film of nickel formed on the surface of magnesium hydride. On spectra taken in pt. 2, which 

is interior of the particle, magnesium, as well as related impurities (Al, Si) only are present. 

Space between particles, is filled with resin, so except the carbon only chlorine and fluorine 
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lines are visible. Small magnesium peak in that point is coming probably from magnesium 

particles in deeper parts of the cross-section. 
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Fig.  4.19. EDS spectra of the cross-section of particles from #1b, nickel coated sample, 

collected at points on the layer, in thee grain interior and between the particles.  

 

The thickness was calculated using computer software, basing on nickel intensity profile along 

line coming through background, the layer and grain interior, perpendicularly to the layer (Fig.  

4.20). However, the exact measurement and thickness distribution cannot be collected.  The 

main reason is that the metal film is scrapped form the hydride surface during polishing process. 

Moreover, the effective thickness measured depends on the grain position and orientation and 

low electrical conductivity of the resin limits image resolution and EDS signal.  

N
i 
1
5
m

in

N
i 
3
0
m

in

N
i 
4
5
m

in

V
 3

0
m

in

V
 6

0
m

in

V
 9

0
m

in

0

100

200

300

400

T
h
ic

k
n
e
s
s
 (

n
m

)

 

Fig.  4.20. Relative nickel intensity profile along line passing through the background, metal 

layer and interior of hydride grain and approximate thickness distribution calculated for Series 

1 samples. 
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Estimated results are presented in Fig.  4.20. The thickness of both sputtered metals, nickel and 

vanadium grows with increasing sputtering time, and it is in the range of 80-320 nm and 60-

170 nm for hydride coated with Ni and V respectively. It has to be noted, that vanadium layers 

are thinner even if sputtering time is two times longer than for nickel films. This effect can be 

related to a lower diffusion rate of vanadium atoms in argon plasma. In case of ball milled 

coated powders, thickness analysis could not be performed due to sample preparation problem 

during the polishing and the fact, that the is strongly not uniform and very thin.   

 

4.5. Study of thermodynamic properties and thermal decomposition 

DSC measurements were performed on 0.5 mg samples at the 1, 5 and 10 °C/min heating 

rates. As shown in Fig.  4.21, nickel coating reduces hydrogen desorption temperature by about 

50 °C comparing to the pure hydride, moreover the temperature decreases with increasing 

sputtering time, which can be related to larger amount of dopant added. Endothermic 

decomposition peaks have asymmetric shape, suggesting two reactions occurring at the same 

time and giving overlapping peaks. This may be an effect of intermetallic alloys formed at the 

interface between the hydride and nickel layer, as the asymmetry is stronger for thicker 

coatings.  
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Fig.  4.21. DSC curves obtained at 5°C/min heating rate and the activation energies derived 

from Kissinger plots for DSC curves obtained at 1, 5 and 10 °C/min heating rates - for nickel 

coated samples (Series 1). 

 

Activation energy of hydrogen dissociation on the surface of the materials could be determined 

using the Kissinger method (Chapter 3) based on the DSC peak shift due to different heating 

rates (1 to 10 °C/min). The energy barrier is found to be of 90-150 kJ/mol lower than that of 
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the raw magnesium hydride, but no clear dependence between the coating thickness and the 

activation energy could be observed. Kinetic barriers for samples #1a (15min) and #1c (45min) 

are similar, but the decomposition temperatures differ by ~40 °C. An interesting fact is that the 

activation energy of medium coated sample is higher than others – we believe that it is caused 

by cracking or falling off the thick layers (sample Ni #3) during the sample preparation, but 

they could not be found during SEM observations. To solve this problem further study is 

needed. 

In case of vanadium samples different results were obtained (Fig.  4.22). The decomposition 

temperature is similar, or even slightly higher than the pure hydride, as for   30min sample, but 

the activation energy is still reduced by ~100 kJ/mol. Again, no dependence between the 

catalyst amount and the activation energy can be derived. 
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Fig.  4.22. DSC curves obtained at 5°C/min heating rate and the activation energies derived 

from Kissinger plots for DSC curves obtained at 1, 5 and 10 °C/min heating rates - for 

vanadium coated samples (Series 1). 

 

To distinguish the effects of thin film catalyst on the decomposition temperature shift and the 

reduction of the activation energy the following model of the influence of the coating thickness 

on the kinetic properties is proposed:  The dissociation with spill-over mechanism on the 

coating is the most effective, when the surface of the hydride grain is completely covered and 

all hydrogen gas molecules approaching the magnesium surface can meet the catalyst atoms.  

As long as the layer covers whole surface, further increase of its thickness will no more affect 

the activation energy. On the other hand, thicker coating may lead to formation of magnesium 

alloys on the surface of magnesium, which allows to start decomposition at lower effective 

temperatures due to enhanced nucleation and phase growth. For both nickel and vanadium 
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samples activation energy is lowered because the layers cover whole surface of the MgH2 

particles, but the nickel rather form hydrogen storage alloys with magnesium than vanadium, 

thus the decomposition temperature can be reduced. 

Because of the oxidation effect, DSC curves collected for ball milled, coated powders (Fig.  

4.23 – black curve represents data for the pure, ball milled magnesium hydride) have unusual 

course. At first, the peak area varies because of lower content of magnesium hydride. Some of 

samples, especially with mean amount of dopant (blue lines), shows very weak decomposition 

peaks, near 490 °C for Nb and 395 °C for Ni. Only niobium samples with 30 and 90 sputtering 

times poses typical shape of the plots with decomposition occurring near 452 °C and 469 °C. 

Other samples have very irregular, or composed of multiple peaks, heat flow dependence.  It is 

an effect of strongly uniform coating - particles covered with different amount of dopant 

exhibits different reaction kinetics. Because the coating distribution is wide, but continuous, it 

can produce very wide peaks, noises and changes of shape of DSC baseline (e. g. sample Ni 

15min and Ni 45min). Such artefacts make data analysis and material characterization 

uncertain. Last observed effect is higher desorption temperature for all prepared samples. The 

simplest explanation is the presence of the oxidation shells on the surface of magnesium 

hydride, but no clear dependence between the MgO content (Table 4.3) and shift in the 

decomposition temperature – magnesium oxide layer may cover the grain with different 

thickness because of different reactivity of not uniformly coated powder.   
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Fig.  4.23. DSC curves obtained at 5°C/min heating rate for niobium and nickel coated, ball 

milled samples (Series 2). 

 

Last series (Series 3) of materials was prepared in covered powder container with presence of 

metal balls limiting agglomeration. The DSC plots (Fig.  4.24) consist of the single 
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decomposition peak, near 381 °C for nickel and 404 °C for niobium. Powder poses more 

uniform properties than the previous sample group, but the effect of oxidation still affects on 

the decomposition temperature  - comparing with the pure ball milled MgH2 it is around 1 °C 

and 14 °C for the nickel and niobium respectively. It must be notice, that despite the oxidation 

and smaller effective amount of nickel in the sample (Fig.  4.15) the peak shift is lower than 

niobium, which confirms postulate of stronger catalysis capabilities of nickel. The activation 

energy has been reduced for both samples, but is slightly lower (161.7 kJ/mol) for Nb sample 

than nickel one (168.8 kJ/mol). 
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Fig.  4.24. DSC curves obtained at 5°C/min heating rate and the activation energies derived 

from Kissinger plots for DSC curves obtained at 1, 5, 10 and 20 °C/min heating rates - for 

nickel and niobium coated, ball milled samples (Series 3). 

 

4.6. Measurements of the hydrogenation/dehydrogenation reaction rate 

Hydrogen absorption and desorption kinetics were studied using a Sieverts apparatus. 100mg 

of hydride sample was initially activated for 20h at 300 °C. Then, it has been dehydrogenated 

and hydrogenated under 0.01 and 10 bar pressure, respectively. Fig.  4.25 and Fig.  4.26 show 

time dependence of reacted hydrogen content for the first 150 min of the reaction for nickel and 

vanadium coated magnesium hydride powder from Series 1 group of samples. Nickel can 

effectively enhances hydrogenation and dehydrogenation rates, reducing time needed for 

charging and discharging of the tank. One of the method to estimate the reaction kinetic is to 

compare times needed to desorb or absorb of 90% of maximal capacity for the sample (Table 

4.5). 
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Fig.  4.25. Hydrogenation and dehydrogenation curves of the nickel coated magnesium hydride 

powders – Series 1. 
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Fig.  4.26. Hydrogenation and dehydrogenation curves of the vanadium coated magnesium 

hydride powders – Series 1. 

 

Table 4.5. Time needed to react of 90% of hydrogen for Series 1, nickel coated powders. 

Code 
Sample 

name 

Time to react of 90% of 

hydrogen [min] 

Absorption Desorption 

- MgH2 - pure >500 >700 

#1a MgH2, Ni 15min, Series 1 97 31 

#1b MgH2, Ni 30min, Series 1 64 38 

#1c MgH2, Ni 45min, Series 1 69 15 

 

Time reduction effect is much stronger for desorption process - to completely decompose the 

sample it needs 15-38 min for coated samples and more than 12h for pure, as received 

magnesium hydride. Absorption process is also enhanced, but weakly. Vanadium coating 

causes some improve in dehydrogenation rate, but the influence is very small and in case of 

absorption reaction it is even slower than the pure MgH2 – there is a postulate, that vanadium 

layer is too dense at limits hydrogen diffusion to and from the magnesium metal, but there is 
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not experimental method to confirm that statement. What is important, the equilibrium 

hydrogen capacity of samples differs between them and does not reach the theoretical value 

(7.5%), it reaches around 2 – 3.5 wt. % which is 2-3 times lower than expected level. XRD 

measurements performed after the desorption stage have confirmed, that samples are only 

partially decomposed. Additional trials and studies are needed in order to find the proper 

pressure/temperature conditions for the reaction (Subsection 4.7). 

Ball milled magnesium hydride generally exhibits better reaction kinetics (Table 4.6). For 

the pure MgH2, it takes around 25 minutes to absorb and 235 min to desorb of 90% of stored 

hydrogen. Series 2 niobium coatings have very small impact for reaction kinetics, the 

desorption time stays on similar level (233-219 min) and the absorption is longer than the pure 

hydride (26-33 min). Obtained results suggest great enhancement of hydrogenation (11-4 min) 

and dehydrogenation (103-62) speed for nickel samples, but it must be pointed out, that nickel 

samples contains smaller amounts of the hydride (~11-5 wt. %, Table 4.3). On the other hand, 

larger oxide shells should reduce the diffusion rate and reaction speed. Further analysis is 

needed to distinguish effects of mounts of the hydride and oxide to reaction kinetics. 

 

Table 4.6. Time needed to react of 90% of hydrogen for Series 2 and Series 3, ball milled, 

niobium and nickel coated powders. 

Code Sample name 

Time to react of 90% of hydrogen 

[min] 

Absorption Desorption 

- MgH2 - BM 25 235 

#2a MgH2 - BM, Nb 30 min, Series 2 32 233 

#2b MgH2 - BM, Nb 60 min, Series 2 33 229 

#2c MgH2 - BM, Nb 90 min, Series 2 26 212 

#2d MgH2 - BM, Ni 15 min, Series 2 9 103 

#2e MgH2 - BM, Ni 30 min, Series 2 11 100 

#2f MgH2 - BM, Ni 45 min, Series 2 4 62 

  

- MgH2 - BM 25 235 

#3a MgH2 - BM, Nb 60 min, Series 3 19 277 

#3b MgH2 - BM, Ni 30 min, Series 3 31 228 

 

Hydrogen capacities (Fig.  4.27 and Fig.  4.28) are different than expected value (6-7.5 wt. %), 

due to the changes in sample composition and changes in optimal reaction conditions. Effective 

measured hydrogen content is near 1.5-3.5 wt. % and 1.2 – 1.7 wt. % for niobium and nickel 

coated samples.  

 



84 

 

 

0 25 50 75
0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0
H

y
d

ro
g

e
n

 r
e

a
c
te

d
 (

w
t.

  
%

)

Time (min)

 MgH
2
 - BM

 #2a / MgH
2
 - BM, Nb 30 min, Series 2

 #2b / MgH
2
 - BM, Nb 60 min, Series 2

 #2c / MgH
2
 - BM, Nb 90 min, Series 2

Absorption

0 100 200 300
0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Desorption

H
y
d

ro
g

e
n

 r
e

a
c
te

d
 (

w
t.

  
%

)

Time (min)

 MgH
2
 - BM

 #2a / MgH
2
 - BM, Nb 30 min, Series 2

 #2b / MgH
2
 - BM, Nb 60 min, Series 2

 #2c / MgH
2
 - BM, Nb 90 min, Series 2

 

Fig.  4.27. Hydrogenation and dehydrogenation curves of the niobium coated, ball milled 

magnesium hydride powders – Series 2. 
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Fig.  4.28. Hydrogenation and dehydrogenation curves of the nickel coated, ball milled 

magnesium hydride powders – Series 2. 

 

Except of comparing times of reaction and achieved capacities, a reaction speed changes can 

be studied. For open system, e.g. with the hydrogen inflow, it is usually calculated as the 

derivative of the amount of reacted (Absorbed or desorbed) hydrogen versus the time. Results 

in the initial minutes of the reaction are shown on plots below (Fig.  4.29 and Fig.  4.30). 

Absorption plots have typical exponential shape, where reaction starts rapidly and slowly 

extinguishes when the saturation area is reached. The desorption for niobium coated and for the 

pure hydride looks different: it poses a maximum point after several minutes for the start of 

reaction. It can be related to heat transfer problem – it is necessary to deliver large amount of 

heat to the sample to star the reaction, thus the reaction rate on the begging is slow. In case of 

absorption, heat also have to be dissipated, but the active material can store some amount of 

heat until it is removed. Moreover, on beginning of the process it is in metallic form, so the 

thermal conductivity is more than two orders of magnitude greater (Chapter 2), so heat can be 
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transferred faster. When the amount of MgH2 in sample is lower, heat transfer is more negligible 

and its influence on desorption character is weaker. It can be observed for the nickel desorption 

derivative, there is some raise near 75 min reaction time but the dependence is more close to 

the exponential one. 

Both of nickel and niobium samples have higher rate for absorption but the difference is 

higher for Nb coated powders (0.7 wt. %/min compared to 0.03 wt. %/min) than Ni one (0.7 

wt. %/min compared 0.09 wt. %/min). Nickel doped materials poses also much better kinetics 

for the desorption than niobium samples, but the absorption kinetics is slightly lower.  
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Fig.  4.29. Reaction speed, calculated as the derivative of the reacted hydrogen plot, for Series 

2, ball milled, niobium coated magnesium hydride. 
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Fig.  4.30. Reaction speed, calculated as the derivative of the reacted hydrogen plot, for Series 

2, ball milled, nickel coated magnesium hydride. 

 

Series 3 ball milled, Nb- and Ni-coated materials (Fig.  4.31) exhibits similar effects, but there 

is an interesting observation for desorption plot. When it starts, it is relatively fast, then the 

increase suddenly stops and the amount of reacted hydrogen poses nearly linear time 
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dependence until it saturates. It is clearly seen on the derivative plot (Fig.  4.32). It starts with 

rate of 0.05 – 0.07 wt. %/min, then the reaction slows down (in case of pure MgH2 and nickel 

coated it almost stops) and then the reaction rate raises to 0.01 wt. %/min and falls again when 

the reaction is close to the saturation point.  
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Fig.  4.31. Hydrogenation and dehydrogenation curves of the nickel and niobium coated, ball 

milled magnesium hydride powders – Series 3. 
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Fig.  4.32. Reaction speed, calculated as the derivative of the reacted hydrogen plot, for Series 

3, ball milled, niobium and nickel coated magnesium hydride. 

 

4.7. Analysis of the Pressure-Composition-Temperature dependencies 

Pressure-Composition-Temperature curves for both absorption and desorption were taken at 

first for raw MgH2 and nickel coated sample from Series 1 (Fig.  4.33). The hydrogen 

concentration saturates at 6.5 wt. % for the uncoated and at 5-6.5% for the nickel coated sample, 

where additionally a stronger dependence of the maximal hydrogen capacity on temperature 

and a higher slope of the plateau for the coated sample can be observed. A pressure position of 

the plateau is around 2 bars lower for coated sample, which suggests that coating allows 
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hydrogen to effectively transfer to magnesium at lower pressures. The thermodynamic 

parameters of the reactions were derived using van’t Hoff equation. There is no significant 

difference in their values between uncoated and Ni coated samples - the amount of nickel 

introduced to the hydride is not large enough to form an alloy in large part of the sample, not 

only on the surface. In case of desorption process the entropies and enthalpies are overestimated 

for the nickel sample. 
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Fig.  4.33. Absorption and desorption PCT curves for uncoated MgH2 and #1b (30min) nickel 

coated sample. 

 

In addition, PCS measurement were performed also for one of the niobium materials (#3a, Nb 

30min). Results (Fig.  4.34) indicates the increase of both of entropy (to ~200 kJ/mol) and 

enthalpy of reaction (to ~110 kJ/mol), probably due to the oxidation effects. It is interesting, 

that the increase in the enthalpy of the decomposition can be also noticed from the deeper peak 

for that sample on the DSC plot (Fig.  4.24), because of grater heat of reaction. I can be achieved 

4.5-4.8 wt. % hydrogen concentration for that material and the plateau is more flat than for the 

nickel one. Desorption and absorption plateaus are shifted by 3 bars, and there is interesting 
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difference in the plot for low and high hydrogen concentrations. In case of absorption, transition 

from α to (α+β) phase (Chapter 2) is very sharp but or the desorption is more smooth. Opposite 

effect can be observed for when the amount of β increases. 
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Fig.  4.34. Absorption and desorption PCT curves #3a niobium coated sample 

 

4.8. Study of the influence of reaction cycling on the properties of coated powders 

Previously described measurements were repeated for #1b nickel coated sample after ten 

dehydriding/hydriding cycles in order to check the layer quality and tolerance for cycling. 

Cycling was performed under 300 °C, with absorption pressure of 1 MPa and continuous 

vacuum for desorption. Hydrogenation curves and maximal capacity versus the cycle number 

are presented in Fig.  4.35. Coated powder has stable reaction kinetics (except of first cycle) 

and stable hydrogen capacity of ~2.85 wt. %.  
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Fig.  4.35. Hydrogenation curve for ten cycles of reaction for sample #1b, and maximum 

capacity of the sample versus cycle number 
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Because maximal amount of reacted hydrogen is below predicted value, XRD measurements 

were performed in order to determine sample composition.  Fig.  4.36 presents XRD pattern of 

material after the cycling. Only 38 wt. % of magnesium is in hydride form, the rest stays in 

metallic stage, probably because of too low pressure of reaction. No oxidation effect during 

cycling occurred. 
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Fig.  4.36. XRD pattern and phase content of #1b nickel coated magnesium hydride after several 

reaction. Last cycle ended with absorption. 

 

Fig.  4.37 presents SEM image and nickel distribution map on the surface of hydride grain. 

Metal coating is still present on the exemplary particle but the layer is cracked and partly 

detached, which is confirmed by EDS point measurements (Fig.  4.38) performed in points at 

the particle edge, interior and on visible rupture. The Ni-K line intensity is poorer on the crack 

comparing to the interior area. Apparently higher nickel content on the edges is an effect of 

slope coming from particle shape and orientation. 
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Fig.  4.37. SEM images and EDS map of nickel distribution for a particle of #1b, nickel coated 

sample after the hydriding/dehydriding cycling.  
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Fig.  4.38. SEM image and EDS spectra of Ni #1b nickel coated grains after reaction cycling. 

Spectra were collected at the edge layer area (pt. 1), internal layer (pt. 2) and at a hole in 

cracked layer (pt. 3)  

 

The DSC spectra of raw, nickel coated and cycled hydrides, as well as their activation energies, 

are collected in the Fig.  4.39. What is interesting, the decomposition peak tends to shift back 

to pure MgH2 level, which could be explained by cracking of the metal layer. On the other hand, 

the activation energy for the cycled sample is almost two times lower than for pure hydride and 

45% lower than for initial run. We realize that, when the number ruptures on the layer surface 

grows and the interface between the magnesium and metal film is more open and exposed for 

the hydrogen gas, the dissociation, diffusion and penetration of hydrogen atoms through the 

nickel layer is more effective.  
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Fig.  4.39. The DSC plots and activation energies for the uncoated, the nickel coated hydride 

and for the sample after few reaction cycles.  

 

4.9. Summary of the results obtained for coated magnesium hydride powders 

The aim of the study was test of the possibility of introducing the catalytic elements to the 

magnesium hydride using magnetron sputtering. Instead of ball milling of MgH2 and catalyst, 

deposition of a thin film of metal on the surface of each hydride grain. Thin films of the nickel, 

niobium and vanadium  were  successfully deposited with different sputtering times in three 

series: on the as received and ball milled magnesium hydride (Series 1); on the ball milled 

powder (Series 2) and on the ball milled powder with modified experimental setup (Series 3) 

X-Ray diffraction pattern collected after the sputtering suffers of lack of reflections coming 

from the metal layers – obtained layers thickness is probably too low to get significant signal. 

XRD results showed that some of the samples are sensitive to oxidation. In case of the first 

group of materials, there is no significant oxidation/hydroxidation, but in case of second group, 

oxidation is strong because of higher reactivity of ball milled magnesium hydride. An amount 

of MgO in the sample varies from 20 to 30 wt. % for Nb-coated materials and 40-80 wt. % for 

nickel coated samples and is growing while increasing sputtering time. Nickel coating makes 

ball milled powders much more sensitive for oxidation. Problems spotted during the study of 

Series 2 powders were motivation to modify the experimental setup. Vacuum pumps were 

improved to give one order of magnitude better vacuum (10-4 mbar) and a special, remotely 

controlled cap was added, to cover the powder container while moving to argon filled glovebox. 

After such modifications amount of oxides was reduced to 20 wt. %. Other interesting 

observation is the partial decomposition of the MgH2 to pure magnesium, which is stronger in 

case of ball milled powders. Coated hydride poses lower activation energy, which enhances 

desorption kinetics and magnesium hydride may partially decompose due to plasma heating. 
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SEM observations and EDS mapping shows nickel and vanadium completely covering the 

surface of as received magnesium hydride grains. Thanks to the proper mixing during the 

deposition, film thickness is uniform and reaches 320 nm and 170nm for the nickel and 

vanadium coatings respectively. Artefacts in shape of nanoparticles present on the grains 

surfaces are probably a part of the finest powder fraction sticked to the bigger grains. In case of 

coating of ball-milled powders huge problem of the agglomeration was spotted. Nanoparticles 

with ~100 nm are present in the sample and forms big (~50µm) conglomerates. Sputtering of 

metals on such structures is results in poor uniformity of thin films – some of particles are fully 

covered with niobium or nickel films and some of them remain clear. Such differences in local 

effective amount of the introduced dopants and their structure will cause poor and unclear 

results of thermodynamic and kinematic studies. The effective catalyst content obtained from 

EDS elemental analysis of large scale images stays between ~0.2-1.8 wt. %, only exception are 

niobium samples from Series 2, which contains up to 7 wt. % of Nb, but this values are probably 

overestimated due to not uniform coating. In addition, because of strong sputtering target 

erosion, last nickel sample from Series 3 contents around 5 times less nickel than expected.  

Presence of thin nickel, vanadium and niobium films on the surface of magnesium hydride 

reduces the activation energy for hydrogen dissociation or recombination. The reductions is the 

largest for not-milled, nickel coated samples and can reach 150 kJ/mol. For ball milled powders 

the reduction is smaller, around 40 kJ/mol, but this is the effect of oxidation shells present on 

the hydride surface.  In addition, owing to the surface modification, the effective hydrogen 

desorption temperature was decreased by about 50 K. Following model was proposed to 

describe above effects. The kinetic barrier can be reduced by coating to a level which has its 

limit at the full coverage of magnesium particles by catalyst layer. Further increase in coating 

thickness may affect the effective decomposition temperature by formation of magnesium 

alloys on the grain surface. Niobium and vanadium coating have smaller impact on the shift of 

decomposition temperature, that samples poses nearly the same, or even ~5-10 K higher point 

of desorption compared to the pure MgH2. Because of the oxidation and partial decomposition 

of the magnesium hydride the analysis of the results obtained for Series 2 and Series 3, ball 

milled powders, is uncertain and not clear.   

Hydrogen absorption and desorption kinetics studied using a Sieverts apparatus is greatly 

enhanced for most of the samples. Nickel coating on not milled powders can effectively 

enhances hydrogenation and dehydrogenation rates, reducing time needed for charging and 

discharging of the tank down from more than 12 hour to 70 and 15 min. The impact on 
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desorption kinetics is stronger than absorption. Vanadium coating, probably because of lower 

hydrogen permeability, causes small enhancement in dehydrogenation rate, but the absorption 

reaction it is slower than the pure MgH2. The equilibrium hydrogen capacity is lower the 

theoretical value (7.5 wt. %), it reaches around 2 – 3.5 wt. %, due to only partial decomposition 

of magnesium hydride under that conditions. Ball milled magnesium hydride exhibits better 

reaction kinetics for absorption process. Times needed to react of 90% of hydrogen can reach 

33-25 min for niobium coating and 11-4 min for nickel one, but nickel samples contains smaller 

amounts of the hydride (~11-5 wt. %) due to oxidation. More studies are needed to distinguish 

effects of amounts of the hydride and oxide to reaction kinetics. Effective measured hydrogen 

content is near 1.5-3.5 wt. % and 1.2 – 1.7 wt. % for niobium and nickel coated samples, which 

is far from the expected values (6-7.5 wt. %). 

A reaction speed time dependence, defined as the derivative of reacted hydrogen content 

shows interesting behaviour. For absorption it has typical exponential shape - reaction starts 

rapidly and slowly extinguishes. On the other hand, the desorption poses a maximum efficiency 

after several minutes from the beginning of the process. Differences can be explained by the 

different heat transfer models: for desorption, it is necessary to deliver large amount of heat to 

the sample to star the reaction, which makes initial reaction speed low. In case of absorption, 

heat also have to be dissipated, but the active material can store some amount of heat until it is 

removed. Moreover, on beginning of the process it is in metallic form, so the thermal 

conductivity is much higher the hydride form, so heat can be removed faster. Both of nickel 

and niobium samples have higher rate for absorption but the difference (0.7 vs 0.04 wt. %/min 

for Nb and 0.5 vs 0.09 wt. %/min for Ni). Nickel doped materials poses also much better kinetics 

than niobium samples, but the absorption kinetics is slightly lower.  

Despite the fact that the sorption kinetics is enhanced, the thermodynamics of the hydride 

did not change. Entropies and enthalpies of reaction stays on the similar level for nickel coated 

sample as in the as received magnesium hydride. The amount of nickel introduced to the hydride 

is not large enough to form an alloy in large part of the sample, not only on the surface, so 

typical alloying method of improvement cannot be applied. Hydrogen content saturates at 4.5-

6.6 wt. % and the plateaus of coated samples are at 3-4 bars lower level than pure MgH2. 

Because of the surface modifications, coated powders are characterized with slightly higher 

slopes, especially near saturation region. Ball milled powders coated with niobium poses the 

increase of both of entropy (to ~200 kJ/mol) and enthalpy of reaction (to ~110 kJ/mol), probably 

due to the oxidation effects. 
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Medium coated nickel sample from the first group was chosen to cycling measurements. 

After several cycles of absorption and desorption under 300 °C and with 1 MPa / 0.001 MPa 

pressure SEM observations, as well as DSC measurements were repeated. Metal coating is still 

present on the exemplary particle but the layer is cracked and partly detached. What is 

interesting, the decomposition peak tends to shift back to pure MgH2 level, but the activation 

energy for the cycled sample is almost two times lower than for pure hydride and 45% lower 

than for initial run. We realize that, when the number ruptures on the layer surface grows and 

the interface between the magnesium and metal film is more open and exposed for the hydrogen 

gas, the dissociation, diffusion and penetration of hydrogen atoms through the nickel layer is 

more effective.  

The study shows that magnetron coating of hydride powder can be considered as an 

effective way for introduction of the catalytic elements and desirable modification of properties 

of the hydride materials. Results give several options for future work. At first mixing methods 

can be enhanced by introducing ultrasonic vibrations or by adding anti-caking agents to allow 

uniform coating of nanopowders. Next, many different types of hydrides, as well as coating 

materials, including alloys can be tested and sputtered. An interesting application could be the 

coating of carbon structures in order to increase binding energy of hydrogen molecules on their 

surface to improve storage by physisorption.   
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5. HYDRIDE – GRAPHITE COMPOSITES WITH ALIGNED FILLER PARTICLES 

– RESULTS AND DISCUSSION 

This chapter presents results of try of improvement of the heat transfer performance of 

magnesium hydride. A special, electric field aligned, composites of graphite, magnesium 

hydride and epoxy resin were prepared and examined with X-ray diffraction, Sieverts apparatus 

and on Thermal Transport option on PPMS device. In addition a trials of structure imaging were 

performed. 

 

5.1. Samples overview 

Three series of composite samples were prepared from different filler materials and with the 

different designation. 

 Series 0 - The first one was used for the preliminary tests of aligning technology. 

Graphite was mixed with resin in three grades: 5, 10 and 15 vol. %. For each grade one 

isotropic sample and one sample aligned in 90V/mm electric field was prepared. Each 

experimental method (except of the Sievert’s hydrogenation) was tested for that 

samples. 

 Series 1 – Composites from this group consist of resin matrix filled with graphite and 

the magnesium hydride according to the proportion below. Both aligned and isotropic 

samples were prepared. The amount of graphite is increasing linearly while the resin 

content is kept constant. It was decided to produce samples with large resin content in 

order to avoid problems with samples mechanical strength – the aim of the study was to 

check the possibility of improvement of heat transfer performance by aligning of 

graphite flakes - materials with the higher hydride content can be produced in next step 

of the study.  

 

Table 5.1. Proportions for preparation of series 1 composite materials. 

Sample No 
Resin 

[vol. %] 

MgH2 

[vol. %] 

Graphite 

[vol. %] 

MgH2 – graphite 

wt. ratio 
Type 

#1a 50 50 0 - Isotropic 

#1b 50 47.5 2.5 95 - 5 Isotropic 

#1c 50 47.5 2.5 95 - 5 Aligned 

#1d 50 45 5 90 - 10 Isotropic 

#1e 50 45 5 90 - 10 Aligned 

 

 Series 2 – Materials from this group are based on lanthanum-nickel alloy LaNi5, graphite 

and silicone resin. The main motivation of using of this materials was to check how the 
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presence of metallic particles will influence on the aligning process. In the previous 

group of samples, we expected that dielectric magnesium hydride will not affect the 

electric field. Because the pure metallic magnesium easy undergo oxidation and is 

dangerous to use, more conventional, safe alloy was chosen. Three types of sample were 

prepared (Table 5.2), with pure lanthanum-nickel and with graphite addition, isotropic 

and aligned in electric field.  

 

Table 5.2. Proportions for preparation of series 2 composite materials 

Sample No 
Resin 

[vol. %] 

LaNi5 

[vol. %] 

Graphite 

[vol. %] 

LaNi5 – graphite 

wt. ratio 
Type 

#2a 50 50 0 - Isotropic 

#2b 50 45 5 90 - 10 Isotropic 

#2c 50 45 0 90 - 10 Aligned 

 

5.2. X-Ray diffraction study of the structure of composites and its anisotropy  

At first, the structure of the samples was examined with X-ray diffractions. Measurements 

were focused mainly on the analysis of structural anisotropy. In conventional powder 

diffraction it is assumed that crystallines have random orientation and the intensities are average 

on all angles. In presence of alignment (texture), peak intensities will be varied, depending on 

orientation between sample and scattering direction. By comparing their relative intensities the 

degree of the anisotropy can be derived.  Graphite poses very specific XRD pattern - Fig.  5.1 

presents an example of results for 10 vol. % graphite filled material. Because of planar, flakes 

structure, the [002] reflection is very high comparing to the other directions – [010] and [100].  
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Fig.  5.1. X-ray diffraction pattern of isotropic, 10 vol. % graphite filled composite. 
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By choosing measuring proper orientation (Fig.  5.2) between the sample and incident X-rays, 

the [002] reflection intensity can be either boosted or reduced. If the scattering vector is 

perpendicular to the [002] direction (or, it is parallel to the flake/plate) the intensity is larger. 

But when the scattering vector is in parallel  position, the [002] intensity is reduced. 

 

Fig.  5.2. Sample and X-ray orientation possibilities 

 

Example of that phenomena is shown on the and Fig.  5.3, where the XRD spectra under 

different orientations of 10% graphite filled composite are presented. It can be observed that 

[002] line intensity is enhanced when the sample is measured in perpendicular direction. The 

intensity ratio, which can serve as the alignment degree measure, is decreasing while putting 

more filler. It suggest that the alignment is poorer for higher-filled samples. It may be caused 

by two reasons: At first, the interactions between induced dipole of particles are weaker than 

the interactions with external electric field. The second reason is fast increase of the mixture 

viscosity, which the wetting of particles more difficult and the resin is harder to cast. The 

solution for both problems can be use of resin with low viscosity, however product available 

on the market, especially silicon resins, usually have very high viscosity (>1 Pa ·s). Other option 

is to dilute the resin with the special thinner, also based on polysiloxane materials, which 

reduces viscosity of liquid resin and incorporates into the resin structure during curing process. 

However, poorer mechanical and curing performance of such diluted mixtures must be taken 

into account hardening time will be longer and cured composite may poses cracks and sample 

uniformity can be poorer. Some parts of the thinner may not react with the resin and can affect 

on experimental procedures. It could be removed by evaporation and vacuum heating, but then 

the effective composite composition will be changed and difficult to predict.  
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Fig.  5.3. Full X-ray diffraction pattern of 10% graphite filled composites 

 

Direct comparison of peak intensities is not best way to analyse the structural anisotropy 

because the single peak intensity may depend on the background and sometimes it is difficult 

to keep constant conditions, such as sample size, beam intensity during the measurement. More 

accurate is to obtain the orientation factor prom Rietveld [107] refinement to the whole 

experimental data and to use March-Dollase factor of orientation [122]. For given [hkl] 

direction preferred orientation (r) value means: 

 r = 1 means the orientation of [hkl] is completely random 

 r < 1 means that the [hkl] direction is the preferred orientation of the crystallites 

 r > 1  means that the [hkl] direction is preferentially avoided 

Fig.  5.4 shows data obtained from pattern refinement for series 0 (only graphite) composites, 

calculated for both of isotropic and aligned samples. Full fitting results (data, calculated profile, 

background and difference plots) are listed in the Appendix. For oriented materials, XRD data 

was collected on the base surface of the cylindrical sample – which corresponds to _|_ 

orientation from previous analysis. March-Dollase factor is generally lower than unity for 

aligned samples and is getting closer to 1, while increasing the graphite content, which confirms 

previous analysis of the orientation degree. For isotropic samples, orientation coefficient is 

close to unity, but for the 10 vol. % graphite filled sample has value of 1.09, which may suggest 
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the needle alignment of graphite flakes. On the other hand, this effect could be caused by 

measurement or refinement errors.  
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Fig.  5.4. March – Dollase preferred orientation parameter [002] for series 0 composites. 

 

After testing of the analysis methods on graphite-silicone resin composites, the same steps 

was repeated for composites containing magnesium hydride and lanthanum-nickel alloy. Full 

diffraction pattern are presented on plots below. Fig.  5.5 presents results for composites without 

the graphite (#1a), and with 95-5 graphite-MgH2 composition, both isotropic (#1b) and aligned 

(#1c). Fig.  5.6 shows data with 90-10 graphite-MgH2 composition, isotropic (#1d) and aligned 

(#1e), compared with the results for composites without the graphite (#1a). Identified graphite 

and magnesium hydride reflection were marked on the plots with the square and triangle dots. 

The results are consistent with expectations – [002] reflection is increased, what suggest the 

presence of texture and aligning of the graphite flakes. March-Dollase factors (Fig.  5.7) are 

lower for oriented materials, only small difference between 2.5% and 5% graphite filled 

composites can be observed. It means, that 5% filling still can be effectively oriented and the 

problems with weaker influence of the electric field known from series 0 materials, probably 

will appear with higher graphite amount. Preferred orientation parameter for isotropic samples 

is close to zero, however there are again some deviations for 5% sample. What is important, for 

all samples neither of magnesium oxide or magnesium  hydroxide reflections can be found. 

This is important observation from practical, technology point of view – magnesium hydride 

immersed in silicon resin can withstand ambient atmosphere and it is not necessary to perform 

curing process inside the neutral gas filled chamber.   
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Fig.  5.5. Full X-ray diffraction pattern of magnesium hydride and graphite filled composites: 

samples #1a, #1b and #1c. 
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Fig.  5.6. Full X-ray diffraction pattern of magnesium hydride and graphite filled composites: 

samples #1a, #1d and #1e. 
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Fig.  5.7 March – Dollase preferred orientation parameter [002] for series 1 composites. 

 

Analogic results were obtained for lanthanum-nickel based groups of composites (Fig.  5.8). 

No significant oxidation effects were found and the orientation parameters for isotropic and 

aligned sample was calculated as 0.9426 and 0.6479 respectively. 
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Fig.  5.8. Full X-ray diffraction pattern of lanthanum-nickel and graphite filled composites: 

samples #2a, #2b and #2c. 
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5.3. Thermal conductivity measurements  

Next step of the research are the measurements of the thermal conductivity performed on 

PPMS Thermal Transport option. At first, study was focused on graphite-resin composites in 

order to analyse how alignment affects on the effective heat transfer parameters of composite. 

Thermal conductivity in room temperature was measured in different configurations (Fig.  5.9) 

parallel and perpendicular to the aligned flakes.  

 

Fig.  5.9. Sample orientations configuration for thermal conductivity measurements. 

 

The results are presented on Fig.  5.10. Effective thermal conductivity is increasing while 

introducing more graphite into the resin. It ranges from 0.5 W/m·K for 5 vol. % sample to 1.05 

W/m·K for isotropic, 15 vol. % filled sample while the conductivity of pure resin is close to 0.2 

W/m·K. The anisotropy of the thermal conductivity is easy observed – when measured along 

the plates it is around 0.3 W/m·K greater than measured across the plates.  
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Fig.  5.10. Thermal conductivity versus graphite content measured for different sample 

orientation. 
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The difference is low compared to the difference between thermal conductivities along and 

across single graphite flake, but the graphite is only 15% vol. of the composite and large part 

of the heat flux flows through the resin matrix. What is interesting, the difference between the 

non-oriented and perpendicular results are much smaller, than the difference between the non-

oriented and parallel ones, what is the positive results. Big enhancement of conductivity in one 

direction is compromised with only low reduction of conductivity in the other direction. 

Thermal Conductivity Enhancement, defined as a percentage growth of the TC in parallel 

direction in relation to the non-oriented sample. The largest improvement was achieved for 5 

vol. % graphite composite (63%), which is the effect of the highest alignment. For higher filled 

materials, a percentage growth is lower, between 22% and 27% for 10 and 15% graphite 

composites respectively. The value obtained for the last sample is not the smallest one – what 

is unexpected, because from XRD refinement the lowest anisotropy was achieved. It may be 

caused by the fact, that the conductivity can be enhanced not only by alignment, but even by 

making the filler particles to become closer, to force them to form the conductive, net-like 

aggregates, what can happen in higher loaded composites.  
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Fig.  5.11. The enhancement of the thermal conductivity vs the graphite content for series 0 

composites. 

 

Also electric resistivity measurements were carried out (Fig.  5.12). Samples conduct 

electricity better in direction along the flakes, and the differences are more than one order of 

magnetite high (1.5·104 Ω·m to 2.2·105 Ω·m). When increasing filler content, the resistivity 

drops down to 2.4·104 Ω·m. Comparing with the thermal conductivity, the anisotropy is 

stronger, but this is the effect of much stronger anisotropy of electrical than thermal 

conductivity for single graphite flake.  
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Fig.  5.12. Specific resistivity versus graphite content in composites measured for different 

sample orientation. 

 

Except of the room temperature study, the measurements of temperature dependence (from 

300 K to 4K) of the thermal conductivity was performed. Fig.  5.13 presents results obtained 

for the medium graphite filled material, both aligned || and isotropic sample. Typical 

polycrystalline/amorphous behavior of the composites, corresponding to the phonon scattering 

on crystallites boundaries, was found. The thermal conductivity is increasing fast and low 

temperatures and tend to saturate near to the ambient conditions. Because the literature reports 

the possibility of switching of electron part of conductivity in different materials with high 

magnetic field, measurements of in 8 Tesla field were performed. The results suggest limited 

change in the thermal conductivity, however it must be taken in to account, that heat conduction 

in graphite is based mainly on the phonons and the graphite loading in the composites (10% 

vol.) is relatively too low to observe the effect. 

Before transferring to the next group of composites, a conductivity of pure resin was 

analyzed. At room temperature it reaches value of 0.2 W/m·K (Fig.  5.14) and its temperature 

dependence poses a specific bump near 180 K. It is the effect of glass transition of silicone 

polymer – since glass transition is the second order type of transition, change of the specific 

heat occurs and therefore, change of thermal conductivity. In lower temperatures, material 

behaves as typical polymer.  
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Fig.  5.13. Thermal conductivity versus temperature for 10% graphite composites (aligned and 

isotropic sample)  
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Fig.  5.14. Thermal conductivity versus the temperature for pure silicone resin. 

 

Result of conductivity measurements for Series 1 (MgH2 – based) materials are presented 

on Fig.  5.15. Temperature plot is similar to the pure resin, but the thermal conductivity is 

enhanced to the level of 0.8 -1.2 W/m·K, because of presence of magnesium hydride (bulk 

conductivity ~1.2 W/m·K) and graphite. What should be pointed out, the peak in conductivity 
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coming from the glass transition is present in 0% graphite composite (#1a), but it is getting 

smoothed while increasing graphite content.  Graphite poses more dielectric character of 

thermal conductivity (Chapter 2), so it could enhance the thermal conductivity near 

temperatures 150-200K and reduce visible bump.  
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Fig.  5.15. Thermal conductivity versus the temperature for #1a, 1b and 1d composites 

 

The room temperature thermal conductivity anisotropy and its enhancement of MgH2 

composites (Fig.  5.16) behaves as can be expected from study of Series 0 composites. The 

thermal conductivity is of isotropic materials is growing while increasing graphite content and 

it reaches 1.08 W/m·K for the last sample. By the alignment  it can be enhance to the level of 

1.24-1.28 W/m·K and the percentage growth related to the isotropic sample is 43% and 22% 

for samples #1c and 1#e respectively, so it is lower for more graphite loaded sample. A 

conductivity of material without the graphite (#1a) is around 4 times higher than the pure resin 

and around 80 times better than the values reported for the powdered magnesium hydride 

(Chapter 2). It is expected, that even preparing of composite without any high conductive fillers 

can improve the reaction ratio, just by keeping powder in bulk form. Powder can be made bulk 

by pelletizing, but the pellets of pure MgH2 are unstable and cracks because of material 

expansion during the hydrogenation reaction. Rubber-like material, used as binder, can absorb 

active material expansion and reduce the tensions in the sample, keeping it bulk.  
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Fig.  5.16. Thermal conductivity of aligned and isotropic samples and its enhancement as a 

function on graphite content for series 1 composites. 

 

Thermal conductivity of lanthanum – nickel composites is slightly larger (Fig.  5.17) because 

of metallic state of used filler. It reaches 1.35 W/m·K for sample without graphite addition. The 

anisotropy of the thermal conductivity of graphite filled material is also present (Fig.  5.18), 

measured across the graphite flakes gives 1.26 W/m·K and measured along the flakes gives 1.6 

W/m·K. Measurements for isotropic sample could not be performed due to sample cracking.  
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Fig.  5.17. Thermal conductivity versus the temperature for #2a (50% resin, 50% LaNi5 and 

5% graphite), #2b and #2c composites (50% resin, 45% LaNi5 and 5% graphite) 
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Fig.  5.18. Thermal conductivity of aligned and isotropic samples as a function on graphite 

content for Series 2 composites. 

 

5.4. Analysis of the hydrogenation/dehydrogenation reaction rate 

The most important part of the study were the measurements of hydrogenation and 

dehydrogenation rate on Sievert –type apparatus (Chapter 3). Samples were cut to shape o 

cylinders, with 6 mm diameter and 200 mg mass (Fig.  5.19). Cylinders side surfaces were 

wrapped with copper foil to provide tighter fitting and better contact with the wall of sample 

chamber (pipe).  Thanks to such sample mounting heat is exchanged on side walls and the main 

parameter responsible for effective heat dissipation is radial conductivity of the sample, which 

is basically the thermal conductivity along the oriented flakes in case of aligned samples. 

 

 

Fig.  5.19. Scheme of the sample mounting inside the sample cell. 

 

After the activation of the sample (in 300 °C, for 20h, under vacuum), an absorption test was 

performed, under 300 °C, with initial pressure of 1 MPa. Experiment was carried out until the 
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equilibrium was reached, then hydrogen was removed from the sample cell and desorption of 

hydrogen was studied with initial pressure of 0.001 MPa. Fig.  5.21 and Fig.  5.21 present results 

obtained for MgH2 based composites. An amount of reacted (absorbed or desorbed) hydrogen 

is plotted against the reaction time. Aligned and more conductive samples have slightly 

improved kinetics (details discussed later). All samples saturates after 250-400 or 80-120 min 

of reaction for absorption and desorption respectively and reaches hydrogen capacities around 

3.5 wt. %. An accurate maximal capacity values are listed in Table 5.3 and they stay close to 

the theoretical capacity calculated from the composites composition. Shape of reaction curve is 

different for hydrogenation and dehydrogenation reactions.  Absorption has typical exponential 

dependence – it starts rapidly when the hydrogen pressure is applied and slowly saturates. On 

the other hand release of hydrogen starts slowly, then goes through close to linear curve and 

then saturate and the end the reaction. It could be effect of slightly different heat transfer model 

for absorption and desorption. We propose the next model: At beginning of the desorption heat 

is conducted slower, because material is composed of resin and dielectric hydride. But at 

beginning the absorption thermal conductivity is higher, because composite is made of resin 

and metallic magnesium. Thus at start hydrogen is released slowly, then reaction goes faster 

thanks to better conductivity when hydride is transferring to the metal and again is slower when 

last molecules of hydrogen are released and reaction ands. The absorption process starts very 

fast, because heat is effectively transferred in metallic magnesium, then goes slower and slower 

when metal is exchanged by the hydride.   

 

Table 5.3. Maximal hydrogen capacities of magnesium hydride composites 

Reaction 
Sample 

code 

Graphite 

content 

[vol. %] 

Max. capacity [%] 

Isotropic Aligned Theoretical 

Desorption 

#1a 0 3.82 - 4.41 

#1b, #1c 2.5 3.63 3.69 4.12 

#1d, #1e 5 3.47 3.45 3.84 

Absorption 

#1a 0 3.96 - 4.41 

#1b, #1c 2.5 3.77 3.82 4.12 

#1d, #1e 5 3.51 3.45 3.84 
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Fig.  5.20. Hydrogenation curves for series 1 composites under 1 MPa and 300 °C. 
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Fig.  5.21. Dehydrogenation curves for series 1 composites under 0.001 MPa and 300 °C. 
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Such behavior of reaction kinetics is clearly seen when the derivatives of the reacted hydrogen, 

versus time were calculated, which can serve as measure of reaction rate (Fig.  5.22 and Fig.  

5.23). For absorption obtained values are the highest on the beginning of reaction and they 

decrease exponentially with time. On the other hand, desorption derivative poses maximum in 

the middle of reaction time. It is worth to notice, that despite the longer saturation time values 

of maximal reaction rate are higher for absorption process. Graphite filled, aligned samples 

with better thermal conductivity have better reaction rates. In addition, for desorption process, 

maximum shifts in time – it reached earlier while improving heat transfer parameters. It is 

interesting, that despite similar conductivities (Fig.  5.16) both aligned samples exhibits 

different reaction rates. It is probably because the fact, that sample have different composition 

– sample with smaller amount of MgH2 will have faster kinetics.  
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Fig.  5.22. Absorption speed, calculated as derivative of hydrogenation curves for series 1 

composites. 
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Fig.  5.23. Desorption speed, calculated as derivative of dehydrogenation curves for series 1 

composites. 

 

The other parameter used for comparison of reaction rate is time to reach 90% of maximal 

capacity. Fig.  5.24 presents date for absorption and desorption process. For both the time 

effectively reduced: during absorption - from 195 min for pure magnesium hydride to 92 min 

for 5% graphite filled aligned material, and during desorption- from 74 min to 54 min.  
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Fig.  5.24. Time to absorb and desorb of 90% of hydrogen as a function on graphite content for 

series 1 composites. 
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Results for lanthanum nickel based composites are presented below. Conditions of reaction 

were set to temperature 30 °C and pressure 1 MPa for absorption and 0.001 MPa for desorption. 

The reaction kinetics is faster than MgH2 materials, because of general better performance of 

LaNi5. At this conditions, it takes 6-4 min to absorb and 16-12min to desorb of 90% of 

hydrogen (Table 5.4) and the improvement introduced by aligning of graphite particles is 

clearly observed. Composites filled with poses hydrogen capacity around 1.32 wt. %, which is 

close to the theoretical value coming from fillers content. The reduction of capacity compared 

to the pure hydride powder is much lower for LaNi5 (1.5 to 1.32) than MgH2 materials (7.5 to 

3.45), due to higher density of alloy compared to magnesium.  

Shape of reaction plots is slightly different from magnesium composites. Both desorption 

and absorption starts rapidly and there is not slow, flat beginning known from MgH2 samples. 

A time dependence is exponential in both cases. Initial reaction rates (Fig.  5.26)  are higher for 

absorption (~0.3 wt. %/min) and for aligned samples, but after few minutes they are falling 

below level of the pure samples due to saturation of hydrogen content.    
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Fig.  5.25. Hydrogenation and dehydrogenation curves for series 2 composites 

 

Table 5.4. Time to absorb and desorb of 90% of hydrogen as a function on graphite content for 

series 2 composites 

Type Sample code 
Graphite content 

[vol. %] 

Time to reach 90% of 

capacity [min] 

Isotropic Aligned 

Absorption 
#2a 0 39 - 

#2b, #2c 5 6 4 

Desorption 
#2a 0 20 - 

#2b, #2c 5 16 12 
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Fig.  5.26. Absorption and desorption speed, calculated as derivative of de/hydrogenation 

curves for series 2 composites. 

 

5.5. Influence of reaction cycling on the changes of properties of the composites 

Sample with the best performance (#1e – MgH2: 45%, Graphite: 5%, aligned) was chosen 

to be tested under cycling reactions. Ten cycles of hydrogenation and dehydrogenation were 

performed using Japan Metals & Chemicals Co. Ltd (JMC) experimental machine (Chapter 2), 

under pressure of 1 MPa and temperature 300 °C. Cycles absorption are shown on Fig.  5.27 – 

experimental machine do not allow to register desorption data, during the desorption sample is 

under continuous vacuum. All cycles poses similar kinetics, but he most important information 

is that saturation amount of absorbed hydrogen decreasing with cycle number (Fig.  5.1), from 

3.43 wt. % for the initial reaction to 1.68 wt. % for last one. In order to examine this problem, 

XRD measurements on cycled sample were taken. 
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Fig.  5.27. Hydrogenation curve for ten cycles of reaction for sample #1e (MgH2: 45%, 

Graphite: 5%, aligned) and maximum capacity of the composite versus cycle number. 
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Results are plotted in Fig.  5.28. Sample was in dehydrogenated state. Except of expected 

metallic magnesium and graphite reflections, peaks of magnesium oxide and magnesium 

silicate. It turns out, that during the experiment highly reactive magnesium atoms reacts with 

silicone resin’s siloxane bonds (-SiO-). The products of that reaction are magnesium oxide MgO 

and magnesium silicate Mg2Si. Magnesium oxide peaks are much wider than other phase, what 

suggest strong tensions and small crystalline size, typical for surface oxidation effects on 

magnesium hydride. An oxidation is not the effect of air/oxygen exposition, because at 

measurement time sample was under vacuum/hydrogen atmosphere. Because forming of 

magnesium oxide is irreversible under this conditions, its presence limits effective hydrogen 

capacity of hydrogen. Rietveld refinement was performed in order to determine cycled sample 

phase content. Magnesium in reactable form (metallic Mg  and from Mg2Si) is only ~56% of 

composites mass, the rest is neutral magnesium oxide and graphite, so it is the main reason for 

decrease in the hydrogen capacity of composites. What is interesting, one of the product is the 

magnesium silicate, which was considered as one of the magnesium alloys with good kinetic 

performance (Chapter 2), however its amount is relatively small ( ~10%) and its properties are 

limited by the presence of oxide layers. 
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Fig.  5.28. XRD pattern after 10 reaction cycles for sample #1e – MgH2: 45%, Graphite: 5%, 

aligned. 
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5.6. Scanning electron microscopy study of morphology of composites  

Microstructure observations and element distribution mapping was carried out to analyse 

fillers particles distribution and orientation. Samples were cut in plane perpendicular to flake 

orientation to see axial cross section of cylinder sample. Samples were immersed in epoxy resin, 

cured and their surface was polished with different grade sandpapers. It must be told, that 

polishing process was difficult because of rubber-like properties of composite samples. In result 

samples surface is very rough and a lot of filler particles are ripped out from matrix or distorted. 

Because of that problems, accurate, high magnification images could not be obtained, however 

results for magnesium hydride, graphite filled samples no. #1d and #1e are presented on figures 

on the next pages. Photos of the other samples can be found in Appendix. A low magnification 

(90x) and medium magnification (500x) are posted on the top of the figure. The EDS mapping 

results for silicon, magnesium and carbon are presented below together with the EDS spectrum. 

It must be noticed, that carbon is an artefact in EDS method, but when the amount of carbon 

are high, or confined in form of grains or particles some qualitative results can be discussed. 

Magnesium hydride is displaced uniformly inside the material, no sedimentation effects are 

visible, which often problem for long curing liquid resins. Silicone polymer matrix surrounds 

the magnesium islands on EDS maps what suggest good wetting of the hydride particles during 

the mixing of liquid and powders. Only small aggregates of MgH2 particles can be observed. 

Graphite particles are visible as small particles in background of carbon maps, but because of 

the quality of the image the alignment cannot be observed. 
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Fig.  5.29. SEM images, EDS element distribution maps for Si (from matrix), Mg and C (from 

fillers) and EDS spectra for composite sample #1d (MgH2: 50%, Graphite: 5%, isotropic) 
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Fig.  5.30. SEM images, EDS element distribution maps for Si (from matrix), Mg and C (from 

fillers) and EDS spectra for composite sample #1e (MgH2: 45%, Graphite: 5%, aligned) 
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5.7. Summary of the results obtained for composites 

To sum up, samples of composite materials based on silicone resin and metal hydrides with 

graphite fillers was prepared in order to test how the enhancement of thermal conductivity by 

aligning graphite flakes will affect on reaction kinetics. Initial testing of materials tested without 

active material (only resin and graphite) shows that it is possible to introduce orientation of 

graphite particles in uncured, liquid resin by using electric field produced torque. The alignment 

was confirmed with X-ray diffraction method and by measurements of thermal and electric 

resistivity in different directions in relation to applied electric field vector. 

A preferred orientation parameter of [002] (c axis) direction, calculated with March-Dollase 

method, is near 0.6-0.8 for aligned samples, which means that this is preferred direction of 

orientation. In case of isotropic, non-electrically tailored samples that parameter stays close to 

unity. Orientation is poorer for higher loaded samples because of weaker interactions with 

external field and higher mixture viscosity. Thermal conductive measured along the flakes is 

around 0.3 W/m·K better than across the flake and increases from 0.2 W/m·K for pure resin to 

1-1.2 W/m·K for 15% graphite filled material. Specific difference between the conductivities 

across the flake, along and of isotropic sample suggests that large enhancement of conductivity 

in one direction is compromised with only low reduction of conductivity in the other direction. 

The enhancement of thermal conductivity, expressed as percentage growth of conductivity in 

parallel direction in relation to the isotropic conductivity is lower for more graphite content 

materials, but still exist, because particles are forced them to form the conductive, net-like 

aggregates, what increases effective thermal conductivity despite lower anisotropy. 

Similar results were found for magnesium hydride and lanthanum-nickel based composites. 

March-Dollase factors stays around 0.6, what suggest good alignment and the thermal 

conductivity is enhanced by 45-20% comparing to isotropic samples. Effective thermal 

conductivity ranges from 0.8 W/m·K for resin-hydride sample to 1.08 W/m·K for graphite filled 

composites. A conductivity of material is around 4-6 times higher than the pure resin and around 

80-120 times better than the values reported for the powdered hydride. 

Improve in effective thermal conductivity results in observed improve of the reaction 

kinetics. absorption time  of magnesium composites can be reduced from 195 min to 92 min 

for aligned, graphite filled sample and desorption is accelerated from 74 to 54 min. In case of 

LaNi5 materials, absorption and desorption time drops from 39 to 4 and 20 to 12 min 

respectively. It must be noticed, that despite the longer time, improvement of reaction rate in 

absorption process is higher. Due to of changes in thermal conductivity caused by change of 
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active material character during the reaction (from metallic to dielectric and reverse), shape of 

hydrogenation curves is slightly different for hydrogenation and dehydrogenation. Hydrogen is 

absorbed with the highest speed at the beginning of the process, then reaction rate decreases 

because of reducing of thermal conductivity by transferring of metallic magnesium to 

magnesium hydride. On the other hand the desorption is the fastest in the middle of reaction  - 

when it starts, the heat transfer and reaction is slow then reaction goes faster thanks to better 

conductivity when hydride is transferring to the metallic magnesium. The maximum of reaction 

rates is higher graphite filled, aligned materials and for desorption process, maximum shifts in 

time – it reached earlier while improving heat transfer parameters. 

SEM observations of particles alignment were impossible to perform because of rubber 

character of composites forcing sample preparation problems, but obtained images provide 

information about uniform magnesium particles distribution, which is important and suggest no 

sedimentation problems during curing process. Moreover, liquid silicone resin is well mixed 

with powders and no addition processing or adding a thinner is necessary. 

Future work should be focusing on increasing of the amount of active material (hydride) in 

the composite and choosing proper matrix. It could be achieved by using low viscosity binders, 

such as polyester and epoxy resins. On the other hand, their operating temperature usually does 

not exceed 100 ºC, so they can be applied only to lanthanum-nickel alloy and other moderate 

temperature materials. High temperature inorganic binders, based on silicates and phosphates 

can withstand temperatures over 800-1000 ºC, but all of the systems are based on water solution, 

so the can be used only with metallic (non-hydrided) fillers. In case of active metals, such as 

magnesium, oxidation and passivation problems may easy occur. Thermal conductivity can be 

enhanced more by using stronger electric field or using other anisotropic carbon materials, such 

as graphene or nanotubes. 
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6. SUMMARY AND CONLUSIONS 

In the Dissertation designing and development of new methods of introducing catalytic 

elements to the magnesium hydride was presented. The main idea was to use the catalyst in the 

form of a thin film uniformly covering the surface of bulk magnesium hydride grains. Such 

surface modification reduces the activation energy barrier on the magnesium surface and 

improves the reaction rate while keeping dopant amount low. The advantage is a precise control 

of film thickness and amount of the dopant, uniform coating and possibility of deposition of 

different elements, alloys and compounds.  

Within the work a special equipment for sputtering on powdery substrates was designed 

and constructed. The powder is placed there in a special, round shaped container, set in circular 

motion in vertical plane in order to mix the powder during the deposition to get uniform coating. 

Owing to that, thin films of nickel and vanadium, fully covering the surface of grains of the 

as purchased magnesium hydride were successfully deposited. Film thickness was reaching 320 

nm and 170nm for the Ni- and V-coatings, respectively. The effective dopant amount for most 

of the samples between ~ 0.2 and ~1.8 wt. % was obtained. An attempt was also undertaken to 

coat ball milled powders, making use of additional nanostructurization effect, but the particle 

agglomeration effect caused a poor uniformity of thin films. Due to their nanocrystallinity the 

deposited nanolayers give too low X-ray diffraction signal to observe their diffraction peaks.  

XRD measurements have shown that ball milled powders are very sensitive to oxidation.  

The amount of MgO in such samples was exceeding 40 wt. %. Large differences in local 

effective amount of the introduced dopants and oxidation effect cause poor and inconclusive 

results of thermodynamic and kinetic studies. On the other hand, there was no significant 

oxidation effects observed for not milled powders.  

The reduction of the activation energy for hydrogen dissociation/recombination has been 

observed with DSC measurements, being the largest for the not-milled, nickel coated samples 

and reaching 150 kJ/mol. For ball milled powders the reduction is smaller, of 40 kJ/mol, but 

this is affected by oxide shells present on the hydride surface there.  The decomposition 

temperature was decreased by about 50 K for nickel coatings, but for niobium and vanadium 

samples it stays on the same level or is slightly increased. A special model was proposed to 

describe the influence of the coatings on the activation energy and desorption temperature. 

Within it the kinetic barrier can be reduced by coating to a level which has its limit at the full 

coverage of magnesium particles by catalyst layer. Further increase in coating thickness may 
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negatively affect the effective decomposition temperature, i.e. increase it, by formation of 

magnesium alloys on the grain surface. 

Nickel coating on the as purchased powders can effectively enhance reaction rates, reducing 

the time needed for charging and discharging from more than 12 hours to 70 and 15 min, 

respectively. The impact on the desorption kinetics is stronger than on the absorption one. 

Vanadium coatings have smaller influence on the reaction kinetics, but there is still slight 

enhancement of them visible.  

Ball milled magnesium hydride exhibits better reaction kinetics for absorption process, the 

time needed to react of 90% of hydrogen is as short as 11-4 min for nickel samples, but the 

samples exhibit a much smaller effective content of the hydride (~11-5 wt. %) due to oxidation. 

The equilibrium hydrogen capacity was lower than the expected value (7.5 wt. %), and reached 

1.2 – 3.5 wt. %, due to only partial decomposition of magnesium hydride under these conditions 

and because of the presence of magnesium oxide.  Coated samples show also generally higher 

reaction rates than pure magnesium hydride. Despite the fact that the sorption kinetics is 

enhanced, the thermodynamics of the hydride did not change. Entropies and enthalpies of 

reaction stay on the similar level for nickel coated sample as in the as received magnesium 

hydride. The amount of nickel introduced to the hydride is not large enough to form an alloy in 

high part of the sample, not only on the surface. 

The materials obtained show an interesting behavior during the cycling of 

hydrogenation/dehydrogenation reactions. Metal coating is still present on the particle surface, 

but the layer gets cracked and partly detached. The decomposition temperature goes back to the 

value for pure MgH2, but the activation energy for the cycled sample is almost two times lower 

than for pure hydride and by 45% lower than that in the initial run. This is probably due to 

growth of ruptures and micro-cracks on the layer surface, so that the interface between the 

magnesium and metal film is more open and exposed to the hydrogen gas. Thus, the 

dissociation, diffusion and penetration of hydrogen atoms through the nickel layer is more 

effective.  

A study towards improvement of the heat transfer in the composites of hydride materials 

resembling those to be used in real hydrogen tanks has also been carried out.  For that, special 

composites of magnesium hydride and graphite with thermal conductivity enhanced through 

their anisotropy were prepared. Initial tests showed that it is possible to introduce orientation 

of graphite particles in uncured, liquid resin by using electric field produced torque. The 

successful alignment was confirmed with X-ray diffraction method and by measurements of 
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thermal and electrical resistivity in different directions with respect to the aligning electric field 

vector.  The preferred orientation parameter of [002] (c axis) direction, determined with March-

Dollase method, was near 0.6 for aligned samples, which means that this was the preferred 

direction of orientation. The alignment was poorer for higher loaded samples because of the 

lower effectiveness of the interaction with external field and higher viscosity of the mixture. 

The thermal conductivity was found to be enhanced by 20-45% comparing to isotropic samples 

and ranged from 0.8 W/m·K for resin-hydride material to 1.08 W/m·K for graphite doped 

composites. The conductivity of the material was 4 to 6 times higher than that of the pure resin 

and 80 to 120 times better than the values reported for the powdered hydride. 

Improved heat transfer was found to enhance reaction rates.  Reaction times of MgH2 – 

graphite composites were shortened from 195 min to 92 min and 74 to 54 min for absorption 

and desorption, respectively. Despite the longer absorption time, the improvement of reaction 

rate in absorption process was greater.  

Changes in the effective thermal conductivity of the composite caused by transformation of 

the active material from metallic to dielectric (and reverse) made shape of dehydrogenation 

curves is slightly different than for hydrogenation. Hydrogen is absorbed faster at the beginning 

of the process, because of the high thermal conductivity of metallic magnesium. The desorption 

is the fastest in the middle of reaction; when it starts, the heat transfer and reaction are slow, 

but after several minutes it goes faster owing to better conductivity when hydride is 

transforming to the metallic magnesium. The maximum of reaction rates was higher for graphite 

filled, aligned materials. For them, in the desorption, the maximum was reached earlier owing 

to the improved heat transfer. 

Detailed SEM observations were difficult to perform on the composites because of sample 

preparation problems (too soft materials to polish), but the crude images obtained show no 

sedimentation problems during curing process and good mixing of the silicone resin with 

powders giving uniform composite materials. 

The research carried out shows that magnetron sputtering on powder substrates can be an 

effective way to introduce catalytic elements to metal hydrides. Electric field driven aligning 

of highly conductive carbon structure in the composite can be used to improve heat transfer in 

metal hydride system without introducing additional amount of dopants. Although the research 

presented in the Thesis was performed mostly on the magnesium hydride, the conclusions 

drawn and technical issues can be easily applied to other materials.  
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7. APPENDIX 
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Fig.  7.1. XRD pattern, calculated profile, background profile and difference plot for pure 

graphite powder . 
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Fig.  7.2. XRD pattern, calculated profile, background profile and difference plot for as 

received magnesium hydride . 
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Fig.  7.3. XRD pattern, calculated profile, background profile and difference plot for ball milled 

magnesium hydride . 
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Fig.  7.4. XRD pattern, calculated profile, background profile and difference plot for sample 

MgH2, Ni 15min, Series 1. 
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Fig.  7.5. XRD pattern, calculated profile, background profile and difference plot for sample 

MgH2, Ni 30min, Series 1. 
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Fig.  7.6. XRD pattern, calculated profile, background profile and difference plot for sample 

MgH2, Ni 45min, Series 1. 
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Fig.  7.7. XRD pattern, calculated profile, background profile and difference plot for sample 

MgH2, V 30min, Series 1. 
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Fig.  7.8. XRD pattern, calculated profile, background profile and difference plot for sample 

MgH2, V 60min, Series 1. 
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Fig.  7.9. XRD pattern, calculated profile, background profile and difference plot for sample 

MgH2, V 90min, Series 1. 
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Fig.  7.10. XRD pattern, calculated profile, background profile and difference plot for sample 

MgH2, Ni 30min, Series 1, after the cycling. 
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Fig.  7.11. XRD pattern, calculated profile, background profile and difference plot for sample 

MgH2 - BM, Nb 30min, Series 2. 
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Fig.  7.12. XRD pattern, calculated profile, background profile and difference plot for sample 

MgH2 - BM, Nb 60min, Series 2. 
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Fig.  7.13. XRD pattern, calculated profile, background profile and difference plot for sample 

MgH2 - BM, Nb 90min, Series 2. 
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Fig.  7.14. XRD pattern, calculated profile, background profile and difference plot for sample 

MgH2 - BM, Ni 15min, Series 2. 
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Fig.  7.15. XRD pattern, calculated profile, background profile and difference plot for sample 

MgH2 - BM, Ni 30min, Series 2. 
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Fig.  7.16. XRD pattern, calculated profile, background profile and difference plot for sample 

MgH2 - BM, Ni 45min, Series 2. 
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Fig.  7.17. XRD pattern, calculated profile, background profile and difference plot for sample 

MgH2 - BM, Nb 60min, Series 3. 
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Fig.  7.18. XRD pattern, calculated profile, background profile and difference plot for sample 

MgH2 - BM, Ni 30min, Series 3. 
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Fig.  7.19. XRD pattern, calculated profile, background profile and difference plot for sample 

of 5 vol.% isotropic graphite composite. 
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Fig.  7.20. XRD pattern, calculated profile, background profile and difference plot for sample 

of 5 vol.% aligned graphite composite. 
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Fig.  7.21. XRD pattern, calculated profile, background profile and difference plot for sample 

of 10 vol.% isotropic graphite composite. 
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Fig.  7.22. XRD pattern, calculated profile, background profile and difference plot for sample 

of 10 vol.% aligned graphite composite. 
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Fig.  7.23. XRD pattern, calculated profile, background profile and difference plot for sample 

of 15 vol.% isotropic graphite composite. 
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Fig.  7.24. XRD pattern, calculated profile, background profile and difference plot for sample 

of 15 vol.% aligned graphite composite. 
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Fig.  7.25. XRD pattern, calculated profile, background profile and difference plot for sample 

#1a / MgH2 : 50%, Graphite: 0%. 
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Fig.  7.26. XRD pattern, calculated profile, background profile and difference plot for sample 

#1b / MgH2 : 47.5%, Graphite: 2.5%, Isotropic. 
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Fig.  7.27. XRD pattern, calculated profile, background profile and difference plot for sample 

#1c / MgH2 : 47.5%, Graphite: 2.5%, Aligned. 
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Fig.  7.28. XRD pattern, calculated profile, background profile and difference plot for sample 

#1d / MgH2 : 45%, Graphite: 5%, Isotropic. 
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Fig.  7.29. XRD pattern, calculated profile, background profile and difference plot for sample 

#1e / MgH2 : 45%, Graphite: 5%, Aligned. 
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Fig.  7.30. XRD pattern, calculated profile, background profile and difference plot for sample 

#2a / LaNi5 : 50%, Graphite: 0%. 
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Fig.  7.31. XRD pattern, calculated profile, background profile and difference plot for sample 

#2b / LaNi5 : 45%, Graphite: 5%, Isotropic. 
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Fig.  7.32. XRD pattern, calculated profile, background profile and difference plot for sample 

#2c / LaNi5 : 45%, Graphite: 5%, Aligned. 
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Fig.  7.33. XRD pattern, calculated profile, background profile and difference plot for sample 

#1e / MgH2 : 45%, Graphite: 5%, Aligned, after the cycling. 
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Fig.  7.34. SEM images, EDS element distribution maps for Si (from matrix), Mg and C (from 

fillers) and EDS spectra for composite sample #1c (MgH2: 47.5%, Graphite: 2.5%, aligned) 
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Fig.  7.35. SEM images, EDS element distribution maps for Si (from matrix), Mg and C (from 

fillers) and EDS spectra for composite sample #1b (MgH2: 47.5%, Graphite: 2.5%, isotropic) 
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