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Abstract

The introduction of adaptive streaming technologies, especially HTTP

adaptive streaming (HAS) has significantly improved the video quality

perceived by end-user, making video service becomes one of the most

dominant services on the Internet. Due to the limitation of network re-

source supply (e.g., available bandwidth), for profit improvement, ser-

vice providers have to take into account Quality of Experience (QoE)

management by which QoE stands for perceived video quality will be

frequently monitored and maintained with optimal network resource

utilization. However, with the growth in the availability of multime-

dia services, coupled with the technological advances in compression

and streaming, it is witnessing a great demand for video contents with

high quality. Meanwhile, the number of subscribers is also continu-

ously increasing. These situations put more pressure on the existing

network infrastructures, requiring an upgrade. However, when the

service providers attempt to upgrade their systems, it might reach to

the physical limits. Thus, there is a growing need of more efficient

QoE management system in adaptive streaming services.

In this dissertation, a biological information based QoE management

framework has been proposed. Thereby, a balance between network

resource utilization and the resulting QoE is guaranteed. The achieved

results are outlined in the following:

• First, one of the requirements of QoE monitoring is to perform

early detection of QoE deterioration. The design of QoE moni-

toring usually comprises of two major steps: Selecting appropri-

ate monitoring factors and selecting suitable monitoring interval.

In this research, adaption logic factors comprising of playback

buffer, video rate and QoS parameters, have been investigated.

Both playback buffer and video rate can only be obtained on a



chunk-by-chunk basic that relies on the timestamp of two suc-

cessive video requests. In addition, video rate is usually selected

based on a throughput estimation over a long time period. Thus,

the deteriorations will be perceived by the end-user before control

action is generated. Meanwhile, QoS can be monitored with flex-

ible self-defined interval that does not depend on chunk-by-chunk

basic, becoming a suitable monitoring factor for early detection

purpose. This study aims at determining such the appropriate

self-defined interval of QoS monitoring. In adaptive streaming,

playback buffer is a situational indicator for video rate adap-

tion. The results of an experiment demonstrated that the first

deterioration of playback buffer always provides an accurate pre-

diction of video rate deterioration. Therefore, monitoring QoS

with suitable interval can accurately capture the first deteriora-

tion of playback buffer, benefiting early detection of video rate

or QoE deterioration. The monitoring interval is then proposed

to be equal to video chunk size. By using the proposed interval,

the balance between computational cost and ratio of video rate

deterioration has been achieved.

• Second, in QoE control, threshold plays an important role in

deciding when control action should be triggered. However, sim-

ilar to monitoring interval, it has not been carefully investigated

yet. In literature, QoE threshold is usually picked up as the fair

level or the middle level in 5-scale Mean Opinion Score (MOS)

(the most common QoE indicator) without reasonable explana-

tion. It motivated us to propose a novel method to determine

the appropriate value of QoE threshold. In this research, by

clarifying the drawback of existing approaches in determining

threshold, a novel collaborative approach using psychophysiol-

ogy and psychophysics was proposed to ascertain an appropriate

QoE threshold. Consequently, the experimental results demon-

strate that using the proposed threshold can save at least 4.85%

of available bandwidth per control compared to the use of fair

one.



• Third, in QoE control, bandwidth allocation is commonly used as

control action. In order to accurately allocate bandwidth to the

users, some existing works calculate the needed bandwidth based

on target video rate. However, the determination of target video

rate is still a challenge, where contemporary researchers simply

pick up the target video rate from a list of available video rate at

server. Therefore, we proposed a method to determine the target

video rate from expected subjective MOS level by leveraging a

regression model which expresses the relation between video rate

and subjective QoE. The evaluative results show that once be-

ing lower than threshold, estimated QoE will be automatically

recovered to the expected level, while more bandwidth can be

saved per control.
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Chapter 1

Introduction

February of 2018 was the time for the 23rd Winter Olympics Pyeongchang. It was

an exhilarating month, with the participants of 92 national teams. Unsurprisingly,

the Winter Olympics was one of the most watched worldwide events, and this

year was not the exception. Approximately 11.6 million viewers turned into live-

streaming coverage on NBCOlympics.com during the first five days of the Games

in Pyeongchang in 2018 [3]. Thanks to the recent advances in video streaming

and compression techniques, the viewers were able to also watch this event on

live-TV streaming services, including Sling TV’s Sling Blue package, Hulu with

Live TV, YouTube TV, DirecTV Now, Sony’s PlayStation Vue, FuboTV, and

CenturyLink Stream with high definition quality on their devices. Sporting events

like Winter Olympics are not the sole type of attractive content to online viewers,

though. The day of having to tune in live or buy expensive discs in order to

watch the favorite shows and movie has gone. There are numerous streaming

services offering an excellent and abundant selection of TV shows, movies, and

original programing, including Netflix, Hulu, Amazon Instant video, etc. The rise

of such online services has dramatically altered the media habits of Americans,

especially young adults [1]. About six-in-ten of those ages 18 to 29 (61%) say

the primary way they watch television now is with streaming services on the

internet, compared with 31% who say they monthly watch via a cable or satellite

subscription and 5% who mainly watch with a digital antenna.

According to Cisco visual networking index 2017 [4], globally, video traffic is

predicted to account for 82% of all consumer Internet traffic by 2021, up from

73% in 2016. Every second, a million minutes of video content will cross the

1



Figure 1.1: Survey on how the US young adults watch television these day [1]
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network by 2021. Meanwhile, people around the world watch a billion hours of

YouTube video content every single day [5]. In a 2017 report [6], IBM stated that

there are two-thirds of adults reported subscribing to video on demand (SVOD)

service in a survey of more than one thousand US consumers. The dominance of

video services accordingly brings a huge profit to service providers. The revenue

in billion US Dollar of video services is increasing year after year and is predicted

to reach the highest value of 13.7 by 2020 [7]. Such the huge revenue is attracting

more and more service providers to participate in this prominent but competitive

market.

1.1 Motivation

In the fierce competition to gain the market share, it is important for service

providers to increasingly deliver demanding services with higher quality standard

allowing the users′ satisfaction to exceed the expectations. In order to achieve

this, in point of view of service providers and the users, it is necessary to adopt

adaptive streaming technology, especially HTTP adaptive streaming (HAS) as

the major delivery method in addition to the crucial shift from technical quality

requirements (QoS) to perceived quality requirements (QoE). In this situation,

QoE management for adaptive streaming has been emerged, where the perceived

video quality of individual user is frequently monitored and maintained at ex-

pected level. Nonetheless, the introduction of high performance end-devices and

the mobility thereof put more challenges on the existing network systems. This

3



1.1 Motivation

leads to the frequent upgrades of available resources as well as the evolution of

adaptive streaming technologies. Due to physical limits, however, the upgrade of

adaptive transmission technologies become more challenge alongside the require-

ments of more efficient QoE management system.

The adaptive streaming technologies share several critical aspects. First, mul-

tiple files from same video content are produced to be distributed to viewers

watching on different powered devices via different connection speeds. Second,

these files are adaptively streamed, changing the stream that is delivered to adapt

to the current network conditions (e.g., throughput, CPU load, etc.). Third,

these technologies all operate transparently to the user. It means that all stream

switching occurs behind the scenes, resulting in the fact that the viewer might

notice a slight change in quality as the streams switch, but no action is required

on his part. For years, adaptive streaming technologies has experienced several

remarkable transformations in terms of used protocol in order to deliver higher

perceived quality video to the users. The transformation is initially discussed with

the use of the so-called Real-time Streaming Protocol (RTSP), where its primary

mechanism is that the server delivers content at the encoding video rate to match

the client’s consumption rate [8], resulting in a stable client’s buffer levels over

time. Thus, the network resource usage will be optimized. In addition, the server

via RTP Control Protocol (RTCP) can indirectly monitor the network condition

at the client side, thereby, it makes the decision to switch to higher or lower bi-

trate stream sending to the client’s player, resulting in smoother playback at the

best possible quality level without pauses or stuttering. However, traversing the

edge network devices (e.g., Network Address Translation (NAT) and Firewall)

is the noticeable obstacle for this technology because it uses transport protocol

(e.g., User Datagram Protocol (UDP)) with uncommon port number to deliver

the video content on the Internet. In addition, as a server-based technology, the

initial implementation of this technology requires a persistent connection between

server and player, which potentially increase the implementation cost and limit

deployment scalability. In order to overcome these limitations, HTTP adaptive

streaming has been introduced in 2008 [9] as the de-facto standard for adaptive

streaming solutions. It requires video content to be divided into small chunks

each of which is encoded in different video rate and quality levels. HAS player

frequently monitors its underlying network conditions, then, selects which video

rate to request for the next video chunks, improving server-side scalability. By

4



1.2 QoE Management and Challenges

doing this way, the HAS player also can control its playback buffer by dynamically

adjusting the rate at which new chunks are requested. Consequently, it facilitates

the users to watch video with smoother experience without interruption despite

the network condition fluctuation. However, during streaming session, each of

HAS player strives to optimize their individual quality, which leads to bandwidth

competition, causing quality oscillations and buffer starvations. Therefore, the

upgrade of adaptive transmission technologies only is not enough.

QoE management has emerged as an alternative solution to converge the

requirements of both service providers and the end-user. Typically, with QoE

management, perceived video quality in terms of QoE is frequently monitored

and maintained at an expected level. QoE is assessed by observing QoE influence

factors (e.g., QoS parameters, stalling, rebuffering) and then interpreting them to

QoE indicators (e.g., Mean Opinion Score). Meanwhile, QoE control is responsi-

ble for maintaining a desirable QoE level as long as possible and it can be done by

generating appropriate control action at the right time. Thereby, an efficient QoE

management for adaptive video streaming services can guarantee high perceived

video quality for the end-user at minimal network resource usage. The existing

works increasingly attempt to improve the accuracy of QoE assessment, without

seriously considering the other aspects of QoE management such as QoE deteri-

oration detection, control action and especially QoE threshold, where remained

challenges are taking place at.

This thesis aims at proposing a novel biological information based QoE man-

agement for adaptive streaming services. Thereby, the balance between network

resource utilization and the resulting QoE can be efficiently achieved through

solving the remained challenges. The existing technology alongside challenges,

the overview of the proposed approach as well as the contributions and the orga-

nization of the dissertation will be presented in the remainder of this chapter.

1.2 QoE Management and Challenges

The overall goals of QoE management for adaptive streaming services are to

match the properties of the video to the expectations of the end-user, while

accounting for the available resources and characteristics of the encoding and the

transport systems. Figure.1.4 illustrates a block diagram of negative feedback

5



1.2 QoE Management and Challenges

SystemController

Sensor

Measured 
errorDesired threshold System 

input System output

Measured output

+
-

Figure 1.4: Negative feedback control system

control system in control theory, using a feedback loop to control the process

variable by comparing it with a desired threshold and applying the difference as

an error signal to generate a control output to reduce or eliminate the error [10].

Such the functionalities actually can be found in monitoring layer and control

layer within any general QoE management frameworks. Actually, only very few

studies on QoE management exist in the public domain because the majority

of studies have been mainly sponsored by the players in the telecommunications

industry, who view the results of such studies as proprietary. On the contrary,

there are numerous proposed solutions for managing QoE of video services, that

focus on the improvements of separate monitoring layer and control layers.

The operations of monitoring layer can be broken down into two general steps:

(1) QoE assessment, and (2) QoE estimation [11]. QoE assessment aims to model

the relationship between different measurable QoE influence factors and QoE in-

dicators. Such models serve the purpose of making QoE estimations, given a set

of conditions, corresponding as closely as possible to the QoE as perceived by

end-user. There are three types of QoE assessment models - objective models,

subjective models and hybrid models. Objective models are defined as the means

of estimating subjective quality solely from objective quality measurement or in-

dices. Subjective models are based on psychoacoustic/visual experiments which

represent the fundamental and most reliable way to assess users′ QoE, although

they are complex and costly. Hybrid models are the most commonly used models

in literature, which leverages the advantages of both abovementioned model types

to automatically assess QoE in an accurate manner. They rely on pre-trained ma-

chine learning model which is established by training a machine learning model

with the input (represented by QoE influence factors) and output (represented

by QoE indicators). QoE estimation encompasses the acquisition of data of QoE
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influence factors related to the network environment and conditions, terminal

capabilities, users, context and application/service specific information and its

quantification. These factors can be frequently obtained via passive or active

monitoring methods, and then automatically interpreted to QoE indicators in

real-time. As the prerequisite conditions for an implementation of successful QoE

monitoring, QoE must be accurately assessed, while QoE deterioration is early

detected. Contemporary works often concentrate on the first condition, that is

to say, enhancing the accuracy of QoE assessment. Typically, in order to provide

accurate QoE assessment, the consideration of only one or two QoE influence fac-

tors is generally not sufficient. On the contrary, QoE should be considered in all

its dimensions taking into account as many influence factors as possible. In fact,

not only network QoS factors (e.g., bandwidth, packet loss, delay and jitter), but

also application QoS factors (e.g., initial buffering time, rebuffering frequency,

and mean duration of a rebuffering event) [12], biological information [13], and

memory-driven factors [14] were separately taken into account in the existing

works. However, a joint approach is still a main challenge due to its complexity.

As the second condition, early detection of QoE deterioration has not been care-

fully investigated yet in literature. This condition can be achieved by considering

an appropriate set of observable QoE influence factors and suitable monitoring

interval. There are factors becoming observable only after the introduction of the

other one, thus, they are not suitable for the purpose of early detection of QoE

deterioration. For example, rebuffering event only occurs after the drain on play-

back buffer. In addition to deciding monitoring factors, determination of suitable

interval for QoE monitoring also need to be taken into consideration. Monitoring

interval actually has a direct impact on the balance of network resource utiliza-

tion and the resulting QoE. More concretely, if the measurement interval is set

small, more computational power is required, but more importantly, a small mea-

surement interval yields inaccurate results [15]. Thereby, the optimal monitoring

intervals should be large enough to reduce the computational cost and improve

the accuracy, but also small enough to early detect QoE deterioration.

In control layer, estimated QoE of each subsequent stream is compared with a

certain QoE threshold. The difference is then sent to the controller for the gener-

ation of an appropriate control action/strategy. If the estimated QoE is smaller

than a specific threshold, the controller can manage the different system com-

ponents, allocate necessary resources, execute admission control, or implement
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1.2 QoE Management and Challenges

other control strategies. Such mechanism yields optimized service delivery by

delivering accurate control action at the right time. As the result, the end-users

satisfaction will be maximized, while the limited network resources are optimally

utilized.

• To generate the control action at the right time, an appropriate QoE thresh-

old must be taken into account. To the best of our knowledge, there are

no existing works which carefully perform the investigation of threshold in

QoE control. The determination of QoE threshold usually depends on the

types of QoE indicator used in assessment model. As mentioned above,

either objective models or subjective models or hybrid models are possi-

bly considered as assessment model in QoE monitoring. Among them, the

hybrid QoE models which allow QoE estimation to be performed in an au-

tomatic and accurate manner in real-time, have gradually been the most

common models in literature. In hybrid modeling process, the perceived

video quality is subjectively evaluated by using rating approach in which

QoE indicator in terms of 5-scale Mean Opinion Score (MOS) is given out.

Therefore, in QoE control, the fair level of above indicators scale (the mid-

dle value) is simply selected as the threshold. However, the rating approach

has significant drawbacks due to its high bias and variability, causing less

accuracy in QoE modeling followed by unreliability of the selected thresh-

old.

• Bandwidth allocation is one of the most common control strategies in lit-

erature. In general, it is a process of assigning bandwidth to users and

applications based on their priorities. When an appropriate amount of

bandwidth is allocated to the user, it allows the end-user to watch video

with expected quality in addition to the optimization of network resource

utilization. The question is how the appropriate bandwidth allocation can

be accurately delivered. In [16], the authors proposed a novel method to al-

locate bandwidth to the end-user based on the target video rate of the next

downloading video chunks. Typically, most of commercial video players al-

ways maintain a constant gap between the target video rate and the needed

bandwidth. Thus, the suitable amount of bandwidth can be obtained if the

target video rate is determined. However, the authors simply defined the

target video rate based on the list of available video rates of the content at
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1.3 Biological Information based QoE management

the server. It leads to the fact that the amount of allocated bandwidth was

often higher than the need of the users, resulting network resource under-

utilization. Therefore, it is necessary to propose a new method to determine

the target video rate.

1.3 Biological Information based QoE manage-

ment

In order achieve the research goal through solving abovementioned issues, we

propose a biological information based QoE management for adaptive streaming

services shown in Fig.1.5. Thereby, there are multiple advantages found in pro-

posed system as compared to the existences. First, a two-phase monitoring layer

guarantees QoE deterioration will be early and accurately detected by jointly

performing the observations of various QoE influence factors. More concretely,

the first phase is concerned with early detection purpose by considering only net-

work QoS factors (e.g., bandwidth, packet loss, delay and jitter). If the estimated

QoE is less than the threshold, the controller will perform a suitable control ac-

tion (e.g., bandwidth allocation). Alternatively, application QoS factors (e.g.,

rebuffering, initial start delays), biological information (e.g., skin conductance,

heart rate and heart rate variability) and memory-driven factors are considered

for the second phase. This phase actually provides an alternative QoE estimation

in terms of feedback to the controller in order to confirm whether the previous

control actions are sufficient. If the estimated QoE is still higher than threshold,

there is no extra-operation generated by the controller. If not, the additional ac-

tion will be triggered to achieve an expected high-quality level for the end-user.

Note that the latter estimation is always produced in a longer delay than the

former one. The study of second monitoring phase is out of scope of this disser-

tation, while the whose first phase is about to be presented. Second, relying on a

biological information based QoE threshold, controller can trigger control action

at the right time. This contributes also towards the research goal, that is to say,

guaranteeing expected perceived video quality with minimum network resource.

The threshold was derived from a natural logarithmic function which models the

relation between human sensation and video quality. Third, by relying on a re-

9



1.3 Biological Information based QoE management

Controller

NETWORK

Phase 1

Activie & passive monitoring methods

C
on

tro
l A

ct
io

n 
1

C
on

tro
l l

ay
er

Application 
QoS 

factors

M
onitored data for phase 2

Phase 2

C
on

tro
l A

ct
io

n 
2

M
on

ito
rin

g 
la

ye
r

Biological 
Information

Memory 
driven 
factor

Figure 1.5: Proposed biological information based QoE management framework

for adaptive video streaming services
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gression model of subjective MOS and video rate, the target video rate can be

determined, benefiting accurate bandwidth allocation.
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Figure 1.6: Deployment of proposed framework within practical environment

Figure 1.6 illustrates how the proposed framework can be deployed in prac-

tical environment. Accordingly, it is expectedly deployed within an open-source

router that placed in distribution or core network layer at client side. Apart from

basic functions of an edge router such as routing, traffic classification, this device

is capable of carrying QoE management functionality. Thanks to active and pas-

sive monitoring methods, the data of network QoS, application QoS, biological

information and memory-driven factors can be fed from access network to the

router. There are two assessment/estimation models are respectively deployed

within phase 1 and phase 2 of monitoring layer. While network QoS is used as

training input data for the phase 1s assessment model, application QoS, biologi-

cal information and memory-driven are applied for the one of phase 2. Based on

the output of those assessment/estimation models, various decisions can be given

out by the controller. The table 3.1 summarizes the possible decisions made by

the controller.

The next sub-sections will respectively review the proposed solutions dealing

with the abovementioned issues in both monitoring and control layers.
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Table 1.1: X: means that estimated QoE is less than threshold. O: means that es-

timated QoE is higher or equal to threshold. Control action 1 is always produced

earlier than control action 2

tPhase1 tPhase2 tDecision

X O Control Action 1

X X Control Action 1 + Con-

trol Action 2

O X Control Action 2

1.3.1 Early detection of QoE deterioration with appropri-

ate monitoring interval

As stated in previous section 1.2, one of the primary requirements for QoE mon-

itoring is to early detect QoE deterioration, which can be accomplished by an

appropriate monitoring interval. This sub-section reviews our proposed method

in determining such the monitoring interval in order to achieve the research goal.

The proposed method is two-fold. First, the suitable QoE influence factors are

selected as monitoring factors. In this work, network QoS factors (bandwidth,

packet loss, delay and jitter) were considered for early detection purpose. Second,

based on the condition that keep playback buffer stable during streaming session,

the monitoring interval is proposed to be equal to video chunks size.

There are numerous QoE influence factors that grouped into perceptual and

technical categories, can be promisingly applied for QoE monitoring [11]. Because

the end-user always experiences negative changes in video quality once percep-

tual factors are recognized, thus, for early detection purpose, the factor within

technical category are more suitable. In this work, due to the fact that adap-

tion logic plays an important role in adaptive streaming mechanism, the factors

that belong to this category are investigated. Among them, only QoS monitoring

can be flexibly monitored with arbitrary changeable interval, while the other pa-

rameters such as video rate and playback are only obtained in a chunk-by-chunk

basic. Therefore, QoS parameters are proposed to be solely monitored for the

early detection purpose of the first phase of monitoring layer.

During the streaming session, video player usually experiences two operating

states: buffering-state and steady-state. In the first state, the player attempts to
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1.3 Biological Information based QoE management

build up its playback buffer as quickly as possible and to reach a maximum buffer

size. In order to achieve this, the player initially requests new video chunk with

low video rate as soon as the previous one is downloaded. In the second state, the

player aims to maintain a constant playback buffers size by requesting video chunk

with constant interval. Note that the size of playback buffer can be calculated

only when the video player requests video chunk to the server. Thus, it becomes

a prominent parameter using in prediction of the properties of application QoS

factors (e.g., rebuffering, stalling) that have direct impact on perceived video

quality. In this research, with the assumption that the other application QoS

factors (e.g., rebuffering, stalling) will not occur, video rate is assumed to directly

reflect the QoE. Consequently, any obvious changes in playback buffers size will

lead to the variation of video rate. Therefore, predicting the negative changes in

playback buffer benefits the early detection of QoE deterioration. By studying the

condition of a stable playback buffer, it was found that QoS parameters should

be monitored with the interval being equal to video chunk size. A series of

experiments were conducted to validate the determined monitoring interval. The

results demonstrated that using this interval could achieve an expected balance

of computational power and the resulting QoE (defined by the ratio of QoE

deterioration).

1.3.2 Collaborative approach using psychophysiology and

psychophysics for determination of QoE threshold

Traditionally, QoE threshold is simply picked up as the fair quality level of scale

of QoE indicators (e.g., MOS) However, such the quality scale is established by

human rating which has significant drawbacks due to the high bias and variabil-

ity. For more precise QoE threshold, the drawbacks of rating approach need to

be compensated. Thus, the combination of psychophysics and psychophysiology

in determination of the appropriate QoE threshold, was deeply investigated in

this research. This is because such the method can jointly explore the internal

cognitive and tell us the truth about human perception for a given QoE change.

Psychophysics is applied to quantitative evaluation, modeling the relation be-

tween a physical stimulus and perception level. According to the classical psy-

chologists, the absolute threshold is the stimulus intensity at which the stimulus

intensity changes become detectable. Thus, the desirable threshold is predicted
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to be equal to the absolute threshold. However, being similar to rating approach,

the psychophysics also have drawbacks due to the fact that the methods of per-

ception measurement do not provide sufficient insight into underlying perceptual

and cognitive process. Because they rely on assessment scales and open-ended

questionnaires. Meanwhile, psychophysiology is concerned with the measurement

of physiological signals (e.g. Skin conductance, heart rate, etc.). In other words,

it can detect the change of target stimulus through the change of physiological

signal. For these reasons, this approach is prominent to be applied in perception

measurement of psychophysics. Thereby, the relation between physical stimulus

and human perception can be eventually modeled. However, individual difference

is recognized as the primary shortcoming of this approach.

Therefore, in this research, a combination of psychophysics and psychophysiol-

ogy was performed to leverage the advantages of both abovementioned approaches

and compensate for their disadvantages. Accordingly, a logarithmic nature func-

tion expressing the relation between human perception (extracted from biological

information) and stimulus intensity (defined as the deterioration of video rate)

was established. As the result, an appropriate constraint of QoE threshold was

derived from that modeling process. In order to confirm the hypotheses, a num-

ber of experiments were conducted. The experimental results demonstrated that

using determined threshold constraint not only produces a high QoE but also

saves more bandwidth per control.

1.3.3 User-centric approach to accurate bandwidth allo-

cation

Although being difficult to be performed in complicated practical scenario, band-

width allocation is still a common control strategy in QoE management proposals.

In order to precisely determine allocated bandwidth, the constant gap between

target video rate and required bandwidth has been considered in literature. This

gap differs by the type of video player. For example, Microsoft Smooth Stream-

ing player requires the bandwidth allocated to the users must be higher than the

target video rate about 20%. However, the method to determine the target video

rate has not been clearly stated. It was simply picked up from a pre-defined list of

available video rate at the server without considering the end-users expectation,

leading to over-provisioning bandwidth allocation. Therefore, it is necessary to
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precisely determine the target video rate in user-centric manner before allocating

bandwidth to the end-user. In that situation, a novel method in bandwidth allo-

cation has been proposed. This proposed method is two-fold. First, a pre-defined

premium range of subjective expectation in terms of expected MOS is established.

This range is from MOS threshold (determined in previous part of dissertation)

to the highest MOS value of 5. Second, a regression model of video rate and sub-

jective QoE is considered for interpreting the expected MOS to the target video

rate. This model was established by performing function approximations using

Gaussian radial basic function. The experimental results demonstrated that by

using proposed method, more precise bandwidth allocation can be performed,

resulting in more saving bandwidth per control.

1.4 Limitations

The subject of study for this dissertation is QoE management in adaptive stream-

ing services. The focus of this study is to achieve the optimal balance of network

resource utilization and the resulting QoE. However, the proposed method was

validated in the scenario of experimental setup with several users only. The sce-

nario of many users that share a common bottleneck has not been investigated

yet.

In addition, there are numerous issues in maintaining perceived video quality

in mobile networks (e.g. bandwidth fluctuation, interference, mobility, etc.), thus,

our proposals were initially investigated in wired network only.

As mentioned in previous section, our research also concentrated on the ap-

plication of biological information in managing QoE in HAS services. In the

research, the collaborative approach using psychophysiology and psychophysics

for optimal threshold determination in QoE Management was performed. How-

ever, the lack of the information associated with Central Nervous System (CNS)

is another limitation in the scope of our work.

1.5 Contributions and Thesis Organization

In this dissertation, the proposed biological information based QoE management

in adaptive video streaming services is presented. More concretely, three major
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Figure 1.7: Organization of thesis
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solutions have been proposed to address several issues related to QoE monitoring

and QoE control respectively. The following list summarizes briefly our contri-

butions to the problems stated in section 1.2:

1. A biological information based QoE management in adaptive video stream-

ing services was proposed. Similar to general frameworks, the proposed frame-

work has two main layers including monitoring and control layers. There are two

major phases within monitoring layer. The first phase takes into consideration

network QoS factors (e.g., bandwidth, packet loss, delay and jitter) as monitoring

parameters for early detection of QoE deterioration purpose. Meanwhile, appli-

cation QoS factors, memory-driven factors, and especially biological information

take place within the second phase. Thereby, a feedback that accurately reflects

the end-users satisfaction, will decide whether or not control action should be

additionally generated. In control layer, an appropriate QoE threshold has been

applied supporting an in-time control action. This threshold is determined by re-

lying on modelling process of biological information. For accurate control action,

the needed bandwidth will be calculated based on the end-users expectation.

2. An novel method of early detection of QoE deterioration was proposed. In

order to achieve a quick detection, it is necessary to determine the monitoring

factor and its monitoring interval. Thereby, video rate of playback video is main-

tained at an expected level. In fact, any major changes in playback buffer will

produce an accordingly variation of video rate. Thus, the condition of a stable

playback buffer had been investigated. Interestingly, it was found that the moni-

toring interval should be equal to the video chunk size. Applying the determined

interval optimized the computational cost at the controller and eliminated the

ratio of QoE deterioration.

3. An approach for determining the appropriate QoE threshold was proposed

by taking into account the combination of psychophysiology and psychophysics.

More concretely, a general logarithmic nature function which expresses the re-

lation between biological information and the intensity of video rate, was intro-

duced. Thereby, the optimal constraint of QoE threshold was determined and

then applied in QoE control. As the result, not only the overall subjective QoE

was maintained but also the network resource utilization was improved.

4. A novel approach for bandwidth allocation was proposed. In this approach,

target video rate is obtained in a user-centric manner. More concretely, the target
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video rate is determined from subjective expectation. Afterward, the needed

bandwidth is then calculated and allocated to end-user. As the result, compared

to the approach which used self-defined target video rate, this proposed approach

not only maintained the expected QoE level for the specific user but also saved

the available bandwidth per control.

The organization of this thesis is illustrated in Fig.1.7 and described as follows:

Chapter 1: Introduction. The motivation and background of this research

were described in this chapter. In addition, research overview and research limi-

tation also were figured out. The primary contributions of this research were also

concretely summarized in this chapter.

Background knowledge is provided in chapter 2. The issues related to two

QoE monitoring and QoE control are thoroughly resolved in detail from chapter

3 to chapter 5. Chapter 6 discusses, chapter 7 concretely concludes the work and

figures out future work direction.

Chapter 2: Background. This chapter provides a wide range of back-

ground knowledge related to QoE, QoE assessment models and HTTP adaptive

streaming. In this chapter, the definition of separate phenomenon of ”quality”

and ”experience” will be initially clarified, followed by a unique definition of

QoE. The numerous of QoE assessment models which play a key role in QoE

management framework, are then presented. Typically, there are three types of

assessment models including of objective models, subjective models and hybrid

models. Their pros and cons are respectively presented. Finally, the hidden

mechanism of HTTP adaptive streaming technology is discussed.

Chapter 3: Early Detection of QoE Deterioration With Appropriate

Monitoring Interval. This chapter proposes a method to early detect QoE

deterioration in QoE monitoring. Initially, the selection of monitoring factors

is considered followed by the determination the most suitable factors for early

detection of QoE deterioration purpose. By investigating the condition that keep

playback stable during a streaming session, the monitoring interval is determined

to be equal as the size of video chunk. The experimental results demonstrate

that an optimal trade-off between computational cost and the maintaining QoE

is achieved.

Chapter 4: Collaborative Approach using Psychophysiology and

Psychophysics for Determination of QoE Threshold. This chapter pro-
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poses a new method to determine the optimal constraint of QoE threshold. The

proposed approach is to combine psychophysiology and pyschophysics in order to

establish a general logarithmic nature function expressing the relation between

biological information and stimulus intensity (video rate deterioration). In this

chapter, the issues related to the determination of QoE threshold, background of

psychophysiology and psychophysics, and proposed method are briefly described.

The evaluation results demonstrate that performing QoE management with de-

termined threshold can save more than 4.855% of the bandwidth consumption

per control, while ensuring a comparable video quality, in accordance with using

the fair threshold.

Chapter 5: User-centric Approach to Accurate Bandwidth Alloca-

tion. This chapter proposes a new method to calculate the target video rate

in performing precise bandwidth allocation in QoE control. In this chapter, a

review on the bandwidth competition in HAS services and the proposed method

were clearly presented, emphasizing the crucial role of bandwidth allocation in

QoE management in adaptive streaming services. Afterward, the exiting studies

in bandwidth allocation is described in order to investigate their pros and cons.

Eventually, the proposed method and its evaluation will be clearly stated.

Chapter 6: Discussion. This chapter discusses the work investigated and

solutions proposed in this dissertation by which advantages as well as the remain-

ing issues will be summarized.

Chapter 7: Conclusion and Future Work. This chapter concludes the

dissertation by which advantages as well as remained difficulties were discussed.

Finally, research directions of great interest for the future work were figured out.
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Chapter 2

Background

2.1 Overview of QoE

2.1.1 QoE Definition

In order to understand the definition of QoE, the phenomenon of ”quality” and

”experience” must be initially clarified. Quality is usually connected to the terms

of perception. According to [17], quality refers to ”the outcome of an individ-

ual’s comparison and judgment process. It includes perception, reflection about

the perception, and the description of the outcome. In contrast to definitions

which see quality as ”qualitas”, i.e. a set of inherent characteristics, we con-

sider quality in terms of the evaluated excellence or goodness, of the degree of

need fulfillment, and in terms of a ”quality event””. On the other hand, not

only involving perception, quality is considered to connect to expectation as well.

Some authors strongly indicate the correlation between quality, perception and

expectation throughout the following definitions:

• ”The feeling of high quality occurs when perception exceeds expectation;

the feeling of low quality occurs when perception does not meet expectation”

[18].

• ”Degree to which a set of inherent characteristics fulfils the requirements”,

where the requirement is defined as need or expectation [19].

According to [17], experience is defined as follow: ”an experience is an indi-

vidual’s stream of perception and interpretation of one or multiple event”, where
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event is considered as ”an observable occurrence. An event is determined in space

(i.e. where it occurs), time (i.e. when it occurs), and character (i.e. what can be

observed)”. For instance, an experience might result from an encounter of a hu-

man being with a system, service or artifact. An experience does not encompass

everything a person has undergone in the past, but this is referred to as a human

influence factor on QoE.

After considering the phenomenon of ”quality” and ”experience, the defini-

tion of Quality of Experience (QoE) must be jointly defined. In general, ”QoE

measures the quality experienced while using a service” [20]. However, in this

definition, the terms of perception and expectation have not been taken into con-

sideration. On the other hand, the relation to the subjective perception of the

user and its expectation is clearly evident throughout the definition of the Eu-

ropean Network on Quality of Experience in Multimedia Systems and Services

[17]: ”Quality of Experience (QoE) is the degree of delight or annoyance of

the user of an application or service. It results from the fulfillment of his or her

expectations with respect to the utility and / or enjoyment of the application or

service in the light of the user’s personality and current state”.

2.1.2 QoE Influence Factors

Any characteristic of a user, system, service, application, or context whose actual

state or setting may have influence on the Quality of Experience for the user

[17]. The influence factors (IFs) might be grouped in three categories - Human

IF, System IF, and Context IF. More concretely, a human IF is ”any variant or

invariant property or characteristic of a human user. The characteristic can de-

scribe the demographic and socio-economic background, the physical and mental

constitution, or the user’s emotional state”. System IFs refer to ”properties and

characteristics that determine the technically produced quality of an application

or service [21]. Meanwhile, context IFs are factors that embrace any situational

property to describe the user’s environment in terms of physical, temporal, social,

economic, task, and technical characteristics [21][22].

In video services, QoE influence factors can be categorized into technical and

perceptual influence factors [11]. While the perceptual influence factors are di-

rectly perceived by the user, the technical influence factors are perceived indi-

rectly. On the other hand, the authors in [12] constructed a protocol stack to
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form a conceptual relationship between QoS and QoE. Throughout this model, it

is clear to find that the QoE influence factors can also be grouped into network

QoS factors (are indirectly perceived by the user) and application factors (are di-

rectly perceived by the user). In that study, the network QoS factors comprising

of (Round-trip time (RTT), bandwidth and packet loss) were considered, whereas,

initial buffering time, mean rebuffering duration and rebuffering frequency were

the focuses as the application QoS factors.

2.2 QoE assessment models

QoE assessment models refers to the translators between a set of technical (QoS)

and non-technical (subjective and contextual) key influence factors and user per-

ception, and ultimately, user experience [23]. These models can be categorized

into three classes: Objective models, Subjective models and hybrid models. They

will be briefly presented in the next subsections.

2.2.1 Objective QoE assessment models

Objective QoE assessment models are concerned with the models that contain

objectively collected measurements of factors that affect QoE. By using these

methods, the objective factors can be measured automatically at a lower cost

than subjective methods. In general, objective quality assessment methodologies

can be categorized into five types [24][25]. These are media-layer models [26], [27],

parametric packet-layer models [28], parametric planning models [25], bitstream-

layer models [29]and hybrid models [30][31][32].

• A media-layer model utilizes speech or video signals to predict QoE. Be-

cause it does not require a priori knowledge about the system under testing,

such as the codec type or packet loss rate, it can be applied to the evalua-

tion of unknown systems (e.g., codec comparison/optimization). However,

by definition, it cannot be used in scenarios in which media signals are not

available. For example, it is difficult to obtain media signals at the net-

work mid-point although one can decode the payload of packets. These

methods can be further categorized as full-reference (FR) [26][33][34][35],

reduced-reference (RR), and no-reference (NR) [36] depending on whether
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a reference, partial information about a reference, or no reference is used

in assessing the quality, respectively. Full- and reduced-reference methods

are important for the evaluation of video systems in non-real-time scenarios

where both the original video data or a reduced feature data set, and the

distorted video data are available. Full-reference visual quality assessment

metrics and high-complexity non-real-time RR and NR metrics fall within

this class. On the other hand, the in-service methods place strict time

constraints on the quality assessment and are performed during streaming

applications.

• A parametric packet-layer model predicts QoE solely from packet-header

information, enabling very lightweight measurement without handling the

media signal itself. However, it was difficulty evaluating the content de-

pendence of QoE, for example, because it does not look at the payload

information.

• A Parametric planning model make use of quality planning parameters for

networks and terminals to predict the QoE. As a result, it requires a priori

knowledge about the system that is being tested.

• A bitstream-layer model occupies a position between media-layer models

and parametric packet-layer models. It utilizes encoded bitstream informa-

tion, in addition to the packet-layer models, so that it can take into account

the content-dependent quality evaluation characteristics with a relatively

light computational load.

• A hybrid model is a combination of the previously mentioned technologies.

It is effective in terms of exploiting as much information as possible to

predict QoE.

2.2.2 Subjective QoE assessment models

As the key component in QoE management studies, subjective QoE assessment

refers to the quantifying the experienced quality of the users. In general, a panel

of assessors (referred to as ’test subjects’) is subjected to various quality levels

which leads to some form of explicit or implicit response.
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• Rating approach is the most commonly used method in subjective evalua-

tion. Typically, the information regarding subject′s judgment in the form of

rating that describe their perception of the respective quality experienced,

is derived from this approach. This method has been standardized by the

recommendations like ITU-R BT.500-11 [37], providing detailed guidelines

regarding choice of test conditions, rating scales, etc. The most common

grading scale for rating process is Mean Opinion Score (MOS) which is

based on an ordinal five-point scale (1) bad; (2) poor; (3) fair; (4) good; (5)

excellent. Despite being popular method, rating approach has significant

shortcomings due to the high bias and variability in the results, leading to

the less precise QoE assessment.

• Psychophysiological approach provides a measure of implicit rather

than explicit responses to physical stimuli and thus overcomes the problem

of rating approach [38]. More concretely, this approach utilizes the mea-

surement of biological information in order to detect correlations to psycho-

logical responses in humans. The biological information measurements are

categorized into the following classes [38] - Central Nervous System (CNS),

Eye Measurements and Autonomic Nervous System (ANS).

• Psychophysical approache has been introduced to overcome the limi-

tation of rating approach in QoE assessment by attempting to precisely

express the relation between perception and physical stimuli. The ideas be-

hind these approaches are either to estimate the parameter value for which

the distortion becomes perceptible [39], to scale the relative differences per-

ceived between physical stimuli [40], or to define the smallest detectable

different between two stimulus’s intensities [41]. Despite being applied in

wide range of scientific fields, the accuracy of the estimation of perception

2.2.3 Hybrid QoE assessment models

In QoE management, monitoring component is usually required to be automati-

cally performed in accurate and real-time way. In order to achieve this, the ap-

propriate QoE assessment models have to be carefully taken into consideration.

Looking back to previous descriptions of both objective models and subjective

ones, it is clear that none of those models can completely fulfil the requirements of
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QoE monitoring. Despite of the fact that objective models can be able to provide

an automatic way to estimate QoE, the accuracy of such the estimations actually

are not as high as those of subjective models. In addition, due to the require-

ment of reconstruction of video, the application of objective model in real-time is

unrealistic. On the other hand, due to the fact that QoE estimation depends on

real judgment of human, subjective methods cannot be performed in automatic

and real-time fashion. In order to satisfy the original requirements, hybrid QoE

assessment models have been introduced by mapping QoE influence factors (e.g.

QoS) to the QoE in various ways. These methods leverage the advantages of

both objective and subjective methods, while eliminating their drawbacks. QoE

influence factors can be mapped to QoE by using the machine learning tech-

niques [42][43][44][32] or by extending the existing objective methods with hybrid

no-reference prediction model [45]. As the most common hybrid model, Pseudo

Subjective Quality Assessment (PSQA) [31][32] was established by training a

Random Neural Network (RNN) to capture the relation between QoS parame-

ters and subjective evaluations by users. As the result, the trained network can

be used for QoE estimation in automatic, accurate and real-time manners. For

these reasons, hybrid model is sole consideration in QoE assessment in our studied

framework.

2.3 HTTP adaptive streaming mechanism

This section provides an overview of HTTP adaptive streaming (HAS) as the

most common video delivering techniques. This technique was introduced in 2008

[9] by Move Networks in order to overcome the limitation of existing adaptive

streaming techniques as well as HTTP progressive download. Since then, it has

quickly become a de-facto standard for adaptive streaming solutions.

The HAS framework [46] between a client and a video server is depicted in

Fig.2.2. Initially, the video is partitioned in different small fragments (or chunks),

typically a few seconds long. Each chunk is available at multiple video rate. The

video chunks are then hosted on one or several media origin servers typically, along

with the media presentation description (MPD) an XML metadata file that char-

acterizes the structure and the features of the video presentations, and provides

sufficient information to a client to request the appropriate video chunks to the

server over HTTP. Actually, there are various information representing the video
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Figure 2.1: HTTP Adaptive Streaming framework
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Figure 2.2: ABR framework comprises of three main components: Resource esti-

mation, request scheduling and adaption module
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Figure 2.3: Buffering state and steady state in a streaming session

components (video rate, resolutions, the duration of each chunk in seconds, etc.)

contained in MPD files. Based on such the information, clients request the video

chunks corresponding to their selected representation using HTTP GET or par-

tial GET methods with byte ranges. The most crucial mechanism that behinds

this technique is the so-called Adaptive Bitrate Selection (ABR) [47], through

which a client determines the profile and schedule of a chunk to download. The

general architecture of ABR composes of three subcomponents: resources esti-

mation, chunk request scheduling and adaption as shown in Fig.2.2 . In order

to adaptive video quality to a context, network and other system performance

parameters such as CPU, display size or battery life are measured. The choice

of which parameter becomes a situational indicator depends on the QoE metric

that an ABR intends to optimize. The ABR then uses the measurement result

in making decision on the schedule and profile of the chunks to be downloaded.

Typically, there are two main states in the operation of ABR.: Buffering and

Steady state as shown in Fig.2.3. At the buffering state (or convergence time),

HAS player attempts to establish playback buffer as quickly as possible by con-

tinuously requesting video chunks from the lowest video rate. A player normally
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does not wait until the end of the buffering state before a playback begins. This

can be achieved when either a certain amount of content is downloaded or the

buffer size reaches a predefined target (let say as Bmax). For example, Microsoft

Smooth Streaming has a playback buffer of about 20 seconds but starts playing

when the buffer contains just about 10s worth of download [48]. Likewise, Netflix

has a buffer size of 300s worth of content but begins playback 13s after receiving

the first packet [48]. Afterward, then the steady state (or periodic download) is

activated. In this state, HAS player attempts to maximize video rate by keeping

playback buffer stable at Bmax. To do so, the player is required to download a

chunk and then pause for a short time before downloading the next chunk. The

download period and pause period are called ON and OFF period, respectively.

When stimulus occurs (e.g. available bandwidth deterioration), the buffering

state will be re-activated.

2.4 Summary

In this chapter, the background of our study has been briefly presented. Initially,

the phenomenon of both ”Quality” and ”Experience” was carefully clarified. Af-

ter that, the definition of QoE which is in conjunction with the human perception

and expectation, was discussed in detail. As the most important component in

QoE management framework, QoE assessment models was also taken into con-

sideration in this chapter. Even though only hybrid QoE assessment models have

been applied in this research, the other types of models were also investigated

in order to emphasize the reliability of hybrid models. Finally, the framework of

HAS as well as adaptive bitrate selection (ABR) were the next focuses of this

chapter, respectively.
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Chapter 3

Early Detection of QoE

Deterioration With Appropriate

Monitoring Interval

Developing the QoE management process is a non-trivial exercise since capturing

QoE is a very subjective process. QoE is subjective because it is driven psy-

chologically as well as technically. Thus, monitoring layer in QoE management

system where QoE estimation takes place should be initially discussed. For this

reason, in this chapter, the monitoring layer will be thoroughly explained along-

side a proposed method for early detection of QoE deterioration. Thereby, the

research goal, which achieves the balance between optimizing network resource

utilization and maintaining QoE, can be made.

3.1 Introduction

For years, QoE monitoring has become a major concern of contemporary works

[49][50][51][52][53][54]. In general, QoE monitoring is performed by observing a

wide range of QoE influence factors or quality performance indicators (QPI) in

real-time, then by interpreting them as the QoE indicator that is expressed by the

Mean Opinion Score (MOS) ranging from 1 (”Bad”) to 5 (”Excellent”) [55]. In

fact, QoE assessment and QoE estimation are extremely important components

in any designs of QoE monitoring. While QoE assessment refers to modeling pro-

cess of QoE influence factors and subjective perception, QoE estimation refers to
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the use of that model to automatically estimate QoE in real-time. The primary

requirements of QoE monitoring are to early and accurately detect QoE deteriora-

tion based on reliable estimations during a streaming session, serving the purpose

of maximizing QoE with minimum network resource usage. In order to achieve

this, a two-phase monitoring layer has been introduced in the proposed biological

information based QoE management framework. Fig. 3.1 depicts the proposed

QoE monitoring layer comprising of two monitoring phases. The focus of the first

phase is to early detect QoE deterioration to avoid the perceivable video quality

distortion during a streaming session. Meanwhile, the second phase refers to the

validation of the first phase with more reliable QoE estimation followed by addi-

tional control if it is necessary. In this dissertation, the first monitoring phase is

focused on, whereas the second phase will be considered as the future work.

QoE Estimation 2

QoE Estimation 1

Monitoring - Phase 1

Monitoring - Phase 2

QoS parameters

Application QoS, 
Memory-driven factors, 
Biological information

Monitoring Layer

Estimated QoE 1

Estimated QoE 2

Figure 3.1: Two-phase QoE monitoring layer

In a design of QoE monitoring, the following steps need to be in turn per-

formed: (1) Selection of appropriate monitoring factors and (2) Selection of a

suitable monitoring interval. In this study, such a design needs to be aligned

with the requirement of the first phase, that is to say, early detection of QoE

deterioration.

Monitoring factors can be selected from among numerous QoE influence fac-

tors. According to [11], QoE influence factors can be divided into two categories
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Figure 3.2: Classification of QoE influence factors in adaptive streaming services

which are perceptual factors and technical ones as shown in Fig. 3.2. While

the perceptual factors are directly perceived by the users, the technical factors

indirectly reflect the perceived video quality. A similar classification approach

was also delivered as the protocol stack characterizing a conceptual relation be-

tween QoS and QoE in [12][56]. Accordingly, network QoS (e.g. bandwidth,

packet loss, delay and jitter) and application QoS (e.g. initial buffering time

and rebuffering frequency) are referred to technical and perceptual factors, re-

spectively. For early detection purpose, the technical factors are more suitable.

Among them, the factors (playback buffer, video rate and QoS), which belong

to adaption logic category have been major concern in this research due to their

strong correlations with adaptive video rate mechanism. It is worth noting that

both the playback buffer and the video rate are grouped into application QoS

category, while the QoS belongs to network QoS category. As mentioned in sec-

tion 2.3, during buffering state and steady state, adaptive video player always

attempts to quickly establish a sufficient playback buffer and to keeps it stable.

Once a drain on playback buffer becomes detectable, video rate will be adap-

tively varied to avoid video interruption. Therefore, the status of playback buffer

potentially determines the variation of video rate and other application QoS pa-

rameters. Being the most important application QoS parameter, the video rate

expresses the quality of picture frame and directly reflects the video quality per-

ceived by the end-user. With an assumption that playback buffer is sufficient to

avoid the distortion caused by the other application QoS parameters (e.g., buffer-

ing, stalling, frequency of rebuffering), video rate becomes a sole representative

of perceived video quality. Thus, the requirement of the first monitoring phase

turns out to be early detection of video rate deterioration. This can be done
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by observing the status of playback buffer. Because both the playback buffer

and the video rate are categorized into application QoS, thus, they are affected

by network QoS parameters. In other words, network QoS can be regarded as

a situational indicator showing the variation of playback buffer and video rate.

Monitoring network QoS provides a prediction of playback buffer, benefiting the

purpose of early detection of video rate deterioration.

In adaptive streaming technology, both playback buffer and video rate are typ-

ically obtained on a chunk-by-chunk basic [57][58] that relies on the timestamp

of two successive requests sent by video player. In other words, the monitoring

interval of those parameters are uncontrollable. It leads to the fact that their

deteriorations have already been perceived by the end-user before control action

is triggered. As a potential monitoring factor, on the contrary, network QoS can

be captured with more flexible self-defined interval. To the best of our knowl-

edge, there are no studies that seriously focus on monitoring interval in QoE

management. In literature, the existing works usually come up with a very small

monitoring interval. However, small interval always causes high computational

cost on the network entity in which monitoring component is being deployed in,

whereas, long interval leads to high ratio of deterioration of video rate. There-

fore, in this chapter, a novel method is proposed to early detect QoE deterioration

through the determination of monitoring factor and the appropriate monitoring

interval. This proposal is inseparable from an expected balance of the computa-

tional cost and the ratio of video rate deterioration. Particularly, the monitoring

interval is derived from a considered condition which makes playback buffer stable

during a streaming session. Accordingly, the optimal interval is determined as

being equal to the size of a video chunk. The experimental results demonstrate

that by applying determined interval, a balance between the average CPU load

and the ratio of video rate deterioration is achieved at the value of 11.45%.

3.2 Related Work

This section will review the existing works related to QoE monitoring in order

to emphasize the necessity of the determination of monitoring factor and an

appropriate monitoring interval.
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In [59] [60] video rate was monitored to evaluate the performance of the pro-

posed video quality adaption scheme. Thereby, these authors confirmed that their

proposal was more advanced than other works in terms of justifying QoE defined

by monitored video rate. However, in [48], the authors stated that it always

takes time for video rate to adapt to the network condition. Thus, such a control

action is meaningless if it relies on video rate monitoring since the video deterio-

ration has already been perceived by the end-user. Both video rate and playback

buffer can be obtained on a chunk-by-chunk basic [57][58], thus, the same con-

sequence is also found in playback buffer monitoring [61][62]. In that case, only

QoS parameters are prominent for the original purpose of early detection of QoE

deterioration.

Network QoS is considered as a monitoring factor in a number of contemporary

studies [63][49][31][64][65]. Using the network QoS parameters, the monitoring in-

terval can be flexibly self-defined without depending on chunk-by-chunk basic. It

is also well-suited for quickly predicting video rate deterioration [66][67]. If moni-

toring interval is too small, the computational cost of Controller becomes higher.

Additionally, incorrect control action will also be generated due to the spike

fluctuation in traffic throughput. Particularly, if the bandwidth instantaneously

deteriorates, then recovers, the activation of control action becomes meaningless.

If the interval is too large, video rate deterioration might be perceived before the

generation of control action. Therefore, an appropriate monitoring interval needs

to be determined to optimize computational cost and eliminate the ratio of video

rate deterioration.

In this chapter, the proposed method for determining an appropriate monitor-

ing interval will be presented. Along with that a series of experiments have been

performed in order to validate the determined interval. The experimental results

demonstrate that using determined monitoring interval, a balance between the

computational cost and the ratio of video rate deterioration has been achieved.

3.3 Methodology

Typically, the operations of QoE monitoring can be broken down into two steps:

QoE assessment and QoE estimation. In this section, the brief description of

QoE assessment model that is used in this study will be initially introduced.
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Afterward, the method that relates to QoE estimation is proposed for the deter-

mination of appropriate monitoring interval.

3.3.1 PSQA approach in QoE assessment

In literature, hybrid QoE assessment has emerged as the most common model

in expressing the relation between QoE influence factors and QoE indicators. In

this study, Pseudo Subjective Quality Assessment (PSQA) is mainly taken into

account due to its advances [32]. This model is capable of estimating QoE in

accurate and automatic manner and if necessary in real-time. Particularly, the

model was established by training a Random Neural Network (RNN) to map QoS

to QoE. The training process and operations of PSQA are depicted in the Fig.3.3

and Fig.3.4, respectively.

In training process, a dataset comprising of QoS parameters (as input) and

subjective Mean Opinion Scores (MOS) (as output), has been prepared. Input

data for training comprises of various QoS parameters including available band-

width, packet loss, delay and jitter. For each selected input parameter, a discrete

set of common values was chosen. Each combination of values of QoS parameters

is called as a system configuration. There were 294 prepared configurations in

total set up on WANEM router (WAN Emulator 3.0). The open source movie,

Big Buck Bunny had been chosen to be watched by the subjects. The movie was

cut into 10-second sequences each of which was available at multiple video rates

at the server. Accordingly, there were totally 294 sequences taken from original

movie and they were delivered over the set-up network with different configura-

tions. Consequently, the distorted video sequences were also obtained. Output

data for training process was subjective perception represented by MOS scores

ranging from 1 to 5 given out by subjects for each distorted sequence. MOS

was obtained following the instruction of Degradation Category Rating (DCR)

methodology [68]. DCR requires that the testing sequences need to be presented

in pairs: the first sequence in each pair is always the source reference (original

sequence), while the second one is the distorted sequence. The length of original

sequence and distorted sequence are equal to 10seconds. There were 17 subjects

who were asked to watch 294 sequences and deliver their evaluations in terms

of MOS, afterward. Finally, the average of those subjective evaluations was ob-

tained. After preparation step, dataset with 294 samples was divided into three
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parts: training data, validation data and testing data corresponding to 70%, 15%,

and 15% of the dataset. The training data is presented to the network during

training, and the network is adjusted according to its error. The validation data

is used to measure the network generalization and to halt the training process

when the generalization stops improving. The testing part has no effect on the

training process, and thus provides an independent measure of network perfor-

mance during and after the training process. Apart from the training dataset,

the neural network architecture was also considered, which comprises of totally

4 neurons for input layer, 10 neurons for hidden layer and 1 neuron for output

layer. The training process is shown in Fig.3.3. As the result, correlation coef-

ficient (denoted by R) was calculated, which is equal to 0.91. It means that the

predicted data has a well correlation with actual data. Therefore, the trained

neural network can be used for MOS estimation.

client
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Figure 3.3: Training process of PSQA
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Figure 3.4: Practical usage of PSQA in QoE assessment

3.3.2 Determination of appropriate monitoring interval

The high correlation coefficient obtained from training process allows the use of

PSQA assessment model in QoE estimation. Particularly, MOS as QoE indicator
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is continuously estimated from monitored QoS parameters (bandwidth, packet

loss, delay and jitter). For the research purpose of early detection of video rate

deterioration, the estimated MOS must precisely reflect the status of video rate in

real-time. This can be achieved if MOS is estimated at the right time, depending

on QoS monitoring interval. In fact, the smaller QoS monitoring interval is, the

earlier detection of video rate deterioration can be guaranteed. However, using

too small monitoring interval might cause some consequences. For example, some

spike fluctuations of QoS parameters will lead to incorrect estimation, resulting

in meaningless control action. In addition, the computational cost of monitoring

entity is also a big issue for the large network system. Therefore, monitoring QoS

with an appropriate interval is extremely important, especially for precisely cap-

turing the status of video rate. Before going further, it is necessary to understand

how video rate varies during a streaming session.

Looking back in adaptive streaming technology, the original video content is

always required to be divided into multiple chunks which are available at multi-

ple video rate at the server. Before streaming session is started, the server will

initially deliver the signaling metadata or media presentation description (MPD)

that contains the characteristics of the video chunks (such as video rate, res-

olution, etc.) to video player. Based on the MPD and the status of network

conditions, the video player makes decisions for video rate selection. The adap-

tive bitrate selection framework has already been presented in subsection 2.3,

describing how the video rate for the next video chunk can be estimated. Ac-

cordingly, it can be seen that resource estimation always takes a primary role in

adaption process. Therefore, in order to maximize video rate, the video player

needs to correctly estimate the resource availability and resource demands [69].

The same indication can be found in an adaptive bitrate selection (ABR) survey

[47]. In fact, the resource estimation is performed by considering the estimation of

either throughput or buffer occupancy. However, throughput-based ABR is the

most commonly used approach in commercial players. This research solely fo-

cuses on throughput-based ABR approach. Particularly, throughput-based ABR

takes into account the estimated throughput and the alternative video rate which

are specified in the metadata. Then, the video rate can be decided as the highest

value of the available video rate that is smaller than the estimated throughput.

Traditionally, throughput is estimated based on per-chunk mechanism, which uses
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the throughput of a recently downloaded chunk as a rough estimate of the cur-

rent network conditions [70][71]. However, the instant throughput derived from

a single chunk is hardly used since it is prone to short-term fluctuations as result

of, for instance, the time-varying nature of the available bandwidth, or the dy-

namics of TCP. In order to address this problem, the concept of running average

was introduced as follows:

T =

{
αT (i− 1) + (1− α)T (i), i > 1

T (1), i = 1
(3.1)

where T (i) is the throughput of the ith chunk, T is the running average.

However, when video players have to compete for available bandwidth, the op-

erations of ON and OFF period will cause unfairness and instability in video rate

selection [72]. It means that sufficient knowledge about the status of video rate

cannot be provided only by throughput estimation. As mentioned in subsection

2.3, playback buffer plays a central-role within video rate adaption mechanism.

In general, the video players always attempts to maintain playback buffer size at

a stable level, resulting in high requested video rate. In addition, playback buffer

can be easily obtained in application layer despite bandwidth competition [61].

Therefore, it promisingly provides an accurate prediction of video rate variation.

In order to practically confirm this indication, an experiment was conducted.

The experimental scenario was as follows: The end-user watches a movie with a

high video rate under a good network condition in which available bandwidth is

high (around 5000kbps), whereas, packet loss, delay and jitter are assumed to be

negligible. The behaviors of both playback buffer and video rate are continuously

observed when:

1. The available bandwidth is dramatically decreased to 1024kbps at t = 20s

(before playback buffer reaches Bmax).

2. The available bandwidth is dramatically decreased to 1024kbps at t = 60s

(after playback buffer reaches Bmax).

There were two evaluation metrics that were considered in this experiment

which are tdelay−buffer, and tdelay−bitrate, that is to say, the duration time until

the first adaption (either decrease or increase) of both playback buffer and video

rate, respectively. The details of experimental setup were as follows: there were
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three major entities including a client, a streaming server and a router. Microsoft

smooth streaming player and a packet sniffer (Wireshark) were deployed at client.

Wireshark allows us to capture and analyze the traffic which comes from and to

HTTP server offline. The router, namely, WAN Emulator is capable of controlling

the available bandwidth of the client. During the experiment, the video rate

was derived from HTTP GET packet header, whereas, the playback buffer was

calculated through Eq.3.2 as follows:

Btk = Btk−1
−∆t + (t

′

k − t
′

k−1) = Btk−1
−∆t + V (3.2)

where Btk is playback buffer size at time point tk, Btk−1
is playback buffer size

at time point tk−1, whereas, t
′

k and t
′

k−1 are timestamp of HTTP video request

at time point tk and tk−1, respectively, ∆t is the duration time between two

successive requests. V is equal to video chunk size (in second). The specific value

of V depends on the type of adaptive streaming player.

Table 3.1 shows the sample dataset of experiment with two studied metric

tdelay−buffer and tdelay−bitrate. The means of the waiting time until the first negative

adaptions of both playback buffer size and video rate are respectively 5.76s and

12.69s, respectively. Interestingly, during the experiment, the 2nd decrease of

playback buffer always occurs at the same time with the first decrease of the

video rate. Therefore, capturing the first decrease of playback buffer provides a

prominent prediction of the decrease of video rate. For this reason, it is necessary

to investigate the condition that keeps playback buffer stable during a streaming

session. In fact, such the condition can be expressed as Eq. 3.3.

Btk −Btk−1
≥ 0 (3.3)

Consequently, based on Eq. 3.2, the above condition is transformed as:

∆t ≤ V (3.4)

Accordingly, if the condition in Eq. 3.4 is guaranteed, it will prevent video

rate from deteriorating in a streaming session. Particularly, the video player must

keep sending requests with the interval (∆t(s) ) which is higher or equal to the

video chunk size (V ). Therefore, QoS must be monitored with an interval that is

at least equal to V to precisely capture of the first decrease of playback buffer.
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Table 3.1: Sample dataset with two metrics: tdelay−buffer, and tdelay−bitrate

tdelay−buffer tdelay−bitrate

5.37 14.95

4.01 5.37

3.52 17.31

5.73 11.62

4.81 11.56

7.41 12.54

5.80 13.6

3.4 Evaluation

The purpose of this evaluation is to verify how elaborately the proposed moni-

toring interval facilitates maintaining the video rate level when the network con-

dition is getting worse. More concretely, since the determined interval of MOS

monitoring is applied, the following metrics has been evaluated:

• Ratio of video rate deterioration.

• Average CPU load.

• Detection time td which represents how quickly video rate deterioration can

be detected if compared with method which uses video rate as monitoring

indicator.

• Recovery time tr of video rate which represents the duration time from

when control action is generated until video rate is recovered to expected

level.

In order to evaluate those criteria, two experiments were performed with environ-

ment setup as follow: A TestBed consisted of a router, a streaming server, and a

client. Beyond routing and Nat function, the router played a role as a Controller

which was installed on a VMware workstation of a desktop computer with Intel

Core i5 3.10 GHz processor and 8 GB RAM. The Controller with QoE man-

agement algorithm (written in Python) [65] was capable of not only monitoring
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and controlling QoS data (available bandwidth, packet loss, delay, and jitter),

but also calculating MOS based on QoS data. The streaming sever was deployed

on a desktop computer with Windows 8.1, Intel Core i5 3.10 GHz processor

and 8 GB RAM. The server published a Microsoft smooth streaming (MSS)

video content of ”Big Buck Bunny” which is known as an open source testing

movie. This movie content was en-coded with multiple bit rates. Furthermore,

a Smooth Streaming-compatible Silverlight player template was installed on the

Smooth Streaming enabled streaming server so that Silverlight-based clients can

play Smooth Streams. A video client was a laptop computer with MacOS, Core

i5 and 8 GB RAM in which the latest version of Microsoft Silverlight add-on

was installed. The server and the client were located in different broadcast do-

mains and they were connected via the router. The network topology used for

the experiments is shown in Fig. 3.5. In addition, Wireshark, which is a network

packet analyzer, installed on the router captured the HTTP request from the

client. Note that MSS applies the value 2s of V during streaming session [48],

thus, in this experiment, the optimal interval of 2s was evaluated.

Figure 3.5: Experimental setup for evaluating the optimal monitoring interval

throughout three evaluation metrics

For evaluating two first metrics, the experimental scenario was performed

as follow: the estimated MOS was monitored with respect to interval tmon ∈
{1, 1.2, 1.5, 1.8, 2, 2.2, 2.5, 2.8, 3, 3.2, 3.5}. Meanwhile, the experimental procedure

was:
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1) A client starts watching a streaming video content.

2) Stimulus is generated in buffering state and steady state by decreasing

available bandwidth on purpose to make the network quality deteriorated (from

5000kbps to 1024kbps).

3) The packet loss, delay and jitter in the network and average CPU load in

Controller (where QoE monitoring and QoE control are performed) are observed.

4) The deterioration is detected by observing the estimated MOS.

5) The available bandwidth to the user is immediately increased to recover the

net-work quality when the deterioration of video rate is detected (from 1024kbps

to 5000kbps).
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Figure 3.6: Ratio of QoE deterioration and average CPU load in both scenarios

Ratio of video rate deterioration is determined by ratio of the number of times

the video rate decreases to the total number of times the experiment is repeated.

Meanwhile, average CPU load stands for means of CPU load of the Controller

in each experiment’s iteration. Particularly, with each value of tmon, the above

procedure was repeated 10 times in total. Given that within 10 times, there is

n times the video rate decrease n ≤ 10, even though control action has already

been generated. Then, the ratio of video rate deterioration which is the ratio of
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n to 10 times of total was calculated for each value of tmon. Alternatively, the

average CPU load of the Controller for each interval was also recorded.

Figure 3.6 compares the ratio of deterioration of video rate according to the

monitoring interval varying from 1s to 3.5s with both buffering state and steady

state. It is clear that those ratios significantly increased when tmon > 2s. Overall,

a much higher percentage of video rate deterioration could be seen in buffering

state in comparison with steady state, and buffering state experienced the faster

growth of such ratio. As explained in background knowledge section, during the

buffering state, HAS player attempts to fill the playback buffer as quickly as

possible. Whereas, during the steady state, buffer occupancy is stable at Bmax.

Therefore, video rate becomes more sensitive to stimulus within buffering state

than in the steady state. In this figure, during the streaming session, average

CPU load showed a clear trend in which it linearly decreased across monitoring

interval values from 14.46% to 8.18%.

Particularly, during the buffering state, an increase trend clearly could be seen

in ratio of video rate deterioration when the monitoring interval was higher than

2s. A slight fluctuation was found in range of between 1.5s and 2s. However, such

fluctuation did not always occur when the whole procedure was repeated several

times. Interestingly, the ratio reached to peak of 100% of video rate deterioration

when monitoring interval is larger than 3.2s. When monitoring interval was

varied from 1s to 2s during steady state, the ratio of video rate deterioration

was stable at lowest value of 0.1 of accuracy. However, when the monitoring

interval was larger than 2s, the ratio of video rate deterioration quickly rocketed

to 0.6 of accuracy before witnessing a large fluctuation in range of between 2.5s

and 3.5s. This fluctuation was also explained as the result of limitation of this

QoE management algorithm performance. The algorithm frequently called PSQA

model (written in Matlab) by which it could generate some ”spike” in Controller’s

processing time. Actually, this abnormal fluctuation could not be seen when the

experiment procedure was repeated several times.

The reasonable decrease trend of average CPU load was found from the graph.

Interestingly, the line of average CPU load crossed by the line of ratio of video

rate deterioration (in the steady state) at the point according to the interval of

2s. At that point, the value of computational cost and the ratio of video rate

deterioration are equal to 11.45%.
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For the detection time and recovery time criteria, MOS monitoring with de-

fined optimal interval was compared with video rate-based method. The experi-

mental procedure for two scenarios of the evaluation was as follows:

1) A client starts watching a streaming video content.

2) The available bandwidth is reduced on purpose to make the network quality

deteriorated.

3) The packet loss, delay and jitter in the network are observed.

4) The deterioration is detected by observing the video rate and the estimated

MOS.

5) The available bandwidth to the user is increased to recover the network

quality when the deterioration of the video rate (for the first scenario) and esti-

mated MOS (for the second scenario) are detected.

Initially, the capacity of the link from router to server was set to 5000kbps.

Because there was only one client in the network, thus, the link capacity was

equivalent to the available bandwidth of the client. The experiment time was 120

seconds for each scenario. At t=20s, t=60s and t=90s, the available bandwidth

of the client was set to a low level of 1024 kbps. During streaming sessions, video

rate was continuously captured, whereas, the estimated MOS was monitored in

every tmon=2s.

Figure3.7 and Fig.3.8 show the results of experiment in both scenarios. As seen

from both graphs, the video rate reached its highest value of 2962kbps at around

t=10s. After the available bandwidth was reduced to 1024kbps at t=20s, the video

rate decreased to 2056kbps at t=32.46s. Router was immediately controlled to

increase the available bandwidth to 5000kbps. However, the video rate did not

return to 2962kbps within several seconds. It stayed at the value of 2056kbps for

15s. When the available bandwidth was decreased at t=60s, the video rate also

took a large delay to react to. It decreased to 2056kbps at 71.99s, and even kept

staying at that level, although the router had increased the available bandwidth

to 5000kbps. To make matters worse, when the available bandwidth was reduced

to 1024kbps t=90s, the video rate started decreasing more.

In Fig.3.8, after the available bandwidth was reduced to 1024kbps at t=20s,

t=60s, and t=90s, MOS quickly decreased to around 2.75. Those deteriorations

were respectively detected at t=23.90s, t=62.90s and t=92.90s, respectively. The
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Figure 3.7: Video rate requested by the user, available bandwidth and estimated

MOS in the first scenario
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Figure 3.8: Video rate requested by the user, available bandwidth and estimated

MOS in the second scenario
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router managed to increase the available bandwidth to 5000kbps, and thus the

estimated MOS also quickly returned to 5 at t=26.90s, t=65.90s and t=95.90s.

Unlike in the Fig.3.8, any worse deterioration in video rate could not be seen until

t=95.69s. But the video rate just deteriorated for a short time from t=95.69s

to t=98.49s, then recovered to the original highest value. This is because the

estimated MOS detects the network quality change quickly, then the available

bandwidth can be adjusted immediately.

It can be seen that that the video rate always takes a large delay to adapt the

available bandwidth compared to the estimated MOS. This is because the video

rate does not change after detecting the network quality change. In fact, the

player reacts, not to the latest fragment download throughput, but to a smoothed

estimate of those measurements that can be unrelated to the current available

bandwidth conditions. Particularly, in Fig.3.7, when the available bandwidth

was decreased, the video rate deterioration could be detected about 12.46s after

that. Meanwhile, Fig.3.8 witnessed a short reaction time of estimated MOS.

It took only about 3.9s for capturing the deterioration of estimated MOS. It

means that by using optimal monitoring interval, MOS-based method can detect

video rate deterioration at least td = 8s earlier than video rate based method.

After controlling available bandwidth, the second scenario witnessed that the

video rate remained unchanged or experienced a short-term reduction (observed

around T=90s). In contrast, in the first scenario, the video rate did not return to

2962kbps within several seconds and it took a large tr (around 15s) to return or

even did not return. This is because the playback buffer size is large enough to

compensate for a negative ”spike” in the available bandwidth. A small recovering

time tr ≤ 4s of video rate which could be seen from the second scenario is

meaningful in QoE management. In other words, video rate has been guaranteed

to be maximized or to be kept stable at desirable level.

3.5 Summary

In this chapter, a method to early detect QoE deterioration through the deter-

mination of monitoring factor and the appropriate QoE monitoring interval was

proposed. To sum up, QoS is selected from adaption logic factors as monitoring

factor, while its monitoring interval is determined through a condition of stable

video rate. Thereby, the monitoring interval was eventually required to be equal
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to the size of video chunk (in second). By applying this interval, QoE manage-

ment system could effectively maximize video rate during a streaming session.

The effectiveness was represented by early detecting video rate deterioration,

short recovery time, low CPU load and low ratio of video rate deterioration.
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Chapter 4

Collaborative Approach using

Psychophysiology and

Psychophysics for Determination

of QoE Threshold

4.1 Introduction

Theoretically, QoE control is responsible for making the comparisons between

monitored QoE (taken from QoE monitoring) and a specific QoE threshold, and

then for triggering a control strategy if it is necessary. In fact, the threshold value

will be used to decide whether a control action can be triggered at the right time

or not, leading to several potential consequences. If a higher threshold value is set,

which means it detects a lower deterioration of video quality, the control action

will be generated too early and frequently. As the result, it would bring a high

computational cost and a waste of bandwidth, although an expected level of QoE

is guaranteed. On the contrary, if a lower threshold value is set, a deterioration of

video quality will be subjectively perceived before generating the control action.

Consequently, the controlled QoE is not as high as the expectation, although

the computational cost and the waste of bandwidth are eliminated. Therefore,

the determination of an appropriate QoE threshold is indispensable. However,

in literature, such a threshold has not been carefully investigated yet, despite its

importance.
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As mentioned in section 2.2, hybrid QoE models have become the most com-

monly used methodology for contemporary studies due to their advances. These

models actually consist of a combination between the subjective models and the

objective models. Particularly, the relation between subjective perception and

QoE influence factors are modeled through a training process in machine learn-

ing approach. For these reasons, these models can deliver the assessments as

precisely as human does in an automatic and real-time manner. Therefore, they

have been increasingly applied in a wide range of studies. In this study, the hy-

brid models are also the sole option for the design of QoE monitoring within the

proposed QoE management framework.

In the modeling process of hybrid models, the subjective perception is ob-

tained by subjective assessment methods (e.g., rating approach, psychophysics)

as described in section 2.2. In fact, the rating approach is the most commonly

used method in subjective assessment, where the subjects are asked to provide

their evaluation in terms of 5-scale Mean Opinion Score (MOS) for given video

sequences. Therefore, the fair level in 5-scale MOS (middle value of the 5-scale)

is simply selected as the threshold for QoE control [67][73][74]. However, this

approach is inheritably biased due to the qualitative nature of the scale (MOS

scale) and brings a large variance in the result. This demands a new method

to determine a more reliable threshold for QoE control in adaptive streaming

services.

Alternatively, psychophysics approach has been potentially considered in the

determination of QoE threshold. This approach provides a tool for measuring

the perceptual performance of subjects, introducing visibility thresholds and just

noticeable differences (JNDs), which are the humans perception levels suitably

connecting to physical values. In other words, the psychophysics quantitatively

clarifies the relation between physical stimuli and a level of humans perception.

Actually, such a relation was successfully modeled as a general logarithmic nature

in Weber-Fechner Law, which has already been applied in a wide range of QoE

assessment studies [75][76][77][78]. In this approach, the threshold level of stim-

uli which refers to an absolute threshold is determined by introducing either a

gradual increment until stimulus becomes detectable or a gradual decrement until

stimulus becomes undetectable. In this study, such a threshold can be consid-

ered as the desirable QoE threshold. Nonetheless, in psychophysics, assessment

scales like MOS and open-ended questionnaires are still typically used in order to
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Table 4.1: The pros and cons of rating approach, psychophysical approach, and

psychophysiological approach

Characteristics Rating approach Psychophysical

approach

Psychophysiological

approach

Perception mea-

surement

Subjective eval-

uation in terms

of Mean Opinion

Score (MOS)

Biological in-

formation (e.g.,

ECG, EEG,

EDA, etc.)

Subjective evalu-

ation in terms of

MOS, open-ended

questionnaires

Pros Environmental

setup for percep-

tion measurement

is simple

High accurate as-

sessment without

biased and vari-

ability

Do not depend on

the individual dif-

ference

Cons High biased and

variability

Individual differ-

ence

High biased and

variability

quantitatively and qualitatively evaluate the user’s perception to media content.

These methods depend on humans conscious responses and often do not provide

sufficient insight into underlying perceptual and cognitive process. Therefore,

the psychophysics approach alone cannot provide sufficient information for QoE

assessment in adaptive streaming services.

In order to address the drawbacks of psychophysics, the approach of psy-

chophysiology has been alternatively taken into account in this study. The psy-

chophysiology refers to physiological signals when stimuli are given, and then the

correlations between the characteristics of the physiological signals and the given

stimuli are discussed. The physiological measurements are categorized into the

following classes [38] - Central Nervous System (CNS), Eye Measurements and

Autonomic Nervous System (ANS). The psychophysiology detects the change

of target stimulus through the change of corresponding physiological signal. It

means that since the user’s perception to the stimulus is obtained by the phys-

iological signal, it achieves more precise QoE assessment than the previous ap-

proaches do. However, there is a significant limitation in the psychophysiology,

which is the individual physiological difference that may produce systematic er-

rors among subjects or groups thereof. Hence, a new approach which is applicable

to a general population is required.
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The pros and cons of the above approaches are summarized as in table 4.1.

Accordingly, the abovementioned issues can be solved when the combination of

the psychophysics and the psychophysiology is taken into consideration, compen-

sating for the disadvantages of psychophysics with the advantages of psychophys-

iology, and vice versa. As the result, more reliable QoE assessments without

depending on individual physiological difference will be achieved. Accordingly, a

more reliable QoE threshold will be determined.

This chapter proposes a new method to determine an appropriate QoE thresh-

old to ensure that the perceived video quality stays at high and stable level with

the minimal network resource utilization by taking into account the combination

of psychophysiology and psychophysics in QoE assessment. The contributions of

this study are as follows:

(1) Establishing a general logarithmic function expressing the relation between

human perception and stimulus intensity. Based on the function, the human

perception is estimated through physiological measurements (Note that in this

work, the term of ”biological information” will be used instead of ”physiological

information”, and stimulus will be referred to as a QoE influence factor).

(2) Defining an appropriate QoE threshold by determining the absolute thresh-

old or its constraint.

4.2 Related work

Determination of QoE threshold plays an important role in balancing network

resource utilization and the resulting QoE. The existing threshold is not as reliable

as the expectation since each individual has different interests and expectations

for video quality [79]. For determining a more reliable QoE threshold, a novel

method which is the combination of psychophysiology and psychophysics has

been proposed. This section will review the existing works that related to QoE

assessment using either psychophysiology or psychophysics.

Estimating human’s perception using the intensity of a specific stimulus has

been a major concern of many scientists for years. The initial cornerstone was

marked by the breakthroughs of Weber and Fechner, where the relation between

human perception and stimulus intensity was modeled as a logarithmic nature

expressed by Weber-Fechner Law. Consequently, the Weber-Fechner Law (WFL)
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has been widely applied in various research areas. In [80] the logarithmic nature

of QoE for a given QoS parameter is discussed because of the underlying WFL.

Meanwhile, in an effort to derive a specific the so-called Web QoE model, the

authors in [75] also successfully took into account WFL for modeling the relation

between QoE and page load time. Based on WFL, the utility functions between

QoE and QoS was derived in [76]. In this research, the authors considered the

QoE as the human perceptual intensity of the stimulus and the reciprocal of the

QoS parameter (time delay) as the physical magnitude of the stimulus. The utility

functions show the relation between QoE and allocated bandwidth of each user

types were also represented by WFL in [78]. In our research, the appropriate QoE

threshold is also expected to be determined by modeling the impact of stimulus

intensity on human perception based on the logarithmic nature of WFL.

Psychophysiology has been increasingly applied in QoE assessment for mul-

timedia services, including adaptive streaming services [38]. There are numerous

studies which focus on QoE assessment by using biological measurements. [81]

presented a significant correlation between EEG/ECG and video quality levels,

[82] illustrated that Electrodermal Activity (EDA) is effective in measuring hu-

man perception to given visual fatigue, whereas [83] concluded that the same

result was found from both EEG and EDA. Particularly, in an effort to directly

measure the changes of perceived video quality using EEG, the authors in [13]

showed that abrupt changes of video quality give rise to specific components in

the EEG that can be detected in a single-trial basic. Potentially, a neurotechno-

logical approach to video assessment can lead to more objective quantifications

of quality change detection, overcoming the limitation of subjective approaches

(such as subjective bias and the requirement of overt response). Those contri-

butions promisingly motivate applying psychophysiology in QoE management in

adaptive streaming services. In our research, the biological information (EDA,

heart rate and heart rate variability) associated with Autonomic Nervous System

(ANS) is initially used to determine the appropriate QoE threshold.

4.3 Background

Section 4.2 clarifies the applications of biological measurements in QoE assess-

ment, especially ECG and EDA which are associated with ANS. Considering the

measurement efficiency and the convenience for the users, EDA, heart rate (HR)
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and heart rate variability (HRV), are eventually selected as measured signals in

this research. This section investigates the background knowledge related to the

terms of biological signals (EDA, HR and HRV) and psychophysics (Sensation,

perception and Weber-Fechner Law).

4.3.1 Electrodermal Activity

In human’s perceptual process, sensory receptors convert sensations into electrical

impulses [84]. The electrical impulses are relayed to the brain and the responses to

the stimulations are induced. Electrodermal activity refers to changes in electri-

cal conductance of the skin, which is associated with eccrine sweat gland activity

innervated by the sympathetic branch of the autonomic nervous system. Mea-

suring electrodermal activity (EDA) is a promising way to determine the amount

of an individual’s response to stimuli [85][86]. Thus, it can be a useful index of

changes in sympathetic arousal that is tractable to emotional and cognitive states.

Skin conductance (SC) is the most widely studied property of EDA, representing

autonomic changes in the electrical properties of the skin. SC comprises of two

major components - tonic and phasic. Tonic component is represented by skin

conductance level (SCL) which is the baseline level of SC, in the absence of any

particular discrete environmental event. On the other hand, phasic component

refers to skin conductance responses (SCRs) reflecting the short-time response to

a given stimulus. SCRs are also the results from sympathetic neuronal activity.

In SC qualitative modelling or poral valve modelling [87], SC is the result of a

numerous activities related to sweat ducts, pore, sweat glands, etc. In the initial

condition, the distal part of the sweat ducts is collapsed by the external pressure

of hydrated surrounding corneum. As the result, most of the pores are closed.

When the sweat fills the ducts to their limitation of capacity, the intraductal pres-

sure will cause a hydraulic driven diffusion of sweat into the corneum. The rising

of SC is caused by the increasing the hydration in deeper levels of the corneum.

As the sweat is reabsorbed into the dermis or diffuses away from the periductal

area, SC will slowly recover, resulting in a rather flat SCR. When the secretion

of the sweat is enough and the intraductal pressure becomes stronger than the

tissue pressure of the corneum, the pore will eventually open. The sweat will now

be forced out through the pore. Consequently, SC will drastically increase. The

amount of sweat which is pushed out through the pore is substantial. Therefore,

after a short time, the secretory rate cannot keep up with the loss of sweat. The
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Figure 4.1: The graphical representation of principal SCR related components [2]
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intraductal pressure will soon fall below the tissue pressure, and the pores will be

collapsed again followed by a rapid fall in SC. Basically, SCR shape can primarily

be ascribed to two different underlying processes: one is an unconditional diffu-

sion process which causes a rather flat SCR, and the other is an optional opening

of pores which will add a steep peak to the basic SCR shape. Thus, these pro-

cesses increase the variability of the SCR shape. Figure 4.1 depicts an example

of SCR shape which comprises the following components - Latency (time from

stimulus onset to SCR onset), Rise time (time from SCR onset to SCR peak) and

Half recovery time (time from SCR peak to 50% recovery of SCR amplitude). In

the figure, the vertical and horizontal axes represent skin conductance value and

duration time, respectively.

4.3.2 Heart Rate

Heart rate (HR) is the speed of the heart beat measured by the number of con-

tractions of the heart per minute (bpm)[88]. The heart rate can vary according to

the bodys physical needs, including the need to absorb oxygen and excrete carbon

dioxide. It is usually equal or close to the pulse measured at any peripheral point.

In general, heart rate is regulated by sympathetic and parasympathetic input to

the sinoatrial node. The accelerans nerve provides sympathetic input to the heart

by releasing norepinephrine onto the cells of the sinoatrial node (SA node), and

the vagus nerve provides parasympathetic input to the heart by releasing acetyl-

choline onto sinoatrial node cells. Therefore, stimulation of the accelerans nerve

increases heart rate, while stimulation of the vagus nerve decreases it. The bal-

ancing action of the sympathetic nervous system and parasympathetic nervous

system controls the HR. The degree of variability in the HR provides informa-

tion about functioning of the nervous control on the HR and the heart’s ability

to respond. Thus, investigating the behavior of HR can express the impact of

stimulus intensity on human reaction.HR can be measured by finding the pulse

of the heart. The pulse rate can be found at any point on the body where the

arterys pulsation is transmitted to the surface by pressuring it with the index and

middle fingers; often it is compressed against an underlying structure like bone.
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4.3.3 Heart Rate Variability

Heart rate variability (HRV) is a popular noninvasive tool to estimate cardiac au-

tonomic modulation because it is easily measured without interfering with neural

functions of the control mechanisms. Analysis of these fluctuations has been

useful in providing information regarding the physiology of the active autonomic

control branches [89][90][91]. In fact, HRV is the degree of fluctuation in the

length of the intervals between heart beats. It is mirroring the regularity of

hearth beats: bigger regularity lower HRV and vice versa. Regularity of heart-

beats is derived from a quantity of numbers; equal to the times elapsed between

successive heartbeats, namely R-R intervals which are measured in millisecond

(ms).

4.3.4 Sensation, perception, Weber Law, and Fechner Laws
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Figure 4.2: Absolute threshold obtained from psychometric function

Although the terms of sensation and perception are often used interchange-

ably, it is important to clarify the difference between them. The sensation is the
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process in which the sensory receptors and nervous system receive stimulus en-

ergy from the outside environment. It also represents the amount of the stimulus

energy. Meanwhile, the perception is the process of organizing and interpreting

sensory information, enabling human to recognize meaningful objects and events.

More concretely, the sensory process captures information from the outside world

and transforms it into biological signals that are interpreted by the brain [92][93].

Afterward, the brain produces a perceptual representation that allows human to

appreciate the outside world. In other words, the perception represents a single

unified awareness of a stimulus that in turn arises from the sensation produced

by the sensory system.

As mentioned in section 4.1, human perception is an important role in QoE

assessment. Typically, the good way to understand this concept is to establish

a quantifiable relation between the physical stimulus and the perception. Con-

sequently, the perceptual quality of a stimulus can be represented in numerical

terms, enabling the comparison with other stimuli [92]. Weber and Fechner were

experimental psychologists of the 19th century who made efforts in establishing

such a relation. Before going further, the definitions of both ”absolute thresh-

old” and ”difference threshold” which are of crucial in this research, need to be

clarified.

As mentioned in [92][93][94][95], the absolute threshold is defined as the min-

imum level of stimulus intensity that can be recognized as a sensory event by the

brain. The stimulus intensity in the range of lower than the absolute threshold is

called as subthreshold intensity. No detectable sensation is produced from sub-

threshold intensity. On the other hand, the stimulus intensity higher than the

absolute threshold is called supra-threshold intensity. Sensation takes place from

the supra-threshold. In the supra-threshold intensity, a certain level of intensity

change either increment or decrement intensity can be detected as perception.

The difference threshold concept came up to determine how much change in stim-

ulus intensity is needed to recognize the difference in sensation, which is called

Just Noticeable Difference (JND).

Fechner tried to understand the relation between stimulus intensity and per-

ception. To achieve this, the absolute threshold was determined by a series of

experimental approach. In this experiment, the reference stimulus with a constant

intensity was prepared. Besides the reference stimulus, the subjects were given
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different stimulus with intensity randomly varied in pre-defined range. They com-

pared each given stimulus with the reference stimulus and answered the ”Yes” or

”NO” which corresponds to whether the stimulus change was perceived or not. As

illustrated in Fig.4.2, the absolute threshold is determined as a stimulus intensity

with which the stimulus was perceived by the 50% of the subjects. Whereas, the

intensities at which the 25% and 75% of ”yes” response were obtained are con-

sidered as just noticeable intensities for incremental and decremental sensation,

respectively, according to the definition of JND.

The Weber’s Law answers the question how the absolute threshold, just no-

ticeable intensity and JND change when the reference intensity varies. After

conducting the series of experiments, Weber found that the difference thresh-

old increases in a linear fashion with stimulus intensity as shown in Eq.4.1 and

Fig.4.3. It means that higher supra-threshold intensity requires larger change in

intensity (∆I) needed to produce a change in sensation, namely, JND.

∆I = k ∗ I (4.1)

After the introduction of the Weber’s Law, Fechner eventually figured out

the relations between stimulus intensity and perception by integrating his bold

assumption with Weber’s Law. The assumption was stated as: the subjective size

of the JNDs to be constant, irrespective of sensation magnitude. This assumption

can be mathematically achieved in a logarithmic function. The Eq.4.2 completely

expresses his idea:

S = k
′
log I (4.2)

Where constant k
′
is related to, but not identical to, the constant k in Weber’s

Law. S is the magnitude of sensation, whereas I stands for stimulus intensity,

and log I indicates natural logarithm of I. It can be concluded that both data

points whose intensities are equal to the absolute threshold and the just noticeable

intensity must belong to the curve of Eq.4.2.
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4.4 Methodology

In this section, the hypotheses of this research are introduced in detail, explaining

how they connect to the proposal.

4.4.1 Hypotheses

Looking back to section 4.1, in this research, a new method to ascertain the

optimal QoE threshold for control component in QoE management is proposed.

More concretely, the collaborative approach using the psychophysiology and the

psychophysics to clarify a general logarithmic nature function between human

perception and stimulus intensity is thoroughly discussed. In this research, the

perception has been estimated via biological information (including SC, HR, and

HRV) measurements. Afterward, either absolute threshold or just noticeable

intensity is expectedly obtained from the general logarithmic nature function,

which facilitates the determination of optimal QoE threshold.

In order to achieve this, the following hypotheses must be justified:

• Biological reaction to a stimulus change varies from person to person and

depends on the types of biological information. It can be detected by an

increment or decrement of the amplitude.

• Biological information, which shows the level of human perception to stim-

ulus intensity, has a logarithmic nature relation with the stimulus intensity.

• The absolute threshold which is the minimum stimulus intensity perceived

by 50% of subjects is ideally regarded as the stimulus threshold.

4.4.2 Modelling of biological information

In order to model a general logarithmic nature between human perception and

stimulus intensity, initially, the type of stimulus given to the human needs to

be clarified. This can be done by investigating the prominent QoE influence

factors. According to [11], there are numerous influence factors categorized into

perceptual and technical factors. Video rate actually influences the quality of

video frame; hence, it can be regarded as one of the factors directly perceived by
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subjects. Therefore, it was chosen as the stimulus type in this research. There are

copious existing models which have a capability to interpret the video rate to QoE

(indicated by Mean Opinion Score) and vice versa [96][97], and thus, the video

rate threshold can be used for the trigger of control action in QoE management,

instead of QoE threshold.

In section 4.2, the wide range of Weber-Fechner Law (WFL) applications has

been introduced, especially in QoE assessment throughout modelling the relation

between QoE and QoS. However, subjective QoE is insufficient to characterize

the human perception in QoE assessment. On the other hand, the human percep-

tion introduced by biological information promisingly tells us the truth on how

stimulus intensity is perceived. Additionally, since more precise perception can

be derived from the combination of different types of biological information [38],

it is necessary to jointly investigate the impact of stimulus on multiple biological

signals. In this subsection, by applying WFL, the impact of the video rate on

the human perception estimated by multiple biological information, which are

SC, HR, and HRV, is modeled. Therefore, the Eq.4.2 in subsection 4.3.4 can be

re-written as follows:

yi = k
′

i log x (4.3)

Where i ∈ {1, 2, . . . , n} is the index indicating each subject, and yi is the

perception level of subject i to the stimulus of SC or HR or HRV, respectively.

Let k
′
i be the sense-specific constant depending on the sense (SC, HR and HRV)

and type of stimuli.

In order to achieve the research purpose, the following tasks need to be cov-

ered:

• Establish the collection of n regression curves of Eq.4.3 by fitting data

obtained from each subject.

• Investigate the existence of the data point which is crossed by at least 50%

of regression cruves.

• Determine the general logarithmic function representing for all subjects

from the data point which is determined in the second step.

• Determine the absolute threshold.
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To clarify the above tasks, more explanations are needed. As mentioned in

hypotheses, the perception varies from person to person and depends on the

type of stimulus, thus, the shape of regression curve of Eq.4.3 is predictably

different in each subject, only meaning that each subject separately perceives

the stimulus intensity. If 50% and more than 75% of subjects have the same

perception magnitude to the same intensities, they are considered as the absolute

threshold and the just noticeable intensity, respectively. Then, those regression

curves are expected to intersect at the same data point denoted by P (x0,y0).

According to the conclusion of subsection 4.3.4, if this data point exists, it must

be the crossed point by the curve of the general logarithmic functions y. Data

point P (x0,y0) can be determined by minimizing the sum of squared residuals,

defined as the square of the difference between y and yi:

f(x, y) =
∞∑
i=1

(y − yi)2 (4.4)

Assume that f(x, y) is a continuous function, then x0 and y0 are the ex-

tremums that satisfy the first derivative:

∂f

∂x
(x0; y0) =

∂f

∂y
(x0; y0) = 0 (4.5)

Afterward, the constant k
′

in Eq.4.2 can be calculated as:

k
′
=

y0
log x0

(4.6)

Therefore, the general logarithmic function can be determined as follow:

S =
y0

log x0
log I (4.7)

In this research, some experiments were performed following the ”method of

limits” [92] by asking the subjects to watch a movie with gradually decreasing

the video rate. Thereby, the video rate was deteriorated from the highest to the

lowest level within a pre-defined range of j levels. The subtraction of the current

video rate level from the highest level was the stimulus intensity. Thus, the

stimulus intensity was gradually increased respect for the decrease of the video

rate. In the experiment, the duration time between each decrement was about
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5s, thus, the current level of intensity was considered as the reference intensity

for a judgment of the next higher intensity level.

The following assumptions need to be subsequently made:

• Data point P (x0,y0) exists.

• x0 is either absolute threshold or just noticeable intensity.

• Let Xm be the mth reference intensity for a judgment of (m+ 1)th intensity

with 1 ≤ m ≤ j.

• Let Xthreshold be the stimulus threshold that needs to be determined.

If x0 is equal to the absolute threshold, the stimulus threshold is ideally de-

termined as: Xthreshold = x0

If x0 is recognized as the just noticeable intensity, then, the absolute threshold

is need to be determined. Actually, only the constraint of absolute threshold can

be determined in this case. Because the constant k in Weber’s Law (Eq.4.1) is

unknown, thus, the next higher intensity cannot be ascertained from the current

one. Accordingly, the absolute threshold is derived from the following constraint:

Xn ≤ Xthreshold ≤ x0 (4.8)

4.5 Evaluation

In this section, the hypotheses of this research are practically confirmed through

some experiments. In the experiments, subjects watched short video clips. Video

quality of clips was gradually changed from the highest to the lowest level while

SC, HR and HRV data were being continuously recorded.

4.5.1 Experimental environment

Figure 4.4 shows the experimental setup which comprises of a screen, a Zoom

watch (for measuring heart rate and heart rate variability) connected respectively

to Elite HRV app on iPhone 6 via Bluetooth and a Grove - GSR sensor [98]

connect to Arduino UNO board (for measuring skin conductance). The sampling
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Figure 4.4: Environmental Setup with Zoom watch and Grove-GSR sensor

frequency for HR and SC monitoring were 1Hz and 20Hz, respectively. Note that

the sampling frequency of HR was fixed by the device vendor, whereas the one

of SC was flexibly changeable.

In order to maximize the reliability of the experiments, the video clips should

satisfy some requirements. The video material utilized in these experiments

should not be a semantically important content or a salient content. As the result,

the influences due to high-level image understanding were eliminated. Further-

more, the duration of watching the video should not be too long in order to avoid

the distraction of the subjects. Also, the video rate must have been decreased

level by level.

To meet these requirements, a video clip generated from an open source 4k

movies was prepared as follows:

• The utilized video clip had an abstract content; a view of sky at night which

slowly moves from the left to the right.

• The original video clip was encoded to Internet Information Services (IIS)

smooth streaming [99] - 720 CBR (constant bitrate) by using Microsoft

Encoder pro 4.0 which allows it to be available with multiple video rates

(kbps): 2962, 2056, 1427, 991, 688, 477, 331 and 230kbps. The reason to

encode the video with constant bitrate instead of variable bitrate is to en-

sure that the video clips always keeps the same pre-defined bitrate level.

The stimulus intensities were calculated by doing the subtraction of current

video rate level from the highest level of 2962kbps. The stimulus intensities
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were: 906, 1535, 1971, 2274, 2485, 2631, and 2732kbps. (Note that by de-

fault the video clip initially started from the highest video rate of 2962kbps

and the first decrease started at 2056kbps)

• A seamless video clip of 40 seconds which comprises of eight 5-second-chunks

was generated. Each of chunk is respectively available with each video

rate mentioned above. Therefore, this video clip contains seven stimulus

intensities. In addition, the current stimulus intensity was considered as

the reference intensity of the judgment for the next higher intensity.

The video clip was displayed on a 22-inch screen Samsung SyncMaster 2243BW

with a native resolution of 1680 x 1050 The video resolution was 1276 x 660 pixels

or 32.4 x 16.8 cm and the viewing distance was 67.2 cm (four times of the video

height on the screen) in compliance with the specifications in [37]. Ten subjects

(4 females and 6 males in the age group of 20-27) participated in the experiment.

They were doing the researches not related to this research topic. All subjects

had normal or corrected-to-normal vision. The subjects sat in front of the display

in a dark and quiet room. They were also asked to leave all their mobile phones

or any noise-making devices which could distract them during the experiment.

After attaching the measurement devices, the subjects had five minutes at rest

to be familiar with the experimental environment that made them achieve the

highest comfortable status. When the subjects were ready, they clicked a button

on the screen to play the video, whereas SC, HR, and HRV recordings were also

started. The experiment was repeated two times for each subject.

4.5.2 Data acquisition and data transformation

Skin conductance raw data was originally read from the Serial port on the

computer using a simple program written in Python. Then, it was exported to

CSV format followed by its transformation to ”txt” file which is suitable input

form for Ledalab - an open source SC data analysis tool [100][101]. According

to [102], there are individual differences in amplitude of SC. In other words, the

overall response of a subject is not the same as the one of others. Therefore, it

is important to normalize and standardize the raw data collected from the above

experiment.
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In this research, the skin conductance data was transformed following the

two-phase: Normalization and standardizations [103]. Firstly, the raw data was

normalized based on the Eq.4.9. Afterward, the data was standardized by calcu-

lating the ratio of normalized data and its mean with Eq.4.10.

SCnor =
SC − SCmin

SCmax − SCmin

(4.9)

SCsta =
SCnor

EX(SCnor)
(4.10)

Here, SCnor is normalized SC data, SCmin and SCmax are the minimum and

maximum SC values, respectively. Meanwhile, SCsta is standardized SC data,

EX(SCnor) is the mean of the normalized SC data.

After normalization and standardization, SC data needs to be analyzed to

confirm the hypotheses throughout the following criteria:

(1) Event-related skin conductance response (ER-SCRs) of each subject

(2) Regression model which represents the relation between SC and stimulus’s

level

Firstly, ER-SCRs presents the responses of subjects for a given stimulus. The

number of responses as well as the amplitude of responses play a critical role in in-

vestigating how each subject reacts to the stimulus. As mentioned in section 4.3.1,

SC data comprises of tonic and phasic components. Thus, to extract ER-SCRs,

the SC data is decomposed into its tonic and phasic components by Ledalab tool.

The decomposition results in the extraction of un-superposed response compo-

nents and thus allows for an unbiased quantification of SCR characteristics (e.g.,

SCR amplitude). The following outputs should be derived from the decomposi-

tion: The number of response and SCR amplitude. SC theoretically reacts to a

stimulus by skin conductance response and the SCR usually occurs about one to

five seconds after stimulus’s onset [2][104]. Therefore, the outputs were obtained

within the pre-defined response window (from 1 to 5 seconds).

Secondly, to model the impact of stimuli on skin conductance, the average

value of SCsta data was calculated within the response window. Therefore, for

each trial of experiment, there were totally seven average values according to

65



4.5 Evaluation

seven setup-stimulus. By performing the logarithmic approximation, the above-

mentioned relation was established.

Heart rate raw data was initially stored on Elite HRV app where both the

average value and the general trend were clearly shown off. The raw data can

be extracted by email as the attached files. The following criteria were used to

confirm the hypotheses of this research:

(1) The variation of HR within the pre-defined response window

(2) Logarithmic approximation obtained from the normalized data.

The variation of HR stands for the standard deviation which presents the

fluctuation of HR data from the subject’s resting HR baseline. Before modeling

the relation between HR and stimulus, the raw data must be normalized by

applying the following equation:

HRnor =
HR−HRmin

HRmax −HRmin

(4.11)

Here, HRnor is normalized HR data, HRmin and HRmax are the minimum

and maximum HR values, respectively.

Heart rate variability raw data was also stored on Elite HRV app before

being extracted by email as the attached files. The output data was R-R intervals

in milliseconds. HRV can be assessed in two ways, either as a time domain analysis

or in the frequency domain as a power spectral density (PSD). The purpose of

the experiment is to investigate the variation of R-R intervals for given stimulus

intensity, thus, time domain analysis is more suitable. Particularly, the square

root of the mean squared differences (RMSSD) of successive R-R intervals was

taken into account in this research. Eventually, the following criteria were used

to confirm the hypotheses:

(1) RMSSD calculated from each pre-defined response window

(2) Logarithmic approximation obtained from RMSSD

4.5.3 Numerical results

This subsection shows the numerical results of SC, HR, and HRV measurements

followed by analyzing criteria mentioned in subsection 4.5.2. Consequently, the
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Figure 4.5: The SCR-amplitude of significant SCR re-convolved from correspond-

ing phasic driver-peaks

hypotheses were practically justified.

Skin conductance data, in general, shows that the amplitudes of responses

varies from person to person due to the difference of their skin properties. Table

4.2 presents an example of the experimental result, which shows the discrete de-

composition analysis (DDA) of a subject. DDA is a method to decomposes the

SC data into the tonic and discrete phasic components. The result implies how

the particular subject perceives the stimulus’s intensities through the number of

significant SCRs and the amplitude of significant SCRs. The stimulus intensities

are shown in the first column ”Event.Name”. Whereas, the number of significant

SCRs (ER-SCRs) and the amplitude of significant SCRs are presented in the

column of ”DDA.nSCR” and ”DDA.AmpSum”. Data in column ”DDA.Latency”

presents the response latency of the first significant SCR. Lastly, ”DDA.Tonic”

column shows the mean tonic activity of decomposed tonic component. The

numbers of responses and the amplitudes decrease (sometimes decrease to zero)

when stimulus intensity increases. Fig.4.5 illustrates the amplitude of SCR ob-
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Table 4.2: NS-SCR analysis in SC data. The results were the output of Discrete

Decomposition Analysis (DDA) done by lelalab tool

Event.Name DDA.nSCR DDA.Latency DDA.AmpSum DDA.Tonic

906 1 4.075 0.749 5.464

1535 1 3.775 0.610 5.464

1971 1 4.375 0.431 5.464

2274 1 3.875 0.290 5.464

2485 0 NaN 0 5.464

2631 1 1.575 0.310 5.464

2732 0 NaN 0 5.464

tained from each subject. It can be seen that the amplitude varies from subject

to subject according to the stimulus intensity increment

Heart rate and heart rate variability data presents the same implications

as SC data when subjects differently perceive the stimuli. As mentioned in sub-

section 4.5.2, the standard deviation as the variation of HR from the resting HR

baseline was a crucial criterion. Fig.4.6 illustrates the standard deviation of HR

in each video rate within pre-defined response window. In the figure, each color

shows each subject. In general, there is no conspicuous consistency among sub-

jects. Some subjects, e.g. subject 1, 2, 8 and 9, expose high variations when

stimulus intensity increases to the values of 1535kbps and 2274kbps. Meanwhile,

RMSSD calculated within pre-defined response window, is used for a reliable

measure of HRV and parasympathetic activity. According to Fig. 4.7, RMSSD

data also varies from subject to subject.

After confirming the first hypothesis, the tasks mentioned in subsection 4.4.2

need to be accomplished. Initially, the three series of logarithmic nature regres-

sion curves of Eq.4.3 were established by respectively fitting SC data, HR data,

and HRV data obtained from all subjects. As the result, each series of either

SC data or HR data or HRV data comprised of ten curves of ten subjects. The

accuracy of those logarithmic approximation was represented by correlation of

determination denoted by R-squared. The according R-squared of thirty regres-

sion curves are shown in Table 4.3. It is clear to see that SC data produces a

better approximation with R-squared of 0.78892 and higher, except subject 3 and
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Figure 4.6: Standard deviation of Heart Rate data obtained from particular sub-

ject

4. Meanwhile, oppositely, R-squared of HR and HRV are extremely low. It means

that the relations between either heart rate or heart rate variability and stimulus

were not well fitted.

Investigating the existence and the determination of data point P (x0,y0) are

the next tasks in this subsection. The functions of regression curves taken from

SC data have the following form:

yi = ai log x+ bi (4.12)

Where i ∈ {1, 2, . . . , n} is the index indicating each subject, and yi is the

perception level of subject i to the stimulus of SC. ai and bi are constants of

those functions. Let X denote log x in Eq. 4.12 for simplicity.

As mentioned in subsection 4.4.1, to ensure that x0 is the absolute threshold

or the just noticeable intensity, the data point P (x0,y0) must be crossed by at

least 50% of regression curves. Fig. 4.8 depicts the regression curves of SC data
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Figure 4.7: Square root of the mean squared differences of successive R-R intervals

obtained from particular subject

obtained from 10 subjects. Visually, it is clear that the curves of subject 3 and

4 do not intersect with the rest of curves at the same data point. As the initial

prediction, eight curves obtained from the rest of subjects seems to intersect at

one data point. Thus, the intensity of this data point is predictably perceived

by about 80% of subjects (except subject 3 and 4). In other words, it turns out

to be a just noticeable intensity. To confirm this, the method of least square in

Eq.4.4 was performed determining the data point P (x0,y0). The requirement is

to find x0 and y0 satisfying the minimum sum of squared residuals, defined as the

square of the difference between y and yi.

Then x0 and y0 are the extremums that respectively satisfies the first derivative

of Eq. (5). The values of x0 and y0 were eventually calculated as 2113.62kbps

and 1,0079, respectively. This means that there is the existence of one data

point which is crossed by eight regression curves in the investigating range of

stimulus intensity, that is to say, from 906kbps to 2732kbps. This leads to the

fact that x0 was confirmed as the just noticeable intensity. Therefore, based on

the implication in subsection 4.3.4, the data point P (x0,y0) must belong to the

general logarithmic curve of Eq.4.2. Then, from the value of x0,y0, the constant

k
′

in general logarithmic function is calculated as: k
′
= y0

log x0
= 0.13

70



4.5 Evaluation

Table 4.3: The correlation of determination denoted by R-squared obtained from

each subject in both SC data, HR data, and HRV data

Subject R− squaredSC R− squaredHR R− squaredHRV

1 0.99084 0.83597 0.33891

2 0.89269 0.25126 0.71584

3 0.18767 0.38341 0.06240

4 0.16698 0.36150 0.04266

5 0.87721 0.81180 0.33354

6 0.90581 0.00350 0.23698

7 0.92398 0.58030 0.13811

8 0.91765 0.27501 0.44766

9 0.99920 0.79140 0.65597

10 0.78892 0.21132 0.86912

Consequently, the general logarithmic function which expresses the relation

between SC and stimulus intensity will be: y = 0.13 log x

According to the subsection 4.4.2, due to the unknown of constant k in Weber’s

Law (Eq.4.1), it is impossible to determine the absolute threshold. Instead of this,

the constraint of the absolute threshold is established. Because x0 = 2113.62kbps

and being in the range intensity of (1971, 2274), thus, the reference intensity is

Xm = 1971kbps. According to Eq.4.8, the constraint of the absolute threshold is

determined as: 1971kbps ≤ Xthreshold ≤ 2113.62kbps

By subtracting the reference intensity and just noticeable intensity from the

highest video rate level of 2962kbps, the video rate threshold BRthreshold is ac-

cordingly defined:848.38kbps ≤ BRthreshold ≤ 991kbps

For HR and HRV data, the same method was expected to perform for determi-

nation of either absolute threshold or its constraint. However, according to Table

4.3, each type of data has only three regression curves that have high accuracy

in terms of correlation of determination R-squared. It means that the intensity

x0 of data point P (x0,y0) was perceived with the same amplitude of perception

by only 30% of subjects. Thus, the existence of both absolute threshold and just

noticeable intensity, that is to say, perceived by at least 50% of subjects is ex-
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Figure 4.8: The logarithmic nature regression curves of SC data obtained from

10 subjects. logSi means the logarithmic nature curves, whereas Si is the data

point of each subject
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cluded. Eventually, the only BRthreshold can be derived from SC data. According

to [16], video player always attempts to maintain a constant gap between the

target video rate and the needed bandwidth. Such a constant gap is determined

by the following equation (similar to Eq 3.3 in subsection 3.3.2):

Cons =
BW − targetBR

BW
(4.13)

where, BW is the available bandwidth, and targetBR is the expected video

representation (target video rate) of the users. Cons refers to a conservatism

value defined by particular proprietary video players. In fact, Microsoft smooth

streaming applies a conservatism value of 20% [16].

Accordingly, the required bandwidth BW for BRthreshold is calculated as:

1060.48kbps ≤ BW ≤ 1238.75kbps. On the other hand, according to [32], by

using PSQA model, the values of QoS parameters (bandwidth, packet loss, delay

and jitter) can be interpreted to MOS, and vice versa. Therefore, this constraint

is then converted into optimal MOS constraint:2.78 ≤ MOSthreshold ≤ 2.91 with

the assumption that packet loss, delay and jitter are negligible.

4.6 Discussion

Based on the numerical results, the hypotheses have been successfully confirmed

followed by the determination of an optimal constraint of video rate threshold. In

this section, it is important to discuss the validation of this optimal constraint of

MOS, and thus, a simple experiment was conducted. In this experiment, ten sub-

jects (they are different from the subjects in the experiment in subsection 4.5.1)

were asked to watch a short movie with the duration of 2 minutes, then, to provide

their subjective evaluation following the 5-scale MOS. There were two scenarios

in this experiment in order to validate the performance of optimal MOSthreshold in

comparison with the fair MOSthreshold. In both scenarios, the movie’s video rate

was gradually decreased in response to the negatively changing the network QoS

parameters (bandwidth, packet loss, delay and jitter), while the estimated MOS

was being calculated by PSQA model [32][105][73]. When the estimated MOS

decreases to MOSthreshold, the control action will be triggered (control action is

activated by allocating the higher bandwidth to the user [106]). In this case,

the optimal MOSthreshold was equal to 2.78 which is the lowest value of optimal
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constraint. The fair MOSthreshold was equal to 3 which is defined as the fair value

in 5-scale MOS [67][73][74]. The subjective MOS collected from subjects in the

first scenario was compared with the one obtained in the second scenario. The

validation criteria were the similarity of subjective MOS and network resource

utilization in both scenarios.

To investigate the similarity of subjective MOS, the analysis of variance

(ANOVA) approach [107][108], especially one-way ANOVA which is a technique

for comparison means of two or more samples (using F distribution), was accom-

plished. The result of ANOVA indicates that the overall subjective MOS which

were obtained from all the subjects in both scenarios were equal.

Now resource utilization is in turn considered. Thus, the required bandwidth

allocations, which are sufficient for the users to experience the video quality with

MOS higher than optimal and fair MOSthreshold, were investigated. As mentioned

in section 4.5.3, the required bandwidth for MOSthreshold of 2.78 was equal to

1060.48kbps. Assume that the values of QoS parameters, except bandwidth,

were negligible during the experiments. By using the PSQA model, the required

bandwidth for fair MOSthreshold of 3 was calculated to be equal to 1303.23kbps.

The setup of this experiment was the same as those of our previous works in [96],

where the link capacity was limited to 5000kbps. Therefore, it is clear to see that

in terms of resource utilization, using the optimal MOSthreshold can save at least
1303.23−1060.48

5000
∗100 = 4.855% of bandwidth allocation per control compared to the

fair MOSthreshold. In terms of resource utilization, this result might be modest.

However, it will be significantly meaningful for the practical system which is much

larger and more complicated than the one in this research.

The validation result shows that the constraint of QoE threshold optimally

satisfies the research purpose of QoE management, that is to say, ensuring that

QoE is stable at an expected level with minimal network resource usage. There-

fore, using biological information produces a prominent result in modeling a log-

arithmic relation of human perception and stimulus intensity.

However, there are some other issues also need to be discussed. Firstly, the

particular regression analysis of either SC data or HR data or HRV data obtained

from each subject did not always offer the expected result with sufficient accu-

racy. For SC data, the results from some subjects surprisingly produced very

low correlation of determination, especially subject 4. According to the result
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of DDA in subsection 4.5.3, subject 4 also did not produce the significant SCRs

for most of intensities. Thus, during the experiment, this subject maybe did

not concentrate or got some invisible distractions. For HR and HRV data, al-

though using HR/HRV monitoring device can avoid the intrusiveness which was

recognized as one of the major limitation of psychophysiology in [38], only 30%

of subjects produced high accuracy regression curves leading to their exclusion

of this research. As stated in subsection 4.5.1, the sampling frequency of HR

was only 1Hz and was fixed by the device vendor. In addition, the value of HR

obtained from monitoring device is the average value. Therefore, HR measure-

ment cannot capture significant biological characteristics, resulting in a miserable

regression analysis. In addition, the heart response time to sympathetic stimula-

tion is relatively slow. It takes about 5 seconds to increase HR after the actual

onset of sympathetic stimulation and almost 30 seconds to reach its peak steady

level [89][109]. Therefore, analyzing short-term HR and HRV (within 5-second

time window) provide insufficient accurate results, requiring a new experimental

scenario with longer video sequences.

Human characteristic is another discussion point. In the perceptual process,

sensation refers to the initial steps - converting physical features of the environ-

ment into electrochemical signals within specialized nerve cells and sending those

signals to the brain for processing. Meanwhile, perception refers to the last steps,

whereby the initial sensory signals are used to form mental representations of

the objects and events in a scene so that they can be recognized. Therefore,

the electrical activity of the brain measured by Electroencephalography (EEG)

should be taken into account in this research. The combination of EEG associ-

ated with Central Nervous System (CNS) and measurement methods associated

with Autonomic Nervous System (ANS) will promisingly produce a better result

in modeling the relation between perception and stimulus intensity applying in

QoE management research.

4.7 Summary

In this chapter the relation between biological information (SC data) and stimulus

intensity has been modeled as a general logarithmic nature function. Thereby,

the optimal constraint of QoE threshold has been determined and validated. The

results of validation show that by using the determined threshold, the overall QoE
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is guaranteed to be stable at high level, while the network resource utilization is

impressively improved. The obtained threshold constraint is suitable for only the

scenario in this research, but the approach can be applied in more general cases.

This research also confirms the feasibility of applying biological information in

QoE management.

76



Chapter 5

User-centric Approach to

Accurate Bandwidth Allocation

5.1 Introduction

The proposals presented in chapter 3 and chapter 4 have efficiently solved the

issues of early detection of QoE deterioration and generating control action at

the right time. This chapter introduces a proposed method for the accurate

generation of control action, towards the research goal, that is to say, the balance

between network resource utilization and the resulting QoE.

In adaptive streaming services, based on the metadata and status of termi-

nal/networks, the decision engine at the video player makes decisions on which/when

video chunks are requested and downloaded. As the results, it optimizes the

server-side scalability and provides smoother user experience. However, when

the underlying network condition fluctuates for some reasons (e.g., bandwidth

competition among video players [72]), video rate will vary more frequently, re-

sulting in QoE deterioration. In this situation, it is necessary to guarantee a

specific video rate level for the end-user, especially the premium user who pays

additional cost for their service. To do so, accurately triggering a control strategy

is crucial. Eventually, not only the perceived video quality is guaranteed, but also

the network resource is saved.

Shaping traffic [59][110][106][16] is known as the most common control ac-

tion type by which available bandwidth is allocated to the user. This allows the
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Figure 5.1: The pre-defined range of video rate. The establishment of this range

is relied on the MPD

end-user to experience video with an expected video rate after several requests,

improving his/her QoE. In order to achieve the optimal trade-off between net-

work resource utilization and maintaining QoE, the systems need to precisely

determine the allocated bandwidth. The authors in [16] proposed a method to

determine the allocated bandwidth based on a certain target video rate, i.e., ex-

pected encoding video rate of the end-user. As the result, the target video rate

was successfully requested by video player, after a specific delay. However, the

method to determine the target video rate, has not been clearly stated. In fact,

the target video rate can be randomly taken from pre-defined ranges in accor-

dance with the classification of the end-users, as shown in Fig. 5.1. However,

without taking into consideration the other QoE influence factors, such the pre-

define ranges of video rate do not precisely reflect the end-users expectations

(or expected QoE), resulting in some consequences. For example, regardless of

terminal display screen, the waste of bandwidth is introduced since the movie

is played on a small display screen, whereas, playing the movie on a bigger dis-

play screen causes the deterioration of perceived video quality. Therefore, in this

study, a novel method is proposed in order to determine the target video rate

that closes to human expectation. Thereby, more precise bandwidth allocation
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will be performed in QoE control. The proposed method is two-fold. First, the

numerical ranges of subjective expectation are established for different types of

the end-users (the premium users will be focused in this study). Accordingly, the

numerical expectation of the premium user will ranges from determined MOS

threshold (taken from the studies in the previous chapter) to the highest value of

5. Second, a regression model of video rate and subjective perception (refers to

MOS values) is applied to interpret the expected QoE to the target video rate.

In this chapter, the main contribution is to propose an novel bandwidth allo-

cation approach by establishing a numerical range of the user’s expectation for

determination of target video rate, by applying a regression model of video rate

and MOS for calculating the needed bandwidth based on the determined target

video rate. Consequently, the proposed approach not only keeps the QoE of the

premium user stable at an expected level, but also more bandwidth is saved.

5.2 Related work

In general framework, QoE control is usually considered as control decision, which

guarantees QoE not to be deteriorated under a specific threshold. This section

provides an overview of control strategies in QoE control. Eventually, shaping

traffic will be emphasized as the most common and effective control action in

literature.

Accurately triggering control action plays an important role in maintaining the

optimal trade-off between network resource utilization and the QoE. Therefore,

the contemporary studies are attempting to propose various control approaches

and to improve their accuracy. In order to maximize the QoE, some authors

proposed a new adaption algorithm [111] or introduced a network proxy to se-

lect optimal video rate for the end-user [112]. Meanwhile the authors in [113]

proposed QoE control by adding Forward Error Correction (FEC) packets to the

current flow which is capable of compensating for the packet loss. In addition, a

new control approach was also introduced in this study. Particularly, a trained

neural network was used to decide the most suitable control action for the cur-

rent contexts. Notably, there are existing studies including our works, indicate

shaping traffic as an effective control strategy to maintain QoE. When the avail-

able bandwidth shrinks due to the bandwidth competition [72], the unfairness
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and instability problems of the requested video rate will occur. The traffic shap-

ing method effectively solves these problems [59][110][106][16]. Particularly, in

[16], the authors proposed a method to identify how much available bandwidth

is needed for the traffic shaping. Each commercial HAS player actually has their

own safety margin to ensure the available bandwidth is enough for the next en-

coding video rate (e.g., 20% of Microsoft smooth streaming). The result showed

that the target video rate was accurately requested by the end-user. However,

they did not mention the mechanism determining the target video rate, thus, the

easiest way is to simply pick up the highest possible encoding video rate in a

pre-defined range.

In this chapter’s proposal, the clarified relation between subjective MOS and

requested video rate, which captured by a regression model, has been applied. By

which it allows calculating the target video rate from the user’s expected MOS.

Thereby, the needed available bandwidth is accurately assigned to the users. As

the result, the users accurately request the encoding video rate which is equal to

calculated target video rate after several requests.

5.3 Bandwidth Competition in Adaptive Stream-

ing Services

One of the reasons causing the QoE degradations in a shared network during a

streaming session is bandwidth competition [106][48][59][114][115]. Typically, the

bandwidth competition is expressed as either the interplay among several video

players or the interplay between a video player and other applications. When

two or more video players start to compete for the limited network bandwidth, a

series of performance problem such as unfair sharing and video rate fluctuation

will consequently occur. In other words, the major performance issues for com-

peting video players within a network are the instability and the unfairness. The

instability refers to the frequent switching video rate of the video player. Several

studies show that more frequent quality switching is invoked when more than one

instance of video players compete for bottleneck bandwidth [11][106]. As sharing

a bottleneck link, multiple competing players converges to an unequitable alloca-

tion of the network resources, which causes the unfairness in adaptive streaming

services.
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In order to confirm the abovementioned problems, a simple experiment was

conducted. In a certain time, two users were required to watch the sample movie.

In this experiment, Microsoft smooth streaming player which is an IIS Media Ser-

vices extension, enable adaptive streaming over HTTP, will be used. Wireshark-

a monitoring software will capture the requested video rate through analyzing

HTTP header. The experiment was repeated for several times to indicate the

stochastic nature of the issues. Figure 5.2 illustrates the unfair sharing of band-

width among clients. Specifically, the playback rate of the user 2 were 630kbps

constantly, whereas the user 1 experienced a happy time with high video rate

(from 1500kbps to 2500kbps). If the user 2 is a premium user, then this is a big

problem for the content provider.

 

Figure 5.2: The unfair sharing of bandwidth among clients

The instability of video rate during a streaming session can be seen in Fig.5.3.

After gradually increasing to the highest value of 2500kbps, the playback rate

of the user 2 rapidly decreased to the lowest value of 630kbps after several sec-

onds. Such high video rate fluctuations may result in visible variations in the

content quality for this user. The positive point here is that two users shared

the bandwidth equally on average. Actually, the unfairness and frequent adap-

tion are caused not by TCPs congestion control but by the offered load that

each video player requests. For instance, in the Fig.5.2, the user 2 estimates the
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Figure 5.3: The instability of video rate during a streaming session

available bandwidth to be much lower, and it does not even try to increase its

requested video rate. [72] shows that the root reasons of the three performance

issues (instability, unfairness, and underutilization) caused by the temporal over-

lap requests among video players. As stated in section 2.3, during the streaming

session, video player usually experiences two state: Buffering-state and Steady-

state. In buffering-state, video players start to build up its playback buffer as

quickly as possible. After playback buffer size reaches a certain specified value,

Steady-state is triggered. The Steady-state includes ON and OFF periods. Video

players download the next fragment of content based on the available bandwidth

estimation in the ON period. Video players stay in idle mode in the OFF period.

In other words, the ON period is the downloading time and OFF period is the

playback time. When two or more users started to watch a movie, the tempo-

ral overlap of the ON-OFF periods among video players can cause the incorrect

bandwidth estimation.

The impact of other applications on the quality of adaptive streaming ser-

vices, has not been widely addressed yet. In the presence of competing flow of

other applications clients, the video player often suffers a dramatic anomalous
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drop in the video playback rate. As described in the previous discussion, after

the buffer becomes full, the video player enters a periodic ON-OFF sequence.

When there is a competing flow, this flow will fill the buffer during the OFF

period of the HAS player, and thus, the video flow detects very high packet loss

rate, and low available bandwidth. This problem will repeat for every ON- OFF

period resulting in low QoE of the HAS player. Therefore, performing appropri-

ate bandwidth allocation to the users promisingly eliminate of negative effect of

bandwidth competition.

5.4 Methodology

In this section, initially, QoE management algorithm is presented in order to

emphasize the role of QoE control in maintaining the balance between network

resource utilization and the QoE. Afterward, the proposed method for accurate

bandwidth allocation will be introduced alongside the brief descriptions about its

operations in QoE control.

5.4.1 QoE control in adaptive streaming services

QoE management algorithm in adaptive streaming services is depicted in Fig.5.4,

where QoE control takes a key role. Initially, all incoming traffic from the ISPs

network will be classified in order to identify the application behinds each relevant

traffic flow. By knowing the application of the flow, the system can perform the

suitable admission control for that flow. In fact, the admission control operates

on a flow-basic. Since a new flow is about to enter the QoE management entity,

the system decides whether theres enough capacity to fully support this flow. If

it beyond of system capacity, allowing a new flow to enter would cause the quality

degradations of the existing flows. Afterward, the perceptual quality is estimated

for each flow, indicating the situation of the flow. In this case, MOS is used

as a way to express the estimated quality quantitatively as the average opinion

of a group of the users. The estimated MOS is determined as output of PSQA

[32][31] - a machine learning model. In a simple scenario, assume that there is

only one class of the end-users, that is to say, the premium class. In this class,

the priorities of the end-users are equal. Thus, only one threshold has been used

to judge the current situation of estimated QoE. In a more complex scenario, it is

83



5.4 Methodology
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Monitor traffic flows

Video traffic?

Enough bandwidth for this flow?
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Ignore this flowNo
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No

Figure 5.4: QoE management algorithm. MOS is always kept stable at a level

which is higher than threshold
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necessary to classify the users into premium class and normal class. Each class has

the different priority. Particularly, the premium class takes the highest priority,

meanwhile the default priority is given to the normal class. Therefore, at least two

types of threshold should be considered. While a high threshold is for classifying

the premium class, the normal class is judged by lower threshold. In this research,

only algorithm for the simple scenario has been taken into consideration. If the

estimated MOS decreases below the high threshold, the system generates the

suitable control actions to guarantee an expected MOS for that flow. As discussed

in previous sections, bandwidth allocation is used as the major control action in

this study. The focus of this action is to assign a specific bandwidth to certain

users or services. It can also be used to throttle down other traffic in order to

give better performance to certain users or services. In contemporary studies, by

relying on the target video rate, the necessary bandwidth can be calculated and

allocated to the end-user. Technically, bandwidth allocation as a control action

can be performed through two steps: (1) determine the target video rate and (2)

calculate and allocate the needed bandwidth.

• Target video rate is randomly taken from the premium range of available

video rate, which is depicted in Fig. 5.5. There are some significant draw-

backs found in this approach. First, each video content might not be en-

coded in the same way, resulting in different range of available video rate

at the server. In other words, the premium range might vary among video

contents, resulting in inaccurate determination of target video rate. Second,

the range of video rate does not accurately reflect the subjective expecta-

tion.

• The needed bandwidth can be calculated directly based on the constant

gap presented in [16].

5.4.2 Proposed method

In this subsection, the proposed method for accurate bandwidth allocation in QoE

control will be presented. Similarly to the existing QoE control’s mechanism, the

proposed method encompasses two steps: (1) Determine the target video rate and

(2) calculate and allocate the needed bandwidth to end-user. While, the second
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Estimate MOS

Estimated MOS < threshold No action

Randomly pick a target 
video rate from a 

pre-defined range of 
available video rate

Yes

No

Calculate and allocate 
the needed bandwidth 

to the end-user

Figure 5.5: The exiting QoE control approach, where the target video rate is

randomly taken from a pre-defined premium range of available video rate
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step is done in the same way as the existing approach, the novelty of this study

will be found in the first step.

1. In this approach, the target video rate will be determined through the

following two-phase procedure (as shown in Fig. 5.6):

• Define the range of the premium users expectation

• Interpret the subjective expectation to target video rate

The first phase encompasses the determination the range of subjective

expectation which is numerically referred to MOS (as QoE indicator). This

study is actually assumed to solely focus on the premium user, therefore,

the ideal expectation values is ranged from MOS threshold to the highest

MOS value of 5. In chapter 4, the relation between human perception and

biological information has already been modeled as a nature logarithmic

function. Thereby, a precise QoE assessment was achieved regardless of

individual different as well as the biased and variability. Accordingly, an

optimal constraint of MOS threshold has been established. In this study,

such the constraint is then used to clarify the range of expected MOS of

the premium user, as depicted in Fig. 5.7. Therefore, for any value of

MOS ranging from MOS threshold (derived from optimal constraint) to the

highest value of 5 is consider as the expected perceived video quality of the

premium user. As the result, once the estimated MOS of a premium user

falls below the threshold, a random value in that range will be taken as

the subjective expectation for that user. This value will be pushed to the

second phase for its in turn operations.

The second phase is responsible for interpreting the expected MOS to the

target video rate which is in turn used for calculating and allocating band-

width to the end-users. To do so, this study proposes to use a regression

model that expresses the relation between video rate and subjective per-

ceived quality. By using this model, the expected MOS can be automatically

interpreted to the according target video rate in real-time. In general, the

regression model is established based on the dataset of subjective MOS and

requested video rate derived from the experiment presented in subsection

3.3.1 for the establishment of PSQA. In this experiment, network condi-

tions are varied by adjusting QoS parameters, producing distorted videos.
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Figure 5.6: The proposed method for precise bandwidth allocation
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Figure 5.7: A pre-define range of subjective expectation in terms of expected

MOS

Subjects who are asked to watch these videos, provide their evaluation in

terms of subjective MOS. Alternatively, the video rate which is requested

by video player, is continuously monitored. Assume that there is only one

type of terminal display screen size used in this experiment. The sample

dataset which is obtained from that experiment, is illustrated in Table 5.1.

Accordingly, the average value of all subjects evaluations refers to subjective

MOS. Meanwhile, the requested video rate is the most frequently requested

one during streaming sessions for each distorted video.

The tendency of the correlation between subjective MOS and requested

video rate is depicted in Fig.5.8. In general, the MOS linearly increases

in accordance with the requested video rate since video rate has a strong

correlation with perceived video quality. Particularly, once MOS value in-

creases above the threshold, its tendency becomes more obvious. Before

that it witnesses a frequent variation of MOS for the video rate that is be-

low 1024kbps. Visually, the MOS mostly ranges from 4 to 5 if the requested

video rate is varied from 1536kbps to 2048kbps. It is worth noting that

the video contents do not always have the same encoding way, thus, the
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Table 5.1: The most frequent requested video rate and the subjective MOS

Available

bandwidth

(kbps)

Packet loss

(%)

Latency

(ms)

Jitter (ms) Subjective

MOS

Requested

video rate

(kbps)

700 0 10 5 1.88 331

1000 3 250 5 2.75 447

2000 0 1 5 4.63 1427

4000 3 250 5 3.12 991

according requested video rate for particular MOS value, might be varied.

From raw data, a regression model was also established by modelling data

with linear combination of basic function in which a set of functions φ0,

φ1,, φP was specified along with finding function f in the form of linear

combination:

f(x) =
P∑
i=0

θiφi(x) (5.1)

In this case, the target function for the regression model is unknown, thus,

the Gaussian Radial Basic Functions (RBF) was chosen. The result of mod-

eling data is plotted in 5.9 with high coefficient of determination denoted as

R-squared of 0.8531. Once the target video rate is determined based on a

certain expected subjective MOS, the available bandwidth can be calculated

and allocated to the end-user.

2. Based on determined target video rate, the bandwidth can be calculated

through Eq. 4.13. This equation presents a constant gap between the

target video rate and the needed bandwidth. Typically, Cons refers to a

conservatism value (constant gap) defined by particular proprietary video

players. For instance, Microsoft smooth streaming (MSS) and HLS players

apply a conservatism value of 20% and 40%, respectively. In this study,

MSS player with the constant gap of 20% is practically used.
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Figure 5.8: The general trend obtained from subjective MOS and requested video

rate

5.5 Evaluation

This section aims to investigate how accurately can bandwidth allocation be per-

formed when the perceived quality of the premium user falls to specific lower

levels. Note that, in the scenarios that estimated MOS was gradually decreased,

QoE control was activated only when the estimated MOS was below the thresh-

old. In this case, the MOS threshold of 2.78 was derived from previous chapter.

The evaluation environment was set up as follows: The testbed consisted of a

router, a streaming server, and three users. The router was a Linux-based router,

namely, WAN Emulator release 3.0 running on a VMware workstation located

on a desktop computer with Intel Core i5 3.10GHz processor and 8GB RAM.

This router works as a controller which is capable of adjusting available band-

width, packet loss, delay, and jitter. The streaming sever was deployed on a

desktop computer with Windows 8.1, Intel Core i5 3.10Ghz processor and 8GB

RAM. The server published a Microsoft smooth streaming video content of ”Big

Buck Bunny” which is known as an open source testing movie. This movie con-

tent was encoded with multiple video rates. Furthermore, a Smooth Streaming-

compatible Silverlight player template was installed on the Smooth Streaming en-
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Figure 5.9: Regression approximation modeling the relation between requested

video rate and subjective MOS. The horizontal axis presents the subjective MOS.

The vertical axis shows the requested video rate (in kbps)
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abled streaming server so that Silverlight-based users can play Smooth Streams.

The users utilized the laptop computers with MacOS, Core i5 and 8GB RAM in

which the latest version of Microsoft Silverlight add-on was installed. The server

and the users’ computers were located in different broadcast domains and they

were connected via the router. The network topology used for this experiment

is shown in Fig.5.10. By relying on ”ping” packets and packets generated by

”iperf” tool, a QoS monitoring software deployed at the router monitored the

available bandwidth, packet loss, delay and jitter. In addition, Wireshark, which

is a network packet analyzer, installed at the router captured the HTTP request

from the client.

Figure 5.10: Set up network environment for investigating the accuracy of control

action

The experimental procedure for two scenarios of the evaluation is as follows:

(1) The first user as the premium user starts watching a streaming video

content.

(2) The second and third user respectively stream the video at t=60s and

t=120s on purpose to make the network quality of the premium user deteriorated.

(3) The packet loss, delay and jitter in the network are observed.
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(4) The deterioration is detected by observing the requested video rate and

the estimated MOS.

(5) The available bandwidth to the premium user is increased to recover the

network quality when the deterioration of requested video rate and estimated

MOS are detected.
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Figure 5.11: Requested video rate and estimated MOS of the premium user during

his streaming session (before and when bandwidth competition occurs)

Figure 5.11 shows the changes of the estimated MOS and the requested video

rate of the premium user under different situations. Accordingly, the horizontal

axis indicates the time durations, the first vertical axis is the requested video

rate, and the second vertical axis is the estimated MOS. During the first 60s of

the experiment, when the premium user was solely watching the movie, it took

several transitions to reach the highest encoding video rate of 2056kbps. The

player would have requested the value of 2962kbps if the users were watching

the video in full-screen mode. Meanwhile, the estimated MOS was stable at the

highest value of 5 since the available bandwidth was equal to the link capacity

of about 5000kbps. At t=60s, once the first normal user started to request the

video content, the available bandwidth of the premium user immediately reduced

to around 2500kbps. The estimated MOS decreased to around 4, whereas the

player still requested the video content at video rate of 2056kbps for 19 seconds.

When the second normal user watched the video, the available bandwidth of the
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premium user shrank to 1578kbps followed by a fluctuation around the value

of 2.5 of the estimated MOS, which is below the set-up threshold of 2.78. At

this time, the system took the highest MOS value of 5 for the premium users

expectation. Note that, the exist studies directly take the highest video rate value

of 2962kbps for the premium user instead of consider the subjective expectation.

Afterward, by using the regression model, the target video rate can be calculated

from the expected subjective MOS followed by the calculation of the available

bandwidth based on Eq. 4.13. The determined target video rate was actually

equal to 2056kbps. Interestingly, at t=242s, the player successfully reached to its

calculated target video rate of 2056kbps.

Fig.5.12 and Fig.5.13 show the estimated MOS and the requested video rate

of both two normal users. Particularly, in Fig.5.12, the estimated MOS of the

first normal user fluctuated around the tolerable levels of 2 and 2.5 from t=60s to

t=262s. On the other hand, the requested video rate was stable around 1130kbps

during the time it has to compete for the available bandwidth with only the

premium user. This is followed by a slightly decrease to 688kbps since the second

normal user participated in the network. A similar tendency of the second normal

user also can be seen in Fig.5.13.
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Figure 5.12: Requested video rate and estimated MOS of the first normal user

during his streaming session
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Figure 5.13: Requested video rate and estimated MOS of the second normal user

during his streaming session
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5.6 Summary

The purpose of the research in this chapter is to propose a user-centric manner in

performing accurate bandwidth allocation. The experimental results show that

the appropriate target video rate can be accurately predicted from the expected

MOS when the estimated MOS is less than the threshold. As the result, the

needed bandwidth can be efficiently assigned to the premium user. Applying the

proposed method not only supports the premium user to achieve its expected per-

ceived video quality, but also optimizes the network utilization and provides suf-

ficient available bandwidth to the normal users for tolerable quality. As shown in

Fig.5.12 and Fig.5.13, although there is a serious competition in the network, the

estimated MOS of both normal users are still stable at tolerable levels. However,

this approach is currently applied for Microsoft Smooth Streaming technology

only, thus, it is necessary to be re-confirmed with other commercial technologies

as well as non-commercial ones. In addition, the larger number of the premium

user also need to be considered.
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Chapter 6

Discussion

This chapter discusses the works investigated and solutions proposed in this dis-

sertation by which advantages as well as the remaining issues will be summarized.

As mentioned in this dissertation, video services’ market witnesses a remark-

able shift from technical quality requirements to perceived video quality which

is defined as QoE. Thus, in order to expand the market and improve the profit,

adaptive video service providers must take QoE management into consideration as

the indispensable concern. Currently, adaptive streaming technique has attracted

a large attention from academic communities, resulting in numerous publications.

These studies mostly focus on optimize the balance between network resource uti-

lization and the resulting QoE. However, besides advantages utilized from exiting

works, several issues remain waiting to be solved. These issues are separately

associated with two major components of QoE management - QoE monitoring

and QoE control. The issues and according proposed solutions are summarized

and concretely discussed as follows:

6.1 Early detection of QoE deterioration with

appropriate monitoring interval

In the first proposal, the monitoring interval in QoE monitoring was determined

by taking into consideration playback buffer size obtained in video player. The

balance between the computational cost and the ratio of QoE deterioration was

achieved when the monitoring interval was equal to video chunk size of 2 seconds.
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6.2 Collaborative approach using psychophysiology and psychophysics for
determination of QoE threshold

However, in this research, video rate was solely assumed as perceived video

quality, excluding other perceptual factors such as rebuffering, frequency of re-

buffering, and initial starting time. In addition, the proposal has been evaluated

with Microsoft smooth streaming decoder only. The confirmation with the other

decoders (e.g. YouTube, HTTP Live Streaming, etc.) is needed. Moreover, in

the experimental evaluation, the effectiveness of the determined interval has been

confirmed with only one client as premium user. The impact of fluctuation of

network condition is excluded making the experimental scenario become easier

but not realistic.

6.2 Collaborative approach using psychophysi-

ology and psychophysics for determination

of QoE threshold

As the most important component in QoE management framework, QoE control

is demanded to precisely generate control actions at the right time in order to

ensure that the QoE is stable at an expected level with minimal network resource

usage. To achieve this, the determination of QoE threshold is needed. In lit-

erature, the QoE threshold is simply determined by selecting the fair quality in

5-scale MOS which is common QoE indicator for rating assessment approach.

However, the rating approach has significant drawbacks due to high bias and

variability. In that situation, psychophysiology provides a better way to quantify

human perception by relying on biological information. The significant draw-

back of this approach is the individual difference that can be compensate by

psychophysics. However, psychophysics uses the same perception methods as

the rating approach. It leads to a demand of an approach that can harmonize

those things. Therefore, a collaborative approach using psychophysiology and

psychophysics was proposed in determining the QoE threshold. As the result,

the logarithmic nature function representing the relation between human per-

ception (measured by skin conductance) and physical stimulus (defined by video

rate deterioration) has been successfully established. The optimal QoE threshold

was then determined through an optimal constraint of absolute threshold derived

from the above logarithmic nature function. The effectiveness of optimal thresh-

old has already been confirmed through a series of experiments. Whereby, at
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6.3 User-centric approach to accurate bandwidth allocation

least 4.855% of bandwidth allocation can be saved for each control, meanwhile

the overall subjective QoE was kept at an expected level.

The original intention in this research is to investigate the combination of

multiple biological signals, that is to say, SC, HR, and HRV. However, HR and

HRV data produce the regression results with very low accuracy, arising a question

whether or not HR and HRV are suitable for the estimation of human perception

to stimulus intensity. Small sampling frequency is predictably the main reason

for this case. While SC data was obtained with a flexible sampling frequency (in

this case, it is set to 20Hz), HR data’s sampling frequency was fixed by device

vendor (it was equal to 1Hz). In addition, the response time to sympathetic

stimulation is relatively slow. It takes about 5s to increase HR after the actual

onset of sympathetic stimulation and almost 30s to reach its peak steady level.

Meanwhile, the duration of reference video is about 40s. Therefore, the inaccurate

characteristics of HRV and HR are potentially captured.

6.3 User-centric approach to accurate bandwidth

allocation

Bandwidth allocation is one of the common actions in QoE control. Although

the introduction of adaptive streaming technology produces smoother perceived

video quality, the bandwidth competition during streaming sessions still pose

the challenges. In that situation, the accurate bandwidth allocation in QoE

control will extremely strengthen network utilization. The saved bandwidth is in

turns used by other users, improving the overall subjective perception to video

quality. In adaptive streaming services, the allocated bandwidth can be calculated

based the determination of target video rate due to the fact that video players

usually maintain a constant gap between the target video rate and the needed

bandwidth. Thus, accurate target video rate prediction will facilitate a more

precise bandwidth allocation. In this research, the target video rate is determined

based on: (1) the establishment of a pre-defined subjective expectation and (2)

the use of regression model of video rate and QoE. The experimental results

demonstrated that by using this method, bandwidth utilization has been much

more improved, while the QoE of the premium user was recovered to the expected

level.

100



6.3 User-centric approach to accurate bandwidth allocation

However, this proposal was confirmed in a simple scenario with a small number

of the users. Thus, more complicated scenarios must be considered.
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Chapter 7

Conclusion and Future Work

This chapter concludes the dissertation and figured out directions for future work

7.1 Conclusion

As analyzed in the chapter 1, the balance of network resource utilization and

the resulting QoE must be achieved in QoE management in adaptive streaming

services. This has become the motivation for numerous contemporary studies for

years. In this research, such the balance has been achieved by solving three major

issues associated with QoE monitoring and QoE control. The conclusions of this

dissertation are summarized as follows:

Chapter 3 focused on proposing a method to determine the appropriate in-

terval for QoE monitoring. In this chapter, the behavior of playback buffer during

the streaming session was clarified. Thereby, this parameter can be used to pre-

dict the deterioration of video rate which was directly considered as QoE. By

investigating the condition which keeps the playback buffer stable, an appropri-

ate monitoring interval was determined as being equal to the size of video chunk.

The determined monitoring interval was then evaluated by comparing with other

values of interval in terms of computational cost and ratio of video rate deterio-

ration. The experimental result demonstrated that with the appropriate interval,

a low ratio of video rate deterioration (around 11.45% for buffering state and

40% for steady state) and small average CPU Load (about 11.45%) were derived,

resulting in an expected balance at the value of 11.45%.
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7.2 Future Work

Chapter 4 aimed at proposing a collaborative approach using psychophysiol-

ogy and psychophysics for the determination of the appropriate threshold in QoE

control. More concretely, the QoE threshold was determined by means of clarify-

ing the logarithmic nature function which expresses the relation between human

perception and stimulus intensity (defined by video rate deterioration). As the

biological information, Skin Conductance, Heart Rate and Heart Rate Variability

associated with Autonomic Nervous System (ANS) have been investigated. The

evaluation results demonstrate that the QoE management by using the deter-

mined threshold can save more than 4.855% of the bandwidth consumption per

control, while QoE is guaranteed to be stable at an expected level

Chapter 5 focused on proposing a method to determine the target video

rate for precise bandwidth allocation. Basically, bandwidth allocation can be

accurately performed based on the target video rate taken from a pre-defined

premium range of available video rate. However, the video rate range does not

accurately reflect the human expectation. Therefore, in this chapter, a user-

centric approach is proposed for a precise bandwidth allocation. This approach

initially defines a premium range of subjective expectation in terms of MOS, then

establishes a regression model of video rate and MOS to convert the expected

MOS to the target video rate. Eventually, the needed bandwidth can be easily

calculated from determined target video rate. As the result, by applying the

proposed approach, more bandwidth can be saved per control, while the perceived

video quality is guaranteed.

7.2 Future Work

For years, the significant evolution of mobile networks has brought not only

chances but also challenges for QoE management in adaptive streaming services.

Using mobile networks, the users now can enjoy video services with the various

of content and mobility. Therefore, QoE management in mobile networks has

increasingly become hotter and hotter than ever in academic and industrial field.

It creates motivations to consider an extension towards the mobile networks for

the future works.

The appropriate QoE monitoring interval in this research was actually vali-

dated with Microsoft Smooth Streaming decoder only. Thus, in the next research,
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7.2 Future Work

it will be re-confirmed with more complicated scenarios and for various types of

commercial and open source decoders.

In this research, the appropriate threshold of QoE control was determined by

considering the combination of psychophysiology and psychophysics. This com-

bination produces a logarithmic nature function expressing the relation between

skin conductance and stimulus intensity. However, the impact of other biological

information, especially EEG and ECG has not been investigated yet. It opens

the new direction of applying EEG and ECG for our current research.
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