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Abstract

Recently, the micro-positioning has become an important develop-

ment target for meeting the requirements of the precision industry,

such as in the semiconductor manufacturing process, biotechnology

processes and opto-electronics systems. Since the piezoelectric actu-

ator has many advantages, such as high displacement resolution (sub

nanometer), large actuating force, fast response time (µs range), tiny

size, electric controllable, PEA as well as PEA-driven positioning sys-

tems has been extensively used in the fields of micro/nano positioning

and being the most commercialized and understood technology in the

smart actuator market. However, PEAs also exhibit undesired seri-

ous disadvantages such as hysteresis, creep and vibration behaviors,

which have shown to be able to significantly degrade the performance

of the controlled system.

In this study, precise tracking control of piezo-actuated positioning

systems, which is composed by a PEA and a positioning mechanism,

is considered due to its important role and popularity in practical ap-

plications. In this case, the performance of system is mainly affected

by the hysteresis phenomenon. Hence, the goal of this study is to

propose control algorithms which have ability to handle the difficul-

ties caused by the nonlinear behavior and achieve excellent tracking

performance. In advanced, all the control designs are conducted in

discrete-time domain. As a result, the control algorithm can easily be

implemented in digital controllers.

In order to achieve the above goals, various advanced control schemes

have been proposed and presented in this study. In details, a pseudo



model predictive control which mimics the behavior of its conven-

tional counterpart is presented in Chapter 2. In Chapter 3, the con-

ventional discrete-time sliding mode control and integral sliding mode

control design is introduced in the first two sections. Then, a novel

discrete-time prescribed performance sliding mode control is proposed

to improve the response in transient-state while remains the tracking

performance in steady-state. In Chapter 4, the discrete-time fractional

order-based controllers are discussed. A new method to approximate

the fractional order integral is proposed first. Then, this proposed

approximation is applied to a discrete-time fractional order PIαDβ

controller along with the particle swarm optimization to get the best

performance. At last, the discrete-time fractional order integral slid-

ing mode control is investigated. Fuzzy tuning is chosen as an effective

tool to improve the system performance by adjusting all parameters

of the controller simultaneously. The validity and effectiveness of all

proposed methods are confirmed by experiments.
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Chapter 1

Introduction and Objectives

This chapter starts out by describing the working principle of PEA and its im-

portant characteristics. Then, challenges and objective of this dissertation are

discussed. The end of this chapter presents the outline of its organization.

1.1 Working Principle of Piezoelectric Actuator

1.1.1 Piezoelectric Effect

The piezoelectric effect was discovered by the Curie Brothers in 1880. The direct

piezoelectric effect contains the ability of certain materials, which are called piezo-

materials, to generate electric charge in proportion to externally applied force.

The effect is reversible and then is called as an inverse piezoelectric effect (Fig.

1.1). The piezoelectric actuator (PEA) is based on the inverse piezoelectric effect.

In this case, the deformation of PEA can be adjusted by varying the applied input

voltage.

1.1.2 Properties of PEA

The main properties of the PEAs are briefly introduced in this sub-section.

1



1. INTRODUCTION AND OBJECTIVES

1. Unlimited Resolution: Piezo actuators convert electrical energy directly

into mechanical energy and vice versa and allow for motions in the sub-

nanometer range. There are no friction elements that limit resolution.

2. Rapid Response: Piezo actuators allow response times of a few microsec-

onds.

3. High Force Generation: High-load piezo actuators capable of moving

loads of several tons are available.

4. No Magnetic Fields: The piezoelectric effect is related to electric fields,

piezo actuators do not produce magnetic fields nor are they affected by

them.

5. Low Energy Consumption: Static operation, even holding heavy loads

for long periods, consumes virtually no power. A piezo actuator behaves

very much like an electrical capacitor. When at rest, no heat is generated.

6. No Wear and Tear: A piezo actuator has no moving parts as gears or

bearings. Its displacement is based on crystalline solid-state dynamics and

shows no wear and tear. For example, PEAs of Physical Instrument have

gone through several billion cycles in endurance tests without measurable

changes in their behavior.

7. Vacuum and Clean Room Compatible: Piezo actuators neither cause

abrasion nor do they require lubrications. The all-ceramic insulated ac-

tuators have no polymer coating and are thus ideal for ultrahigh vacuum

applications.

8. Operation at Cryogenic Temperatures: The piezo effect continues to

operate even at very low temperatures close to 0 Kelvin.

9. Wide Operating Voltage Range: Two types of PEAs have become es-

tablished: Monolithic-sintered multilayer actuators (low-voltage actuators)

operate at voltages up to about 130 V and are made of ceramic layers from

20µm to 100µm in thickness. Classical high-voltage actuators (high-power

2



1.1 Working Principle of Piezoelectric Actuator

actuators) are made from ceramic layers of 0.5 to 1mm thickness and oper-

ate at voltages of up to 1000V. PICA actuators can be manufactured with

larger cross-sections, making them suitable for larger loads than the more

compact monolithic multilayer piezo actuators.

10. Stiffness, Load Capacity, Force Generation: To a first approximation,

a PEA is a spring-and-mass system. The stiffness of the actuator depends

on the elasticity module of the ceramic (approx. 25% of that of steel), the

cross-section and length of the active material and other nonlinear param-

eters. Typical actuators have stiffnesses between 1 and 20000N/µm and

compressive limits between 10N and 100000N. For tensile stresses, a casing

with integrated preload or an external preload spring is required. Ade-

quate measures must be taken to protect the piezo ceramic from shear and

bending forces and from torque.

11. Travel Range: The travel ranges of piezo actuators are typically in be-

tween a few 10µm to a few 100µm for linear actuators. Bending actuators

can achieve a few millimeters.

12. Position Resolution: The piezoceramic itself works free of friction and

theoretically has unlimited resolution. In practice, the resolution actually

attainable is limited by electrical and mechanical factors:

a) Sensor and servo-control electronics, amplifiers: Amplifier noise and sen-

sitivity to electromagnetic interferences (EMI) affect positional stability.

b) Mechanical parameters: Design and mounting precision issues concern-

ing the actuator, preload and sensor can induce microscopic friction which

limits resolution and accuracy. PEAs reach sub-nanometer resolution and

stability

Given above properties, the PEAs have been extensively used in a variety of

industrial, automotive, medical, aviation, aerospace and consumer electronics ap-

plications. PEAs are found in precision knitting machinery and braille machines.

The silent drive characteristics make piezo actuators an excellent auto focusing

mechanism in microphone-equipped video cameras and mobile phones. Finally,

3
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since PEAs require no lubrication to operate, they are also used in cryogenicand

vacuum environments.

Figure 1.1: Inverse piezoelectric effect

1.2 Behaviors of PEA

In micro- and nanopositioning applications, typical behaviors of PEAs concerned

include hysteresis, creep, and vibration dynamics.

1.2.1 Hysteresis

Hysteresis is the nonlinear dependence of a system not only on its current input

but also on its past input. In PEAs, hysteresis exists in voltage-displacement

relationship as shown in Fig. 1.2(a) [59]. It can be seen that the hysteresis is

composed of three types of components, which are the major loop that spans the

whole input range, the minor loop that only spans portions of input range, and

the initial loading curve.
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1.2 Behaviors of PEA

Hysteresis occurs in both relatively static operations and dynamic operations.

If the influence of the rate of change of the input can be ignored, then the hys-

teresis is referred to as rate independent, otherwise rate dependent. As hysteresis

being the major nonlinearity of PEAs, compensation of hysteresis has always

been a major concern in modeling and control of PEAs.
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Figure 1.2: Hysteresis and creep of a PEA

1.2.2 Creep

Creep is the slow variation in the PEA displacement that occurs without any

accompanying change in the input voltage as shown in 1.2(b). Being a slow and

a small effect, creep is sometimes neglected in closed loop and high frequency

operations. However, for slow and open-loop operations of PEAs, creep must be

considered to avoid large positioning error.
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1.3 An Overview of Modeling and Control De-

sign

1.3.1 Modeling of PEAs

Significant efforts have been made to mathematically represent the complicated

behaviors of PEAs and mainly focus on modeling the hysteresis phenomenon

which has strong influence on the accuracy of the positioning systems. The linear

electromechanical model reported in [? ] is an early example. However, the

nonlinear behavior including hysteresis and creep have not been well reflected due

to the linear and static nature of the model. Then, advanced mathematical models

which are able to describe the hysteresis curve directly have been proposed. These

advanced models can be classified as operator-based and nonlinear differential

equation-based hysteresis models. In the former approach, Preisach hysteresis

model [53, 69], the Prandtl-Ishlinskii(PI) hysteresis model [4, 40, 41], and the

Maxwell slip hysteresis model [29, 46] are the most widely used. In the latter

approach, Bouc-Wen model [3, 31, 81] can be regarded as typical examples. These

above mentioned models are briefly reviewed as follows.

1.3.1.1 Preisach Hysteresis Model

The Preisach model reflects the behavior of the hysteresis by combining infi-

nite number of the Preisach hysteresis operators δP [α, β, u(t)]. Each operator is

characterized by two parameters including a up switching value α and a down

switching value β, with α ≥ β. Two saturation values: −1 and 1 are used to re-

strict the output of the operator. The model output is adjusted by an additional

weighting function µ(α, β). As such, the final formulation of the Preisach model

is expressed by

Pr(t) =

∫ ∫
µ(α, β)δP [α, β, u(t)] dαdβ (1.1)

where u(t) is the input and Pr(t) is the output of the model.

6



1.3 An Overview of Modeling and Control Design

Figure 1.3: (a) Preisach hysteresis operators; (b) Combination of operators; (c)

Result hysteresis curve

By using infinite number of operators, the Preisach model can describe a

wide range of hysteresis precisely as illustrated in Fig. 1.3 [59]. However, large

computational effort and rate-independent are major concerns of this approach.

7



1. INTRODUCTION AND OBJECTIVES

1.3.1.2 Prandtl-Ishlinskii Hysteresis Model

The PI model describes the behaviour of the hysteresis by the combined effect of

large number of back-lash operators.

Let C [0, tE] stands for a space of piecewise monotone continuous functions.

For any input u(t) ∈ C [0, tE] with 0 = t0 < t1 < · · · < tN = tE such that u(t)

is monotone on each sub-interval [ti, ti+1], the output of the backlash operator is

defined by

Br[u](0) = fr (u(0), 0) = w(0)

w(t) = Br[u](t) = fr (u(t), Br[u](ti))

for ti < t ≤ ti+1 and 0 ≤ i ≤ N − 1

(1.2)

in which

fr(v, w) = max (v − r,min(v + r, w)) (1.3)

and r is the threshold of the operator.

Figure 1.4: Back-lash operator with threshold r

The PI model combines the play operator and a linear function of input u(t)

8



1.3 An Overview of Modeling and Control Design

to describe the hysteresis as follows

H[u](t) = Ku(t) +

R∫
0

d(r)Br[u](t)dr (1.4)

where d(r) ≥ 0 is a density function, K > 0 is a desired gain and R is a positive

constant.

In practice, the discrete form of the classical PI model is prefered

H[u]k = Kuk +
N∑
j=1

djBr,j[u]k (1.5)

where N is the number of used back-lash operator.

As can easily be seen in Fig. 1.4, the classical PI model can only reflect the

behaviour of the symmetrical hysteresis. To describe the asymmetrical hysteresis,

this model must be modified.

1.3.1.3 Maxwell Slip Hysteresis Model

Similar to the PI model, the Maxwell slip hysteresis model describe the hysteresis

by putting a finite number of elasto-slide elements in parallel as shown in Fig.

1.5 [47]. Each element is composed of a mass sliding on a surface with a Coulomb

friction µiNi where µi is the friction coefficient and Ni is the normal force between

the mass ans the surface, and a linear spring with stiffness ki with one connected

to the mass and the other end is free. As such, the hysteresis exists between the

displacement and the force of the spring and expressed by

ẋi(t) =

{
0 for ki [x(t)− xi(t)] sgn [ẋ(t)] < µiNi

ẋ(t) for ki [x(t)− xi(t)] sgn [ẋ(t)] ≥ µiNi
(1.6)

F (t) =
n∑
i=1

ki [x(t)− xi(t)] (1.7)

where x is the input displacement, F is the output force and xi is the block

position.

As the displacement increases or decreases continuously, the gain between

the force and the displacement changes piecewise linearly which represents the

9
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Figure 1.5: Maxwell slip hysteresis model

nonlinear gain of the hysteresis. If the movement changes the direction, the sliding

elements come to stick. Hence, the sudden switch of the gain at the endpoint of

the hysteresis loop can be reflected.

1.3.1.4 Bouc-Wen Hysteresis Model

This nonlinear differential equation-based model was first proposed by Bouc early

in 1971 and subsequently generalized by Wen in 1976. Since then, it was known

as the Bouc-Wen model and extensively used not only in modeling the hysteresis

but also in control design. The most popular form of the Bouc-Wen model is

expressed by

ΦBW [x(t)] = αkx(t) + (1− α)Dkz(t)

ż(t) = D−1
(
Aẋ− β|ẋ||z|n−1z − γẋ|z|n

) (1.8)

in which z is the shape function, n > 1, D > 0, k > 0, 0 < α < 1 and β + γ 6= 0

are desired constants. By tuning these parameters appropriately, the hysteresis

10
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curve can be obtained. A typical example of the Bouc-Wen model is depicted in

Fig. 1.6.
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Figure 1.6: An example of hysteresis based on Bouc-Wen model

1.3.2 A Survey of Control Design

Over the years, a large number of control methods have been proposed for con-

trol of piezo-actuated positioning systems. Due to the detrimental influences of

the hysteresis on the performance of the control systems, compensation of the

hysteresis becomes the major concern in all studies. The typical control schemes

are briefly introduced as following.

1.3.2.1 Open-Loop Control

This is the simplest control scheme in which the control signal is computed from

the inverse model of the control plant. The way to obtain the inverse hysteresis

has been reported in numerous studies [5, 35, 38, 42, 62]. The parameters of

the controller is obtained based on the open-loop input/output data. Hence, the

control system can only show acceptable performance in specific conditions. In

11
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general, this method is very sensitive to the modeling error and the changes of

working condition.

Figure 1.7: Inverse control scheme

1.3.2.2 Feedback Control

Until now, feedback control is still the most popular control scheme in practice

due to its ability to suppress the unknown effects such as modeling error, external

load and disturbances. The typical configuration of a feedback control system is

shown inf Fig. 1.8.

Figure 1.8: Feedback control scheme

In static or low tracking frequency, classical proportional-integral-differential

(PID) controller is widely used because of its simplicity in implementation as well

as its capable of compensating the steady-state error. The parameters of the PID

controller can be obtained by various techniques such as ”trial and error” [27],

optimal linear quadratic regulation [68], auto tuning [94], etc. However, the per-

formance of the PID controller is significantly degraded in high frequency tracking

applications due to its limited bandwidth while dealing with uncertainties.
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Figure 1.9: Feedforward control scheme

1.3.2.3 Feedback with Feedforward Control

To improve the tracking performance, the conventional feedback scheme can be

augmented by a feedforward controller as seen in Fig. 1.9. The merit of this

approach is that the gain margin of the control system can be enhanced. Typ-

ical researches which adopt this control scheme are [27, 45] in which an inverse

Preisach hysteresis model is used as the feedforward controller to compensate the

hysteresis while a PID is used as feedback controller to handle other effects.

Figure 1.10: Feedback with inverse feedforward control scheme

Another control scheme which involves feedback and feedforward is reported

in [23, 82]. The block diagram of this approach is shown in Fig. 1.10. In this

case, an inverse hysteresis is used to mitigate the hysteresis effect first. Then,

a feedback controller is used to suppress the remaining nonlinearity. However,

as other hysteresis-based methods, identification procedure is a time consuming

task and the existence of the modeling error is inevitable.

13
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1.3.2.4 Advanced control techniques

To overcome the aforementioned drawbacks of the conventional control scheme,

handle the nonlinearities as well as improve the tracking performance in broad-

band applications, advanced control techniques are extensively studied in recent

years.

Among all of such advanced control techniques, sliding mode control (SMC)

shows itself a very effective approach due to its capable of rejecting the effects

of so-call matched uncertainties which results in strong robustness of the control

system. In advance, the fast dynamic of the PEAs also suit well the deadbeat

response of the closed-loop system-based SMC. A lot of results based on this con-

trol scheme have been reported, e.g, in [84] a second order discrete-time terminal

SMC is adopted to guarantee that the quasi-sliding mode is reached in finite time

and high accuracy output tracking is achieved, in [88] a novel model predictive

SMC is proposed to further attenuating the positioning error, in [83] the discrete-

time integral sliding mode control is used to achieve an O(T 2) tracking precision

with respect to the sampling interval T , etc. In these researches, the control de-

sign is conducted based on a nominal mathematical model of the PEAs whist the

hysteresis, creep and other uncertainties are treated as a lump disturbance. This

lump disturbance is then estimated by a disturbance observer and embedded into

the control action such that the chattering can be mitigated.

Figure 1.11: Adaptive control scheme
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Adaptive control technique has also been applied to control PEAs and achieved

good tracking performance [14, 43, 86]. An adaptive control system can be

thought as having two loops: one loop is a normal feedback loop with the plant

and the controller, the other is the parameter adjustment loop. The typical block

diagram of the adaptive control system in shown in Fig. 1.11. The advantage of

this technique is that it does not rely on system identification since all unknown

parameters are automatically updated by adaptive law during control process.

The variation in uncertainty that an adaptive system can handle depends di-

rectly on the speed of the parameter adjustment loop. However, fast adaptation

may lead to high frequency oscillations in control signal.

1.4 Challenges and objective

Figure 1.12: E-712 Digital piezo controller of physikinstrumente

Although PEAs have been extensively used in many practical applications, the

most popular commercial controller used in motion control of PEAs still based

on the conventional proportional-integral-differential (PID) algorithm [1]. An

typical example is the digital servo controller E72 of physikinstrumente shown

in Fig. 1.12. The block diagram and sample response of a PEA is shown in

15



1. INTRODUCTION AND OBJECTIVES

Figure 1.13: Block diagram of a digital piezo servo controller of physikinstrumente

Figure 1.14: Settling behavior of a system with optimized PID parameters (blue)

and Advanced Piezo Control (pink)

Fig. 1.13 and Fig. 1.14, respectively. As will be seen in the next sections, this

simple controller can only give good tracking performance with simple desired

trajectories. For complicated desired ones, the tracking error increases signifi-

cantly due to the phase-shift, gain reduction and finite sampling time. To handle

this problem, very high sampling rate or advanced control techniques are needed.

The former solution requires a high speed controller which results in a high cost

system. Hence, the overall objective for the thesis work is to investigate and

develop advanced control schemes, which are practical and implementable, to

achieve excellent tracking performance. The control designs are also conducted

in discrete-time domain so that the algorithms can easily be implemented by dig-
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ital controllers directly. The algorithms are also not too complicated to avoid

using expensive hardware.

1.5 Structure of This Dissertation

To this end, the remaining of this dissertation is organized as following:

Chapter 2 presents the design of the model predictive control (MPC) using

non-minimal state-space (NMSS) model for tracking control of single input sin-

gle output (SISO) system. By inspecting the block diagram of the conventional

MPC, it can be seen that tuning the MPC parameters to achieve high track-

ing performance is a challenging task. Hence, a pseudo MPC which has same

structure and set of parameters with MPC is proposed. However, the way to get

the parameters of this proposed controller is clear. Besides, robustness against

parameters variation is also improved.

Chapter 3 discusses the discrete-time sliding mode control (DSMC) for SISO

uncertain systems. First, conventional DSMC and discrete-time integral sliding

mode control (DISMC) are applied to the piezo-actuated positioning system.

By analyzing the experimental results, it can be said that the both DSMC and

DISMC can give a good tracking performance in steady-state. Nevertheless, it is

impossible to adjust the transient response in practice due to the uncertainties.

Thus, a novel prescribed performance DSMC is proposed. The novel method

offers additional parameters to adjust the transient response. In advance, the

tracking error is always kept inside a pre-defined area.

Chapter 4 concerns so-called fractional order-based controllers which is based

on the generalized differential and integral of fractional order instead of integer

order. These controllers offers more degree of freedom in comparison with their

integer order-based counterparts. Therefore, the control performance may be

improved. First, the numerical approximation of the fractional order differential

(FOD) and integral (FOI) is introduced. Then, a new method to approximate the

FOI is proposed such that the FOI can be computed recursively. Based on this

proposed approximation, the design of discrete-time PIαDβ of fractional order
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α, β is discussed. The particle swarm optimization (PSO) is also used to obtain

the best set of parameters. In advance, the PSO run directly with real system

instead of a mathematical model to remove the influences of the modeling error.

Finally, discrete-time fractional order integral sliding mode control (DFISMC)

with variant switching gain and fuzzy tuning is investigated. This DFISMC is

able to achieve high tracking performance with no chattering in steady-state.

The dissertation ends with conclusions and future works in Chapter 5.
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Chapter 2

Tracking Control of

Piezo-Actuated Positioning

Systems Based On Pseudo Model

Predictive Control

2.1 Introduction

In recent years, the PEAs become more and more important in many key tech-

nologies such as semiconductor, optoelectronic devices production, biological ma-

nipulation, etc., where ultrahigh precision motion is required because of many

advantages mentioned in the first chapter. However, the nonlinear relationship

between the applied input voltage and the output displacement may cause diffi-

culties in control design.

Numerous control strategies have been developed in the literature to cope with

nonlinear behavior of the PEAs [21]. In general, these methods can be divided

into two groups: hysteresis model-based and hysteresis model-free approaches. In

the first approach, the hysteresis phenomenon is reconstructed by using nonlinear

hysteresis operators or nonlinear differential equations, leading to the proposal of

many famous models such as: Preisach model [28], Prandtl-Ishlinskii model [39],
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Bouc-Wen model [34], etc. Then, inverse compensation technique is employed to

reject the influence of the hysteresis. However, these method are quite sensitive to

the modeling error as well as require high computational cost. Thus, this chapter

focuses on the second approach in which the hysteresis is regarded as an unknown

disturbance to a nominal model. Then, robust control techniques are employed

to handle this disturbance.

For tracking applications where the desired trajectory is normally known,

MPC has been shown to be a good candidate [64]. Nevertheless, the main draw-

back of the MPC is how to tune the parameters to get the desired performance.

Conventionally, these parameters are found by solving a quadratic cost function

with weighted matrices to minimizes the future tracking error. The problem is

that the relationship between the weighted matrices and the stability criterion

is not straightforward which makes tuning of MPC become a challenging task

[26]. Furthermore, the conventional MPC itself is also sensitive to the modeling

error since the predictive tracking error is inaccurate if the mathematical model

is imperfect.

2.2 Contributions

This chapter presents a different approach to obtain the parameters of the MPC

for SISO system. Based on the block diagram of the conventional MPC, a closed-

loop transfer function is obtained. Then, pole-placement and adaptive techniques

are employed to directly find all the necessary parameters of the MPC without

using the quadratic cost function. Since this method utilizes the closed form

representation of the conventional MPC in control design, it is named pseudo

MPC. The experimental results show that the proposed method can achieve bet-

ter tracking performance than its conventional counterpart. In advanced, the

control system is also robust against the external load disturbance and the tun-

ning procedure is simplified.
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2.3 System Description

2.3 System Description

In this section, the system hardware and formulation which are used throughout

this research are introduced.

2.3.1 System Hardware

A positioning system named PS1H80-030U which is composed of a moving table,

a piezoelectric actuator (PEA) and a built-in displacement sensor is used in ex-

periment. The travel range of this positioning system is 30µm and the resolution

of the sensor is 2nm. The sensor’s output is connected to a signal conditioning

device named SAB101, which converts 0µm ∼ 100µm displacement to 0V∼ 10V

voltage signal. The PEA is supplied by PH301 power amplifier, which has able to

provide a wide voltage range from 0V to 150V with 6kHz bandwidth. All above

devices are produced by Nano Control Co, Ltd. An analog interface board named

AIO-163202F-PE is employed to collect the data from the displacement sensor

and control the power amplifier. This board is equipped with 32 analog inputs

(AIs) and 2 analog outputs (AOs) with 16bits resolution and 500kHz sampling

rate. The control algorithm is implemented on a personal computer (PC) by C

language. The sampling time Ts of the controller is 0.5ms. The block diagram of

the control system is shown in Fig. 2.1. The image of the experimental devices

can be seen in Fig. 2.2.

Figure 2.1: Block diagram of experimental system

21



2. TRACKING CONTROL OF PIEZO-ACTUATED POSITIONING
SYSTEMS BASED ON PSEUDO MODEL PREDICTIVE CONTROL

Figure 2.2: Experimental devices

2.3.2 Modeling and Identification

Consider the following uncertain SISO dynamical system as the nominal model

of the above piezo-actuated positioning system

yk+1 =−
n∑
i=1

aiyk−i+1 +
m∑
j=1

bjuk−j+1 + pk (2.1)

in which, uk is control voltage, yk is output displacement, ai and bj are known

parameters of the plant and pk is the disturbance including unknown modeling

errors and nonlinearities, n and m are two positive integers satisfying m ≤ n.

By inspecting the collected open-loop input/output data as depicted in Fig.

2.3, int can be seen that the static gain of the positioning system is amplitude

dependent. Besides, a small overshoot also occurs in transient-state which means

the order n of (2.1) must satisfy n ≥ 2 to be able to represent the behavior of

the positioning system. In this work, to show the effectiveness of the proposed

controller designed in the next sections, a second order system is chosen. The

remaining nonlinearities are treated as the lump disturbance pk. To find the

parameters of the nominal model, a square voltage with random amplitude from

0-5V is applied to the PEA first. Then, the output displacement is measured

with 2kHz sampling rate. On the basis of this input/output data, the parameters
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Figure 2.3: Open-loop input-output experimental data

are identified by least square technique. It would be noted that the identification

result is governed by the type of excitation signal. Besides, it is impossible to

get a precise model which fits the real system perfectly in practice, especially

for piezo-actuated positioning systems. A good controller should be capable of

handling all the modeling error and uncertainties.

For this specific system, the identification result is shown in Fig. 2.4 and the

plant can be described by (2.2).

yk+1 = −0.1993yk − 0.3411yk−1 + 0.4283uk + 0.2873uk−1 + pk (2.2)

2.3.3 Related Definitions

The tracking error at time instance k is defined as

ek = yd,k − yk (2.3)

in which yd,k is the desired output at time instance k.
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Figure 2.4: Systems identification by random step input

The one step ahead tracking error is then derived from (2.1) and (2.3) as

ek+1 = yd,k+1 − yk+1

= yd,k+1 +
n∑
i=1

aiyk−i+1 −
m∑
j=1

bjuk−j+1 − pk (2.4)

In (2.4), the disturbance pk is unknown. Hence, the one step delayed technique is

employed to estimate this unknown term. This technique is based on the following

assumptions:

Assumption 2.1: The disturbance pk is bounded and the sampling time Ts is

sufficient small such that the difference in two consecutive sampling instance is

also bounded, i.e,

pk − pk−1 = O(Ts) (2.5)

pk − 2pk−1 + pk−2 = O(T 2
s ) (2.6)

which means there alway exists constant A and B such that

|pk − pk−1| ≤ ATs (2.7)

|pk − 2pk−1 + pk−2| ≤ BT 2
s (2.8)
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2.3 System Description

∀ k > 0. These above mentioned assumptions are based on the Taylor expansion

and can be explained as following.

For a very small constant Ts we have

p(t− Ts) = p(t)− dp(t)

dt
Ts +

∞∑
i=2

(−1)i
d(i)p(t)

dti
T is
i!

(2.9)

Then it can be derived from (2.9) that

p(t)− p(t− Ts) =
dp(t)

dt
Ts −

∞∑
i=2

(−1)i
d(i)p(t)

dti
T is
i!

≈ dp(t)

dt
Ts +O(T 2

s ) (2.10)

Assume that the signal p(t) is smooth and its differential is bounded, then there

exists a constant A such that

|p(t)− p(t− Ts)| ≤ ATs +O(T 2
s ) (2.11)

which means

p(t)− p(t− Ts) = O(Ts) (2.12)

and (2.5) holds.

Now, ignore the small term O(T 2
s ) and differentiate both sides of (2.10), it

gives
dp(t)

dt
− dp(t− Ts)

dt
≈ d2p(t)

dt2
Ts (2.13)

By using (2.10) on the left side of (2.13), it results in

p(t)− 2p(t− Ts) + p(t− 2Ts) ≈
d2p(t)

dt2
T 2
s (2.14)

Again, assume that the second order differential of p(t) is bounded by a constant

B, then it leads to

|p(t)− 2p(t− Ts) + p(t− 2Ts)| ≤ BT 2
s (2.15)

which means (2.8) holds.
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The estimation p̂k of the disturbance pk can be computed based on (2.1) as

p̂k = 2pk−1 − pk−2 (2.16)

in which

pk−1 = yk +
n∑
i=1

aiyk−i −
m∑
j=1

bjuk−j (2.17)

Hence, the disturbance estimation error p̃k is

p̃k = pk − p̂k
= pk − 2pk−1 + pk−2 = O(T 2

s ) (2.18)

Finally, the one step ahead tracking error (2.4) can be expressed by

ek+1 = yd,k+1 +
n∑
i=1

aiyk−i+1 −
m∑
j=1

bjuk−j+1 − p̂k − p̃k (2.19)

2.4 Problem Statement

2.4.1 MPC Based on Non-Minimal State Space (NMSS)

Model

Considering the following discrete-time SISO dynamical system as the nominal

model of a piezo-actuated stage

yk =−
n∑
i=1

aiyk−i +
m∑
j=1

bjuk−j (2.20)

where yk and uk are output displacement and input voltage at time instance k,

m ≤ n are two integers stand for the order of the plant. System (2.20) can also

be represented by the following transfer function

Wp =
B(z−1)

A(z−1)
(2.21)

in which z−1 is the backward shift operator; A(z−1) and B(z−1) are relatively

prime polynomials of degree n and m, respectively.

B(z−1) =b1z
−1 + b2z

−2 + ...+ bmz
−m (2.22)

A(z−1) =1 + a1z
−1 + a2z

−2 + ...+ anz
−n (2.23)
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2.4 Problem Statement

To conduct the MPC design for discrete-time SISO system, an extended non-

minimal state space (NMSS) model [79] is employed as follows:

x(k) = Ax(k − 1) + bu(k − 1) + dyd(k)

y(k) = cx(k)
(2.24)

with,

x(k) =
[
yk · · · yk−n+1 uk−1 · · · uk−m+1 δk

]T
(2.25)

A(n+m)×(n+m) =



−a1 · · · −an−1 −an b2 · · · bm−1 bm 0
1 · · · 0 0 0 · · · 0 0 0
...

. . .
...

...
...

. . .
...

...
...

0 · · · 1 0 0 · · · 0 0 0
0 · · · 0 0 0 · · · 0 0 0
0 · · · 0 0 1 · · · 0 0 0
...

. . .
...

...
...

. . .
...

...
...

0 · · · 0 0 0 · · · 1 0 0
a1 · · · an−1 an −b2 · · · −bm−1 −bm 1


(2.26)

b(n+m)×1 =
[
b1 0 · · · 0 1 0 · · · 0 −b1

]T
(2.27)

d(n+m)×1 =
[
0 · · · 0 1

]T
(2.28)

c1×(n+m) =
[
1 0 · · · 0

]
(2.29)

δk = δk−1 + yd,k − yk (2.30)

In (2.30), δk is an additional integral of output error state variable and yd,k is the

desired output at time instance k.

Based on (2.24), the predictive state vector in next Np sampling cycles is

XF = Fx(k) + HUF + GYdF (2.31)
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where,

UF =
[
uk uk+1 · · · uk+Np−1

]T
(2.32)

YdF =
[
yd,k+1 yd,k+2 · · · yd,k+Np

]T
(2.33)

XF =
[
xT (k + 1) xT (k + 2) · · · xT (k +Np)

]T
(2.34)

F =

 A
...

ANp

 (2.35)

H =


b 0(n+m)×1 · · · 0(n+m)×1

Ab b · · · 0(n+m)×1
...

...
. . .

...
ANp−1b ANp−2b · · · b

 (2.36)

G =


d 0(n+m)×1 · · · 0(n+m)×1

Ad d · · · 0(n+m)×1
...

...
. . .

...
ANp−1d ANp−2d · · · d

 (2.37)

In conventional MPC, the optimal control sequences is obtained by minimizing

the following quadratic cost function:

J = UT
F λuUF +XT

F λxXF (2.38)

where λx and λu are two positive definite weighted matrices of dimensions (n +

m)Np×(n+m)Np and Np×Np, respectively. Without constraints, by substituting

(2.31) into (2.38) and differentiating J with respect to UF , the solution for (2.38)

is

UF = −Qx(k)−RYdF (2.39)

with,

Q = (λu + HTλxH)−1HTλxF (2.40)

R = (λu + HTλxH)−1HTλxG (2.41)

In (2.39), only the first element of UF is used as actual control signal while the

others are ignored. This process is repeated in every consequent sampling cycles.
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2.4 Problem Statement

2.4.2 Properties of MPC based on NMSS and Integral of

Error State Variable

Let Qr1 = [q1 · · · qn+m] and Rr1 = [r1 · · · rNp] be the first row of matrix Q and

R, respectively. The control signal of the MPC at each sampling cycle can be

written in detail as

uk = −
Np∑
i=1

riyd,k+i −
n∑
i=1

qiyk−i+1 −
m−1∑
i=1

qn+iuk−i − qn+mδk (2.42)

By using backward shift operator, (2.42) can also be represented in polynormial

form as

L(z−1)uk = −S(z−1)yk −R(z−1)yd,k+Np +KIδk (2.43)

in which

S(z−1) = q1 + q2z
−1 + · · ·+ qnz

−n+1 (2.44)

R(z−1) = rNp + rNp−1z
−1 + · · ·+ r1z

−Np+1 (2.45)

L(z−1) = l0 + l1z
−1 + · · ·+ lm−1z

−m+1 (2.46)

and l0 = 1, li = qn+i, KI = −qn+m.

The extended variable δk described by (2.30) can also be transformed into

polynomial form as

δk =
yd,k − yk
1− z−1

(2.47)

Now, substitute (2.47) into (2.43), it yields

uk =
1

L(z−1)
{ KI

1− z−1
(yd,k − yk)− S(z−1)yk −R(z−1)yd,k+Np} (2.48)

From (2.48), the block diagram of the MPC-based NMSS is reconstructed as in

Fig. 2.5. Based on this block diagram, the transfer functions from the reference

input to output (Wc), from the input disturbance to the output (Wpin) and from

the output disturbance to the output (Wpout) can easily be obtained.
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Figure 2.5: Block diagram of MPC based NMSS

Wc =
yk
yd,k

=
KIB(z−1)− (1− z−1)zNpR(z−1)B(z−1)

KIB(z−1) + (1− z−1) [S(z−1)B(z−1) + L(z−1)A(z−1)]
(2.49)

Wpin =
yk
pin,k

=
(1− z−1)L(z−1)B(z−1)

KIB(z−1) + (1− z−1) [S(z−1)B(z−1) + L(z−1)A(z−1)]
(2.50)

Wpout =
yk
pout,k

=
(1− z−1)L(z−1)A(z−1)

KIB(z−1) + (1− z−1) [S(z−1)B(z−1) + L(z−1)A(z−1)]
(2.51)

The characteristic equation of (2.49), (2.50) and (2.51) is

KIB(z−1) + (1− z−1)
[
S(z−1)B(z−1) + L(z−1)A(z−1)

]
(2.52)

If all the roots of (2.52) are inside the unit circle, the closed-loop system is stable

following that

lim
z→1

Wc = 1 (2.53)

lim
z→1

Wpin = 0 (2.54)

lim
z→1

Wpout = 0 (2.55)

From (2.53),(2.54) and (2.55), it can be concluded that the output of the closed

loop system will track any constant reference and reject other constant input and

output disturbances.

Remark 2.1 : In order to get the desired performance, the parameters of the

controller including the predictive horizon Np, the weighted matrices λx and λu

must be tuned. It can be observed from (2.39) that the first row of Q decides the

position of the closed loop poles and the first row of R decides the contribution
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of the feedforward loop to the system performance. However, the relationship

between Q, R and the two weighted matrices λx and λu described by (2.40),

(2.41) are not straightforward.

2.5 Pseudo MPC Design

In this section, a simple and effective method is proposed to obtain the param-

eter of the MPC directly without complicated tuning procedure related to the

weighted matrices. The first row of Q is computed by pole-placement method

such that the stability of the closed loop system is guaranteed. Then, the first row

of R is automatically computed on-line by recursive least square (RLS) technique

to minimize the predictive tracking error. The details of the control design is as

following.

2.5.1 Pole Placement Design

From (2.52), the characteristic polynomial of the closed loop system can be rewrit-

ten as

KIB(z−1) +B1(z−1)S(z−1) + A1(z−1)L(z−1) (2.56)

in which,

B1(z−1) =(1− z−1)B(z−1) = b0 +
m∑
i=1

b̃iz
−i − bmz−m−1 (2.57)

A1(z−1) =(1− z−1)A(z−1) = a0 +
n∑
i=1

ãiz
−i − anz−n−1 (2.58)

with,

ãi = ai − ai−1 (2.59)

b̃i = bi − bi−1 (2.60)

Denote Dref (z
−1) as the designed characteristic polynomial

Dref (z
−1) = 1 + d1z

−1 + · · ·+ dn+mz
−(n+m) (2.61)

31



2. TRACKING CONTROL OF PIEZO-ACTUATED POSITIONING
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The unknown parameters of (2.56) can be found by equating both sides of the

following equation

KIB(z−1) +B1(z−1)S(z−1) + A1(z−1)L(z−1) = Dref (z−1) (2.62)

The explicit solution of (2.62) can be obtained by solving the following algebraic

equation

Mcpc = dc (2.63)

with,

p(n+m+1)
c =

[
l0 · · · lm−1 q1 · · · qn KI

]T
(2.64)

d(n+m+1)
c =

[
1 d1 · · · dn+m+1

]T
(2.65)

M(n+m+1)×(n+m+1)
c =



a0 0 · · · 0 b0 0 · · · 0 b0

a
′
1

. . . . . .
... b

′
1

. . . . . .
... b1

...
. . . 0

...
. . . 0

...
... a0

... b0
...

a
′
n

... b
′
m

... bm

−an
. . .

... −bm
. . .

... 0

0
. . . . . .

... 0
. . . . . .

...
...

...
. . . . . . a

′
n

...
. . . . . . b

′
m

...
0 · · · 0 −an 0 · · · 0 −bm 0



(2.66)

Theorem 2.1 : Given the closed-loop characteristic polynomial described by

(2.56), arbitrary closed-loop pole-placement can only be achieved if [17]:

(i). A(z−1) and B(z−1) are co-prime.

(ii).
m∑
i=0

bi 6= 0.

Remark 2.2 : It can be seen from Theorem 2.1 that the first condition means

there is no pole-zero cancellation in the transfer function of the controlled plant

(2.21). The second condition guarantees that the static gain of the plant differs

from zero.
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2.5.2 Adaptive Minimum Tracking Error Design

2.5.2.1 Without External Disturbance

The control design is based on the following assumptions:

Assumption 1 : The desired output and its difference between two consecutive

sampling cycles are bounded.

Assumption 2 : After pole-placement design, all the poles of the closed-loop

system (2.49) are inside the unit disk which means the closed-loop system is

bounded-input bounded-output (BIBO) stable.

Then, the closed-loop transfer function (2.49) can be rewritten as

Wc =
yk
yd,k

=
[KI − (1− z−1)zNpR(z−1)]B(z−1)

1 + d1z−1 + · · ·+ dn+mz−(n+m)
(2.67)

From (2.67) and note that

yd,k(1− z−1) = yd,k − yd,k−1 = ỹd,k (2.68)

it yields

yk+1 = −
n+m∑
i=1

diyk−i+1 +KI

m∑
i=1

biyd,k−i+1

+

Np∑
i=1

(
m∑
j=1

ỹd,k+1+i−jbj

)
ri (2.69)

By defining

Γk =−
n+m∑
i=1

diyk−i+1 +KI

m∑
i=1

biyd,k−i+1 (2.70)

ε̃d,k+i =
m∑
j=1

ỹd,k+1+i−jbj (2.71)

equation (2.69) can be rewritten as

yk+1 = Γk + ΦT
k θ0 (2.72)
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with,

ΦT
k =

[
ε̃d,k+1 ε̃d,k+2 · · · ε̃d,k+Np

]
(2.73)

θ0 =
[
r1 r2 · · · rNp

]T
(2.74)

In order to force the tracking error to zero, the control signal uk must satisfy

yd,k+1 = Γk + ΦT
k θ0 (2.75)

Since θ0 is unknown, a sequence of estimated parameter θ̂k is used instead. Then,

(2.75) is replaced by

yd,k+1 = Γk + ΦT
k θ̂k (2.76)

Because the relation (2.76) is linear, θ̂k can be obtained by minimizing the fol-

lowing quadratic cost function using the recursive least square (RLS) method

JN(θ) =
1

2

N∑
k=1

(yk − Γk−1 − ΦT
k−1θ)

2

+
1

2

(
θ − θ̂0

)T
P−1

0

(
θ − θ̂0

)
(2.77)

where the first term of (2.77) actually represents the sum of squares of the tracking

error ek and the second term is included to account for the initial condition. The

square diagonal matrix P0 is considered as a measure of confidence in the initial

estimate θ̂0.

Without constraint, the solution for the optimization problem (2.77) can be

obtained recursively as follows [? ]

θ̂k = θ̂k−1

+
Pk−1Φk−1

1 + ΦT
k−1Pk−1Φk−1

(
yk − Γk−1 − ΦT

k−1θ̂k−1

)
(2.78)

Pk = Pk−1 −
Pk−1Φk−1ΦT

k−1Pk−2

1 + ΦT
k−1Pk−1Φk−1

(2.79)

in which θ̂k represents the estimation of θ; Pk is a projection matrix with the

initial value P0 = λI where I is an unity matrix and λ is a positive constant

representing the convergence speed of the algorithm.
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Based on (2.78) and (2.42), the final control action is

uk = −
Np∑
i=1

r̂i,kyd,k+i −
n∑
i=1

qiyk−i+1 −
m−1∑
i=1

liuk−i +KIσk (2.80)

2.5.2.2 Properties of the Update Laws

The update laws (2.78) and (2.79) result in the following properties [? ]

(i)||θ̂k − θ0||2 ≤ κ1||θ̂0 − θ0||2 (2.81)

where κ1 is the condition number of P−1
0 and defined by

κ1 =
λmax(P

−1
0 )

λmin(P−1
0 )

(2.82)

in which λmax and λmin are the maximum and minimum eigenvalue of P−1
0 .

(ii) lim
N→∞

N∑
k=1

e2
k

1 + ΦT
k−1Pk−1Φk−1

<∞ (2.83)

which implies

(a) lim
k→∞

ek(
1 + λmaxΦT

k−1Φk−1

) 1
2

= 0 (2.84)

(b) lim
N→∞

N∑
k=1

ΦT
k−1Pk−1Φk−1e

2
k(

1 + ΦT
k−1Pk−1Φk−1

)2 <∞ (2.85)

(c) lim
N→∞

N∑
k=1

||θ̂k − θ̂k−1||2 <∞ (2.86)

(d) lim
N→∞

N∑
k=n

||θ̂k − θ̂k−i||2 <∞ (2.87)

(e) lim
k→∞
||θ̂k − θ̂k−i|| = 0 (2.88)

where i is a finite positive integer.

On the basis of Assumption 1, (2.71) and (2.73), it can be realized that ΦT
kΦk

is bounded which means the denominator of (2.84) is also bounded. As a result,

it yields

lim
k→∞

ek = 0 (2.89)
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It also follows from (2.83) that the square of the tracking error is summable.

Besides, (2.88) shows that the estimated parameter converges to minimize the

tracking error as k →∞.

2.5.2.3 Under External Disturbance

In practice, the system may be affected by a bounded external disturbance ∆Γ.

In that case, the predictive output is

yk+1 = Γk + ΦT
k θ0 + ∆Γk (2.90)

As a result, the update law (2.78) is rewritten as

θ̂k = θ̂k−1

+
Pk−1Φk−1

1 + ΦT
k−1Pk−1Φk−1

(
yk − Γk−1 − ΦT

k−1θ̂k−1 −∆Γk−1

)
(2.91)

Although the external disturbance ∆Γk−1 in (2.91) is unknown, it would be noted

that

yd,k = Γk−1 + ∆Γk−1 + ΦT
k−1θ̂k−1 (2.92)

which means

yk − Γk−1 −∆Γk−1 − ΦT
k−1θ̂k−1 = yk − yd,k = −ek (2.93)

Hence, the update law (2.91) is revised as follows

θ̂k = θ̂k−1 +
Pk−1Φk−1

1 + ΦT
k−1Pk−1Φk−1

(−ek) (2.94)

2.6 Experiment Results

In this section, the validity of the proposed method is confirmed by experiments

on the positioning system (2.2). To show the advantages of the proposed method

over the conventional MPC, comparative experiments are also conducted and

discussed. The parameters of the proposed controller are provided in Table 2.1.
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Table 2.1: Parameters of the pseudo model predictive controller

Symbol Quantity Value

pi Desired closed-loop poles 0.1

θ̂0 Initial value of R(z−1) 0.1

λ Adaptive gain 10

Ts Sampling time 0.5ms
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Figure 2.6: The comparative step responses of the closed-loop systems

2.6.1 Transient Response of the Control System

In order to evaluate the transient response, a step desired output which value

changes from 0µm to 5µm suddenly is employed. The experiment results getting

from the conventional MPC and the proposed one are shown in Fig. 2.6. In both

cases, the real outputs quickly reach the desired one in just 0.004ms corresponding

to 8 sampling cycles. The maximum tracking error (MAXTE) and the root mean
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square tracking error (RMSTE) in steady-state are extremely small, i.e, 0.01µm

and 0.0035µm, respectively. These error are corresponding to 0.2% and 0.07% of

the desired one, almost same as noise level. The RMSTE is computed by

RMSTE =

√√√√√ N∑
k=kss

e2
k

N − kss
(2.95)

in which N is the total number of sampled data and the system is in steady-state

after kss steps.
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Figure 2.7: The control signal and parameters convergence of the proposed MPC

with step input

The control signals and the parameters convergence of the proposed method

are provided in Fig. 2.7. Since the desired output is constant, all the elements

of vector Φk described by (2.73) are zeros. Hences, the parameters of polyno-

mial R(z−1) are not changed and have no influence on the control system. The

performance in this case is decided by the position of the desired closed-loop

poles.

The computation time of the proposed control method and the conventional

one are also compared and shown in Fig. 2.8. Due to the update law which
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Figure 2.8: The comparative computation times of the MPC algorithms

requires matrix multiplications, the computation time of the proposed method

is larger than its conventional counterpart. In return, the quality of control in

tracking mode is significantly improved as will be shown in the next subsection.

2.6.2 Tracking performance

To evaluate the tracking performance, various complicated desired outputs such

as mixed amplitude-frequency, time-varying amplitude-frequency and sawtooth

are employed. The experimental results getting from both methods are shown in

Fig. 2.9 → Fig. 2.14. As can be observed, the tracking error of the proposed

method always smaller then the conventional MPC because the parameters of

the feedforward polynomial R(z−1) are automatically updated to minimized the

tracking error. The experiment results also show that these parameters also

converge in finite time.
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Figure 2.9: Comparative tracking performances of the MPC with mixed

amplitude-frequency desired output
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Figure 2.10: The parameters convergence of the proposed MPC with mixed

amplitude-frequency desired output
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Figure 2.11: Comparative tracking performance of the MPC with time-varying

amplitude frequency desired output
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Figure 2.12: The parameters convergence of the proposed MPC with time-varying

amplitude frequency desired output
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Figure 2.13: Comparative tracking performance of the MPC with sawtooth de-
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Figure 2.14: The parameters convergence of the proposed MPC with sawtooth
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2.7 Conclusion

2.6.3 Robustness of the control system

To show the robustness of the proposed controller, an external force is used to

impact the positioning system. The experimental results for constant desired out-

put and sinusoidal desired output under external disturbance are shown in Fig.

2.15 and Fig. 2.16, respectively. It can be observed that the control voltage is au-

tomatically changed to compensate the external disturbance. And by inspecting

the tracking error, it can be said that the influence of the external disturbance is

completely removed since there are no sudden changes in the position error.
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Figure 2.15: System response with constant desired output and external distur-

bance

2.7 Conclusion

In this chapter, the design of the pseudo MPC for SISO plants is presented. The

parameters concerned with the control action of the conventional MPC are ob-

tained directly by using pole-placement and adaptive techniques without compli-

cated tuning procedure involving the weighted matrices. This proposed method
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Figure 2.16: System response with sinusoidal desired output and external distur-

bance

is capable of minimizing the tracking error and robust against the external dis-

turbance. The effectiveness of the proposed method is confirmed by various ex-

periments on the piezo-actuated positioning system in which complicated desired

outputs are employed. Although the computation time is increased, the tracking

performance of the proposed method is significantly improved in comparison with

its conventional counterpart. The experiment results also prove that the control

system is immune against the influence of the external disturbances.
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Chapter 3

Integer Order Sliding Mode

Control Design

3.1 Introduction

The sliding mode control (SMC) is well known as one of the most famous robust

control technique due to its insensitivity to matched uncertainties [90]. The

main idea of the SMC is to force the system state trajectory to approach a

specified manifold by a nonlinear switching control signal (reaching phase) and

to keep it on the manifold afterward by an equivalent control signal (sliding

phase) [91]. Due to its simplicity and robustness, SMC has been used for a vast

of applications such as motor control [18, 55, 77, 78, 83], positioning and motion

control [13, 65, 85], power electronic converters [19, 66], robotic [10, 20, 33], etc.

At first, most results are achieved in continuous time domain [32, 74]. Then, due

to the explosive development of digital-based control devices, which is flexible and

capable of implementing complex control algorithm at high speed, the studying

on discrete-time sliding mode control (DSMC) has attracted a great attention.

In general, the design of SMC can be accomplished by either assuming a

certain control algorithm and show that this algorithm guarantees the stability of

the sliding motion on the hyper surface, or applying the reaching law approach, in

which the evolution of the sliding variable is designed first and the control action
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3. INTEGER ORDER SLIDING MODE CONTROL DESIGN

is then determined. In the former approach, the sliding variable can be driven to

the O(T 2
s ) boundary layer in just one step [70]. However, such rapid action may

require a large control effort if the initial state is far from the sliding manifold.

Hence, a discrete-time integral sliding mode control (DISMC) scheme is proposed

in [2] to prevent the overlarge control action and to improve the tracking accuracy.

The latter approach is however preferred in the literature due to its systematic

design procedure. Besides, the two major concerns of the DSMC including the

dynamic in reaching phase and chattering can be considered in the reaching law.

This approach was first introduced by Gao in [25]. In that article, the quasi-

sliding mode (QSM) motion and quasi-sliding mode band (QSMB) are strictly

defined. The obtained control action is composed of a discrete-time equivalent

control signal, which maintains the sliding variables on the sliding manifold, and a

switching control action which drives the sliding variable to the sliding manifold as

well as enhance the robustness of the system. Then, the idea has been extensively

used in many other researches [6, 7, 11, 12, 22, 50, 58]. To reduce the chattering

in DSMC, the disturbance is estimated by the one step delayed technique with

assumption that the sampling frequency is sufficient high. Consequently, the

amplitude of the switching control action is small since it only has to deal with the

remaining disturbance estimation error. However, the small switching gain may

result in long reaching time. To achieve both low chattering and to accelerate the

reaching speed, different techniques are considered. For example, an exponential

reaching law is proposed in [50] in which the switching gain is an exponential

function of the sliding variable, or fuzzy technique can also be used to smoothly

change the switching gain according to the value of the sliding variable as in [30].

Recently, the DSMC has also been succesfully exploited in tracking control

of pieazo-actuated positioning systems [83, 85, 87, 88] due to the fact that the

fast dynamic of the piezoelectric actuators suit well the deadbeat response of the

closed-loop systems based DSMC.

This chapter focuses on DSMC design for the pieazo-actuated positioning

system. The conventional DSMC and DISMC are first investigated in Section

3.2 and 3.3. Then, the proposed strategy which combines DSMC with prescribed
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performance control (PPC) is introduced in Section 3.4. At the end of this chapter

is the conclusions.

3.2 Contributions

In this chapter, a novel prescribed performance DSMC in which a nonlinear sliding

variable based on a prescribed performance function (PPF) is proposed. Theo-

retical analysis shows that the DSMC based on the proposed sliding variable is

capable of maintaining the tracking error inside a predefined convergence zone

formed by the PPF under certain initial conditions. Furthermore, the transient

response of the closed-loop system can easily be adjusted to avoid the overshoot

without affecting the steady-state performance. The effectiveness of the proposed

method is confirmed by experimental results on a piezo-actuated positioning sys-

tem.

3.3 DSMC Design

3.3.1 Control Design

In this section, the robust DSMC design for tracking control of system (2.1) is

presented.

Define the first-order sliding variable Sk as

Sk = ek − λek−1 (3.1)

where 0 < λ < 1 is a desired parameter which decides the convergent rate of ek

as Sk = 0.

The one-step forward value of the sliding variable is

Sk+1 = ek+1 − λek (3.2)
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By substituting (2.19) into (3.2), it gives

Sk+1 = −λek + yd,k+1 +
n∑
i=1

aiyk−i+1 −
m∑
j=1

bjuk−j+1 − p̂k − p̃k (3.3)

The equivalent control action ueq which maintains the sliding variable Sk on the

sliding manifold is computed by solving the following equation

Sk+1 = 0 (3.4)

The solution of (3.4) can only be obtained as the unknown term p̃k is ignored.

Then, it results in

ueqk =
1

b1

[
−λek + yd,k+1 +

n∑
i=1

aiyk−i+1 −
m∑
j=2

bjuk−j+1 − p̂k

]
(3.5)

Assume that the remaining disturbance estimation error p̃k satisfies

|p̃k| ≤ ε (3.6)

Then, the robustness of the system against the remaining disturbance estimation

error p̃k can be improved by introducing an additional switching control action

uswk

uswk =
1

b1

Kswsign(Sk) (3.7)

where Ksw is the switching gain satisfying

Ksw = γ + ε (3.8)

in which γ is a small positive number, and

sign(Sk) =


1 for Sk > 0
0 for Sk = 0
−1 for Sk < 0

(3.9)

Then, the final control action is

uk = ueqk + uswk

=
1

b1

[
−λek + yd,k+1 +

n∑
i=1

aiyk−i+1 −
m∑
j=2

bjuk−j+1 − p̂k +Kswsign(Sk)

]
(3.10)
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Theorem 3.1 : Given a nominal system described by (2.1) with the sliding

function (3.1). If the control signal (3.10) is employed, then the sliding variable

Sk will reach a bounded QSMB described by (3.11) in one step and stays within

this band afterward. The ultimate bound of the tracking error in steady-state is

described by (3.12).

QSMB = {e : |S(e)| < 2ε+ γ} (3.11)

sup
k

(|ek|) =
2ε+ γ

1− λ
(3.12)

Proof of Theorem 3.1 : Substitute (3.10) into (3.3), a fundamental operation

gives

Sk+1 = −p̃k −Kswsign(Sk) (3.13)

If Sk ≥ 0, it is derived from (3.13) that

Sk+1 = −p̃k −Ksw (3.14)

In view of (3.8) and (3.14), it yields

−(2ε+ γ) < Sk+1 < −γ (3.15)

If Sk < 0 and in view of (3.8), it gives

Sk+1 = −p̃k +Ksw (3.16)

Again, from (3.8) and (3.16), it yields

γ < Sk+1 < (2ε+ γ) (3.17)

From (3.15) and (3.17), it can be concluded that

|Sk+1| < (2ε+ γ) (3.18)

Relation (3.18) also means that once the control signal (3.10) is employed, the

sliding variable will approach and cross the switching plane in every successive

sampling cycle. The size of the quasi-sliding mode band in this case is non

increasing and specified by (3.11).
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To obtain the ultimate bound of the tracking error ek, substitute (3.10) into

(2.19) and in view of (3.13), then a fundamental operation gives

ek+1 = λek + Sk+1 (3.19)

The solution of (3.19) is

ek = λke0 +
k−1∑
i=0

λiSk−i (3.20)

in which e0 is the initial error. From (3.18), it can be deduced that

|ek| ≤ λke0 + (2ε+ γ)
k−1∑
i=0

λi = λke0 + (2ε+ γ)
λk − 1

λ− 1
(3.21)

Since 0 < λ < 1, it yields

sup
k

(|ek|) =
2ε+ γ

1− λ
(3.22)

This ends the proof.

3.3.2 Experimental Results

To confirm the validity of the DSMC design, various experiments on the piezo-

actuated positioning system described in section 3.2 are conducted.

The step responses of the DSMC design are shown in Fig. 3.1 and Fig.3.2. It

can be observed that the settling time increases as λ increases, as analyzed in the

control design section. The sliding variable Sk also quickly moves to the sliding

surface and maintains there afterward. The tracking error in steady-state in these

cases are extremely small, i.e, RMSTE = 0.0039µm, and does not affected by

the coefficient λ.

For sinusoidal desired output, the steady-state error is affected by the coef-

ficient λ. As seen in Fig. 3.4 and Fig. 3.5, the tracking error is increased as λ

increases. Hence, a negotiation between the transient and steady-state perfor-

mance should be considered when selecting λ.
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Figure 3.1: Step responses of DSMC
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Figure 3.2: Control signal and sliding variable of DSMC with step desired output

The tracking performance of the DSMC design is also test with other com-

plicated desired outputs such as multiple frequency, time-varying amplitude and

frequency and sawtooth as seen in Fig. 3.6, Fig. 3.7 and Fig. 3.8, respectively. In
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Figure 3.3: The computation time of DSMC algorithm
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Figure 3.4: Tracking performance of DSMC with sinusoidal desired output

every cases, the RMSTE is less than 0.1µm corresponding to 1% of the maximum

set-point.
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Figure 3.5: Control signal of DSMC with sinusoidal desired output
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Figure 3.6: DSMC with multiple frequency desired output
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Figure 3.7: DSMC with time-varying amplitude and frequency desired output
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Figure 3.8: DSMC with sawtooth desired output

3.4 DISMC Design

In this section, a free chattering DISMC design which is based on Assumption

2.1 is introduced.
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3.4.1 Control Design

Consider the following sliding variable

Sk = ek + εk (3.23)

εk = εk−1 +KITsek (3.24)

in which εk is the integral of the tracking error and KI is the integral gain.

The one step ahead value of Sk is

Sk+1 = ek+1 + εk+1 (3.25)

From (3.23) and (3.24), it can easily be deduced that

Sk+1 = Sk + (1 +KITs)ek+1 − ek (3.26)

Consider the following reaching law

Sk+1 − χSk = 0 (3.27)

where 0 < χ < 1 is a desired constant.

By substituting (2.4), (3.25) into (3.27) and neglecting the unknown term p̃k,

the solution of (3.27) is

uIk =
1

b1

[
yd,k+1 +

n∑
i=1

aiyk−i+1 −
m∑
j=2

bjuk−j+1 − p̂k

]
− [ek − (1− χ)Sk]

b1(1 +KITs)
(3.28)

Theorem 3.2 : Given a nominal system described by (2.1) with the sliding

variable (3.25). If the control signal (3.28) is used, then the ultimate bound of

the sliding variable and the tracking error in steady-state are described by (3.29)

and (3.30), respectively.

sup(|S|) = O(T 2
s ) (3.29)

sup(|e|) = O(Ts) (3.30)

Proof of Theorem 3.2 :
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Substitute the control action (3.28) into (3.25), a simple manipulation gives

Sk+1 = χSk − (1 +KITs)p̃k (3.31)

The solution of (3.31) is

Sk = χkS0 +
k−1∑
i=0

χi [−(1 +KITs)p̃i] (3.32)

Based on (2.18) and (2.8), it can be deduced that

Sk = χkS0 +
k−1∑
i=0

χi
[
O(T 2

s ) +KIO(T 3
s )
]

≈ χkS0 +
k−1∑
i=0

χiO(T 2
s ) (3.33)

which means there exists a constant A such that

|Sk| ≤ χkS0 + AT 2
s

k−1∑
i=0

χi (3.34)

Note that if 0 < χ < 1, then

k−1∑
i=0

χi =
χk − 1

χ− 1
(3.35)

following that,

|Sk| ≤ χkS0 + AT 2
s

(
χk−1
χ−1

)
, ∀k > 0 (3.36)

Since 0 < χ < 1, it can be deduced from (3.36) that

lim
k→∞
|Sk| =

AT 2
s

1− χ
= O(T 2

s ) (3.37)

As a result, (3.29) holds.

The ultimate bound of the tracking error ek is obtained similarly. Substitute

(3.28) into (2.19), it gives

ek+1 =
1

1 +KITs
ek −

[
(1− χ)

(1 +KITs)
Sk + p̃k

]
(3.38)
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Since Sk approaches O(T 2
s ) monotonically, for sufficient large k (3.38) can be

rewritten as

ek+1 =
1

1 +KITs
ek −

[
(1− χ)

(1 +KITs)
O(T 2

s ) +O(T 2
s )

]
=

1

1 +KITs
ek −O(T 2

s ) (3.39)

The solution of (3.39) is

ek =

(
1

1 +KITs

)k
e0 +O(T 2

s )
k−1∑
i=0

(
1

1 +KITs

)i
(3.40)

Based on (2.18) and (2.8), it can be deduced that

|ek| ≤
(

1

1 +KITs

)k
e0 + AT 2

s

k−1∑
i=0

(
1

1 +KITs

)i
(3.41)

Again, since
(

1
1+KITs

)
< 1, it yields

k−1∑
i=0

(
1

1 +KITs

)i
=

(
1

1+KITs

)k
− 1(

1
1+KITs

)
− 1

(3.42)

following that

|ek| ≤
(

1

1 +KITs

)k
e0 + AT 2

s

(
1

1+KITs

)k
− 1(

1
1+KITs

)
− 1

(3.43)

Finally,

lim
k→∞
|ek| =

AT 2
s

1− 1
1+KITs

= AT 2
s +

ATs
KI

= O(T 2
s ) +O(Ts) (3.44)

Hence, it can be concluded that in steady-state

lim
k→∞
|ek| ≈ O(Ts) (3.45)
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which means (3.30) holds. This ends the proof.

The stability of the closed-loop system can also be analyzed based on state-

space representation as following.

From (3.31) and (3.38), it gives[
ek+1

Sk+1

]
=

[
1

1+KITs
− 1−χ

1+KITs

0 χ

] [
ek
χk

]
+

[
O(T 2

s )
O(T 2

s )

]
(3.46)

It can easily seen from (3.46) that the system has two real poles: 1
1+KITs

and χ.

As long as KI > 0 and 0 < χ < 1, the system is stable.

3.4.2 Experimental Results

To verify the validity of the control method, various experiments are carried out

in this section.
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Figure 3.9: The step responses of the DISMC in with various integral gains

The influence of the integral gain KI on the response of the closed-loop system

is shown in Fig. 3.9 and Fig. 3.10 whilst the influence of the damping coefficient

χ is shown in Fig. 3.11 and Fig. 3.12. The desired output in this experiment is
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Figure 3.10: The control signal and sliding variable of the DISMC with various

integral gain
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Figure 3.11: The step responses of the DISMC in with various damping coeffi-

cients

yd = 5. The computation time of the DISMC is provided in Fig. 3.13. As can be
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Figure 3.12: The control signal and sliding variable of the DISMC with various

damping coefficients
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Figure 3.13: The computation time of the DISMC algorithm

observed, the response speed is proportional to the integral gain KI and inverse

proportional to the damping coefficient χ. However, to achieve quick response,

the overshoot is inevitable.
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Figure 3.14: The tracking performance of the DISMC with various integral gains
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Figure 3.15: The control signal and sliding variable of the DISMC with various

integral gains

To show the influence of the parameters on the tracking performance, sinu-

soidal yd = 4sin(2π10t− π
2
)+6 is adopted. By inspecting the experimental results
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Figure 3.16: The tracking performance of the DISMC with various damping

coefficients
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Figure 3.17: The control signal and sliding variable of the DISMC with various

damping coefficients

depicted in Fig. 3.14 to Fig. 3.17, it can be realized that if the parameters are
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chosen such that the step response is smooth with low overshoot, then the track-

ing error is large and vice versa. So, similar to the DSMC, a negotiation between

transient and steady-state performance should be taken into account when tuning

the parameters.
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Figure 3.18: Tracking performance of DISMC with multiple frequency desired

output

Finally, complicated desired outputs are employed to investigate performance

of the control system. The experimental results with yd = 0.5cos(2π5t)+2cos(2π15t)+

1.5sin(2π30t) + 8 and yd = (5− 5t)sin [2π(10 + 10t)− π/2] + 8 are shown in Fig.

3.18 and Fig. 3.19, respectively. The experiment results with sawtooth desired

output is shown in Fig. 3.20. The parameters are KI = 1000 and χ = 0.9 in

these experiments. Similar to the DSMC, the tracking error is proportional to

the tracking frequency. As long as the ratio between the sampling and the track-

ing frequency are larger than 100, the RMSTE is kept below 1%. This result is

acceptable in most practical application.
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Figure 3.19: Tracking performance of DISMC with time-varying amplitude and

frequency desired output
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Figure 3.20: Tracking performance of DISMC with sawtooth desired output
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3.5 Prescribed Performance DSMC

3.5.1 Introduction

Recently, a new technique named prescribed performance control (PPC) has been

proposed in the literature [8, 9, 44, 57, 61, 72, 80]. The main idea of the PPC is to

guarantee the convergence of the tracking error in an arbitrarily small predefined

zone/region. The merit of this technique is that both transient and steady-state

performance of the closed-loop system can be assured, i.e, the tracking error

converges to a predefined arbitrarily small zone with convergence rate no less

than a preassigned value and the maximum overshoot less than a desired constant.

This control problem is normally solved by transforming the constrained tracking

error into an unconstrained equivalent form. Then, the controller is designed

to stabilize the unconstrained transformed error. Until now, most researches on

PPC are conducted in continuous-time domain. Further analysis in this paper

also shows that the conventional PPC may produce offset error in steady-state if

the transient response is adjusted.

To handle the two above mentioned problems of the PPC, the design of PPC

for the discrete-time uncertain system (2.1) is presented in this section. First, the

convergence zone is modified such that the transient response of the closed-loop

system can be adjusted without producing the offset error in steady-state. Then,

a novel sliding variable based on a prescribed performance function (PPF) is pro-

posed. Theoretical analysis shows that the DSMC based on the proposed sliding

variable is capable of maintaining the tracking error inside the convergence zone

formed by the PPF under certain initial conditions. Since the PPC is designed

in discrete-time domain, the algorithm can easily be implemented by any digital

controllers without using numerical approximation. Particularly, the computa-

tion time of the control algorithm is also reduced since the traditional transformed

error which is based on a logarithm function is not employed in the control action.

The effectiveness of the proposed method is confirmed by experiments.
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3.5.2 Prescribed Performance Function

The performance function is used to describe a convergence zone where the control

algorithm must assure that once starting from a point inside the convergence zone,

the tracking error trajectory will remain in this zone afterward. In this section,

a positive decreasing discrete-time prescribed performance function (DPPF) is

chosen as

µk+1 = (1− κ)µk + κµ∞ (3.47)

with

0 < µ∞ < µ0

0 < κ < 1
(3.48)

This DPPF satisfies

lim
k→∞

µk = µ∞ (3.49)

with the initial value µ0 and convergence rate relating to κ are restricted by

(3.48).

3.5.3 Conventional Convergence Zone and Transformed

Error

By simply changing the continuous-time case in [57] to discrete time case, the

convergence zone can be formulated as follows,

−δµk < ek < δ̄µk (3.50)

where δ̄, δ represent the upper and lower bounds, respectively

To deal with the constrained control problem (3.50), the tracking error ek

is transformed into an unconstrained equivalent form by employing a strictly in-

creasing function Λ(ϑk) of a transformed error ϑk. The strictly increasing function

must satisfy the two following properties:

Property 1. −δ < Λ(ϑk) < δ̄, for arbitrary real number ϑk

Property 2. lim
ϑk→+∞

Λ(ϑk) = δ̄ and lim
ϑk→−∞

Λ(ϑk) = −δ
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From the two above properties, the constraint (3.50) is same as

ek = µkΛ(ϑk) (3.51)

Since Λ(ϑk) is strictly increasing, its inverse function always exists and described

by

ϑk = Λ−1[
ek
µk

] (3.52)

For control design purpose, a strictly increasing function is chosen as

Λ(ϑk) =
δ̄eϑk − δe−ϑk
eϑk + e−ϑk

(3.53)

The transformed error is then derived from (3.53) and results in

ϑk =
1

2
ln(

δµk + ek
δ̄µk − ek

) (3.54)

From (3.52), it can be deduced that for any initial tracking error e0, if parameters

µ0, δ, δ̄ are selected such that −δµ0 < e0 < δ̄µ0 and ϑk can be controlled to be

bounded, then −δ < Λ(ϑk) < δ̄ holds and (3.50) is guaranteed.

3.5.4 Modified Convergence Zone and Transformed Error

In view of (3.49) and (3.54), if the transformed error ϑk is well controlled, i.e.,

ϑk = 0, the tracking error at steady-state is

ess = lim
k→∞

µk(
δ̄ − δ

2
) = µ∞(

δ̄ − δ
2

) (3.55)

If δ̄ 6= δ, i.e., for transient response tuning, the offset error will exist in steady-

state. To overcome this problem, two dynamical functions δk and δ̄k are proposed:

δk+1 = (1− κ)δk + κ (3.56)

δ̄k+1 = (1− κ)δ̄k + κ (3.57)

These functions satisfy

lim
k→∞

δk = 1, δ0 ≥ 1 (3.58)

lim
k→∞

δ̄k = 1, δ̄0 ≥ 1 (3.59)
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where δ0 and δ̄0 are the initial values.

The modified convergence zone and the transformed error are now defined as

− δkµk + γ < ek < δ̄kµk − γ (3.60)

ϑk =
1

2
ln(

δkµk + ek
δ̄kµk − ek

) (3.61)

where 0 < γ � (δ̄0 + δ0)µ0 is a very small positive number.

The steady-state tracking error when ϑk is well controlled, i.e., ϑk → 0, be-

comes

ess = lim
k→∞

µk(
lim
k→∞

δ̄k − lim
k→∞

δk

2
) = 0 (3.62)

From (3.62), it can be seen that the initial upper bound δ̄0µ0 and lower bound

−δ0µ0 can be arbitrarily set to adjust the transient response without causing

offset error in steady-state. An illustrative example of the modified convergence

zone is shown in Fig. 3.21 with µ0 = 5, µ∞ = 1, κ = 0.05 and (a) δ0 = δ̄0 = 1;

(b) δ0 = 1, δ̄0 = 2; (c) δ0 = 2.5, δ̄0 = 1.
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Figure 3.21: An illustrative example of the modified convergence zone

3.5.5 Control Design

Consider the following 1st order sliding variable

Sk = τk − λτk−1 + λ− 1 (3.63)
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where 0 < λ < 1 is a design parameter, τk is a variable derived from the trans-

formed error ϑk and defined as

τk =
δkµk + ek
δ̄kµk − ek

(3.64)

By using τk instead of the conventional transformed error ϑk described in (3.61),

the computation time is reduced since the logarithm function is not employed.

For any real systems, the initial tracking error e0 is always bounded. Hence,

the initial parameters δ0, δ̄0 and µ0 which satisfy −δ0µ0 + γ < e0 < δ̄0µ0 − γ

always exist. Then, τ0, S0 are bounded at time step k = 0. By assuming that at

time instance k, the tracking error ek satisfies −δkµk + γ < ek < δ̄kµk − γ which

means τk is bounded, the control action uk which results in the fulfillment of the

PPC at time instance k + 1 can be obtained as following.

The one step-ahead value Sk+1 of the sliding variable Sk is

Sk+1 = τk+1 − λτk + λ− 1 (3.65)

From (3.64) and (3.65), it yields

Sk+1 =
δk+1µk+1 + ek+1

δ̄k+1µk+1 − ek+1

− λτk + λ− 1 (3.66)

where the one step-ahead tracking error ek+1 is computed by (2.19).

The equivalent control signal ueqk can be obtained by the following reaching

law:

Sk+1 = 0 (3.67)

Substitute (2.19) and (3.66) into (3.67), a fundamental operation gives

yd,k+1 +
n∑
i=1

aiyk−i+1 −
m∑
j=1

bjuk−j+1 − p̂k − p̃k −
δ̄k+1(λτk + 1− λ)− δk+1

λτk + 2− λ
µk+1 = 0

(3.68)

Since the disturbance estimation error p̃k is unknown in practice, the equivalent

control signal ueqk can only be obtained by solving (3.68) with the absence of p̃k.

Then it results in

ueqk =
1

b1

[
yd,k+1 +

n∑
i=1

aiyk−i+1 −
m∑
j=2

bjuk−j+1 − p̂k −
δ̄k+1(λτk + 1− λ)− δk+1

λτk + 2− λ
µk+1

]
(3.69)
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The robustness of the system is improved by augmenting the control signal (3.69)

with a discontinuous switching term uswk . Consequently, the final control action

is

uPFk = ueqk + uswk (3.70)

The discontinuous switching term uswk is as in (3.7) but the switching gain Ksw

in this case must satisfy

Kmin
sw < Ksw < Kmax

sw (3.71)

with

Kmin
sw =ε+ γ (3.72)

Kmax
sw =

µ∞(1− λ)

λ
(δ̄0+δ0)µ0−γ

γ
+ (2− λ)

(3.73)

As a result, the final control action is

uk =
1

b1

[
yd,k+1 +

n∑
i=1

aiyk−i+1 −
m∑
j=2

bjuk−j+1 − p̂k −
δ̄k+1(λτk + 1− λ)− δk+1

λτk + 2− λ
µk+1

]

+
1

b1

Kswsign(Sk) (3.74)

Theorem 3.3 : Given the discrete time uncertain system (2.1) with the sliding

variable (3.63). If the control action (3.74) is used and the initial parameters µ0,

δ0, δ̄0 are chosen such that−δ0µ0+γ < e0 < δ̄0µ0−γ, the sliding variable Sk will be

driven to a bounded QSMB in finite time and stay within this band afterward.

The tracking error ek always fulfills the requirement of the PPC described by

(3.60) for all k > 0. The QSMB is defined as:

L = {τk : QSMBN < Sk < QSMBP} (3.75)

where QSMBP and QSMBN are the upper and lower bounds of the QSMB and

described by

QSMBN =
−2KswΘ2

k

Γk + 2KswΘk

(3.76)

QSMBP =
2KswΘ2

k

Γk − 2KswΘk

(3.77)
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, respectively. In which,

Θk = (λτk + 2− λ) (3.78)

Proof of Theorem 3.3 : First, let us prove that at any time instance k, if the

tracking error ek satisfies −δkµk + γ < ek < δ̄kµk− γ, then by using the proposed

control action (3.74), the one step ahead tracking error ek+1 also satisfies the

requirement of the PPC, i.e., −δk+1µk+1 +γ < ek+1 < δ̄k+1µk+1−γ, which means

τk+1 and uk+1 are also bounded. Hence, the control algorithm can be repeated in

the next sampling cycle.

By substituting the control action (3.74) into (2.19), a fundamental operation

gives

ek+1 =
ξ1,kτk + ξ2,k

λτk + 2− λ
− [p̃k +Kswsign(Sk)] (3.79)

where ξ1,k and ξ2,k are defined as

ξ1,k = δ̄k+1µk+1λ (3.80)

ξ2,k =
[
δ̄k+1(1− λ)− δk+1

]
µk+1 (3.81)

From (3.71), it can be derived that

γ − 2Ksw < −{p̃k +Kswsign(Sk)} < 2Ksw − γ (3.82)

Since −δkµk + γ < ek < δ̄kµk − γ holds in this step, it follows from (3.64) that

γ

(δ̄0 + δ0)µ0 − γ
< τk <

(δ̄0 + δ0)µ0 − γ
γ

(3.83)

which results in

Kmax
sw =

µ∞(1− λ)

λ
(δ̄0+δ0)µ0−γ

γ
+ (2− λ)

<
µ∞(1− λ)

λτk + 2− λ
(3.84)

Then, from (3.82) and (3.84), it gives

γ − 2µ∞(1− λ)

λτk + 2− λ
< −{p̃k +Kswsign(Sk)} <

2µ∞(1− λ)

λτk + 2− λ
− γ (3.85)

From (3.79) and (3.85), it yields

ek+1 <
ξ1,kτk + ξ2,k + 2µ∞(1− λ)

λτk + 2− λ
− γ (3.86)
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Consider the first term of the right hand side of (3.86) as a function of τk. It

can easily be realized that this term is monotonic increasing with respect to τk.

Hence,

ek+1 < lim
τk→∞

ξ1,kτk + ξ2,k + 2µ∞
λτk + 2− λ

− γ = δ̄k+1µk+1 − γ (3.87)

Similarly, from (3.79) and (3.85), it also yields

ek+1 >
ξ1,kτk + ξ2,k − 2µ∞(1− λ)

λτk + 2− λ
+ γ (3.88)

Since the first term of the right hand side of (3.88) is also monotonic increasing

with respect to τk, it can be deduced that

ek+1 > lim
τk→0

ξ1,kτk + ξ2,k − 2µ∞(1− λ)

λτk + 2− λ
+ γ (3.89)

=
ξ2,k − 2µ∞(1− λ)

2− λ
+ γ (3.90)

Adding both sides of (3.90) with δk+1µk+1, a fundamental operation gives

ek+1 + δk+1µk+1 >
{(δ̄k+1 + δk+1)µk+1 − 2µ∞}(1− λ)

2− λ
+ γ (3.91)

Due to δ̄k+1 ≥ 1, δk+1 ≥ 1, µk+1 ≥ µ∞ and 0 < λ < 1, the first term of the right

hand side of (3.91) is always positive, then it yields

ek+1 > −δk+1µk+1 + γ (3.92)

From (3.87) and (3.92), it can be concluded that

−δk+1µk+1 + γ < ek+1 < δ̄k+1µk+1 − γ (3.93)

Due to the fact that the initial tracking error e0 is always bounded in practice,

the initial parameters µ0, δ0 and δ̄0 can always be found such that the inequality

−δ0µ0 + γ < e0 < δ̄0µ0 − γ holds. By using the same manipulation as described

above, it can be deduced that the tracking error in the next sampling cycle e1

is also restricted in the convergence zone, i.e., −δ1µ1 + γ < e1 < δ̄1µ1 − γ,

and so on. As long as the requirement of the PPC is fulfilled, τk is uniformly

bounded by (3.83). This means the control action uk is also uniformly bounded.

Therefore, the algorithm can be repeated in every sampling cycle which results
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in the fulfillment of the PPC (3.60) ∀k > 0. As a result, the transformed error

ϑk is always well defined.

Sine (3.83) holds ∀k > 0, it can be deduced that Θk defined in (3.78) is also

positive and uniformly bounded by (3.94).

Θmin < Θk < Θmax,∀k > 0 (3.94)

where Θmin and Θmax are described by

Θmin = λ
γ

(δ̄ + δ)µ0 − γ
+ 2− λ (3.95)

Θmax = λ
(δ̄ + δ)µ0 − γ

γ
+ 2− λ (3.96)

Substitute (2.19), (3.69) and (3.70) into (3.66), it gives

Sk+1 =
−(p̃k + b1u

sw
k )Θ2

k

Γk + (p̃k + b1uswk )Θk

(3.97)

where Γk is defined as

Γk =(δ̄k+1 + δk+1)µk+1 (3.98)

Then, from (3.70) and (3.97), it yields

Sk+1 =
−{p̃k +Kswsign(Sk)}Θ2

k

Γk + {p̃k +Kswsign(Sk)}Θk

(3.99)

Case 1: If Sk > 0, then

Sk+1 =
−Θ2

kχ1

Θkχ1 + Γk
(3.100)

where χ1 is defined as

χ1 = p̃k +Ksw (3.101)

From (3.71), it can be derived that

γ < χ1 < 2Ksw (3.102)

Since (3.100) is monotonic decreasing with respect to χ1, it yields

−2KswΘ2
k

Γk + 2KswΘk

< Sk+1 <
−γΘ2

k

Γk + γΘk

< 0 (3.103)
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Case 2: If Sk < 0, then

Sk+1 =
Θ2
kχ2

−Θkχ2 + Γk
(3.104)

where χ2 is defined as

χ2 = Ksw − p̃k (3.105)

From (3.71), it can be seen that

γ < χ2 < 2Ksw (3.106)

Again, since (3.104) is monotonic increasing with respect to χ2, it can be deduced

that
2KswΘ2

k

Γk − 2KswΘk

> Sk+1 >
γΘ2

k

Γk − γΘk

> 0 (3.107)

From (3.103) and (3.107), it yields

−2KswΘ2
k

Γk + 2KswΘk

< Sk+1 <
2KswΘ2

k

Γk − 2KswΘk

(3.108)

From (3.93) and (3.108), it can be concluded that the sliding variable Sk will

approach the bounded QSMB (3.75) in one step and stay inside this band after-

ward. The tracking error always meets the requirement (3.60) of the PPC. This

ends the proof.

3.5.6 Experimental Results

To confirm the validity of the proposed method, experiments on the piezo-actuated

positioning system are conducted. The parameters of the controller are shown in

Table. 3.1.

The transient response of the system is first investigated by employing a STEP

reference output where its value is suddenly changed from 0µm to 5µm. By using

the modified convergence zone described by (3.60) with δ0 = 1 and δ̄0 = 2, both

overshoot and offset error no longer exist as seen in Fig. 3.22. The sliding variable

Sk also stays within the bounded QSMB. The maximum tracking error (MAXTE)

and the root mean square tracking error (RMSTE) in steady-state are 0.02µm

and 0.012µm, corresponding to 0.4% and 0.24%of the maximal set-point.
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Table 3.1: Parameters of the PPF-DSMC controller

Symbol Quantity Value

µ0 Initial value of the PPF 10.0

µ∞ Final value of the PPF 0.5

δ̄0 Initial value of the upper bound 2.0

δ0 Initial value of the lower bound 1.0

λ Damping factor of the tracking error 0.1

κ Damping factor of the PPF 0.05

Ksw Switching gain of the DSMC 0.02

Ts Sampling time 0.5ms
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Figure 3.24: The computation time of the PPF-DSMC

The influences of the upper bound δ̄ and lower bound δ of the conventional

convergence zone on the transient response of the closed-loop system are shown

in Fig. 3.25. As seen in Fig. 3.25(b) where δ̄ = 1, δ = 1.4 and Fig. 3.25(c)

where δ̄ = 1.6, δ = 1, the overshoot may be increased or avoided if δ̄ 6= δ.

However, the offset errors always exist in these cases as analyzed in (3.55). In

contrast, (3.62) and Fig. 3.26 show that by using the same parameters with the
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Figure 3.25: Influences of conventional PPF on transient response
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Figure 3.26: Influences of modified PPF on transient response

modified convergence zone, the transient response of the system can be freely

adjusted without producing the offset error in the steady-state. In addition, by

appropriately selecting the initial values δ̄0 and δ0, a good transient response can

be achieved as seen in Fig. 3.26(c).

In order to investigate the tracking performance of the proposed method,

various complicated desired outputs are employed. Figure 3.27 shows the exper-

imental result in which a sinusoidal reference output yd = (4 − kTs)sin[2π(1 +

10kTs)kTs − π/2] + 5 with time-varying amplitude and frequency is used. The

experimental result with complicated multiple frequencies desired output yd =

0.5cos(2π5kTs) + 1.5sin(2π10kTs) + 0.7cos(2π25kTs) + 1.3cos(2π30kTs) + 6 is also

shown in Fig. 3.29. In both cases, the closed-loop systems have good transient

responses and the RMSTEs at steady-state are less than 0.1µm corresponding to
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Figure 3.27: Tracking performance of PPF-DSMC with time-varying amplitude

and frequency desired output
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Figure 3.28: The control signal of PPF-DSMC with time-varying amplitude and

frequency desired output

1% of the maximal set point.

The proposed method is also compared with the widely used PID controller
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Figure 3.30: The control signal of PPF-SMC with multiple frequency desired

output

in term of tracking accuracy. The discrete-time PID controller is described by

uPIDk = uPIDk−1 +KP (ek − ek−1) +KIek−1 +KD(ek − 2ek−1 + ek−2) (3.109)

A sinusoidal desired output yd = {4sin(2πfkTs−π/2)+6} is employed to get the

comparative results at different frequencies f . After being well tuned, the best
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Figure 3.31: Tracking performance of PPF-DSMC with sawtooth desired output
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Figure 3.32: The control signal of PPF-SMC with sawtooth desired output

experimental results of the PID controller are achieved with KP = 0.1, KI = 0.75

and KD = 1. The comparative results of both methods are shown in Fig. 3.33. In

can be observed that both PID and the proposed method show very good tracking

performance at 1Hz where the MAXTE is less than 0.02µm corresponding to 0.2%

of the maximal set point. As the tracking frequency increases, the performance of

the proposed method is just slightly degraded. In contrast, the PID shows much

worse tracking error.
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Figure 3.33: Comparative results between PID and PPF-DSMC
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Figure 3.34: Comparative step responses between the proposed PPF-DSMC and

the conventional DSMC

The comparative experiment results between the PPF-DSMC and the con-

ventional DSMC are also provided in Fig. 3.34 and Fig. 3.35. As the parameters

are chosen such that same transient response can be achieved as seen in Fig. 3.34,

the proposed PPF-DSMC shows better tracking performance in term of tracking

accuracy as observed in Fig. 3.35. This result comes from additional parameters

of the PPF which allows the transient response to be adjusted independently
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DSMC and the conventional DSMC

from the steady-state performance.
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3.6 Conclusion

Finally, the robustness of the positioning system is tested by using an external

force where the system is impacted by quick time-varying forces from 0s∼3s and

by slow time-varying external force from 3s∼10s. As shown in Fig. 3.36, the

system is immune from the slow time-varying external force. When impacted by

the quick time-varying forces, the system output quickly returns to its desired

value. This means the robustness of the DQSMC against the uncertainties is

preserved.

3.6 Conclusion

In this chapter, SMC - one of the most well known robust control technique -

is employed to handle the nonlinear behavior of the piezo-actuated positioning

system. The designs with conventional DSMC and DISMC are presented first.

Experimental results are also conducted to confirm the validity as well as inves-

tigate the tracking performance of the positioning system. Experimental results

show that the transient response and steady-state tracking performance are inti-

mately connected. If the parameter is adjusted to achieve quick response and low

tracking error, then the overshoot always occurs. In contrast, a smooth transient

response always yields higher tracking error.

To deal with the above mentioned problem, a novel prescribed performance

DSMC is proposed in the last section of this chapter. This novel method is

capable of maintaining the tracking error in a predefined area under certain initial

conditions. Additional parameters are also useful in adjusting the transient-state

of the control system without degrading the tracking performance.
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Chapter 4

Fractional Order Control Design

4.1 Introduction

Recently, the fractional order calculus, which is a generalization of the integration

and differentiation from integer to non-integer order, has become an interesting

topic and extensively used in the area of control system [15, 24, 75]. In com-

parison with the conventional controllers based on integer order integrator and

differentiator, the fractional order controller offers more degree of freedom which

can be utilized to further improve the performance of the control system. In [67],

a review of fractional order PID controller including basic definitions, control

design and tuning techniques are presented. The integration of the fractional

control into sliding mode control (SMC) for anti-lock breaking and position servo

systems are discussed in [71, 73], respectively. This integration utilizes both ro-

bustness of SMC and the good performance of fractional dynamic. However,

most of those researches are conducted in continuous time domain. The designs

in discrete-time domain have not been well investigated yet. Hence, this chapter

focuses on discrete-time fractional order controllers including fractional PIαDβ

and fractional order integral sliding mode control (DFISMC).
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4.2 Contributions

There are three main contributions in this chapter. First, a new method is pro-

posed to approximate the fractional order integral (FOI) recursively which can

easily be implemented in digital controllers. Then, the fractional order PIαDβ

controller with parameters optimized by particle swarm optimization (PSO) is

investigated. Specifically, the PSO runs with the real system instead of a mathe-

matical model following that the influence of modeling error is mitigated and the

getting result can be used directly without any further calibrations. Finally, a

DFISMC with improved transient-response based on fuzzy tuning is presented.

4.3 Fractional Order Calculus

In this section, the definitions which are widely used in the area of control system

are introduced.

First, the gamma function Γ(z) which is the extension of the factorial for

non-integer number z is introduced

Γ(z) =

∫ ∞
0

e−ttz−1dt (4.1)

The most important property of the gamma function is

zΓ(z) = Γ(z + 1) (4.2)

Then, the definition of derivative of order β ∈ < is presented. In continuous-

time domain, the most often used one is the Riemann-Liouville definition

β
t0Dte(t) =

1

Γ(n− β)

dn

dtn

t∫
t0

e(τ)

(t− τ)β−n+1
dτ (4.3)

where t0 and t are the limits and n is an integer number satisfying n − 1 <

β < n. In practical applications where computer-based control devices are used,
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the following Grünwald − Letnikov definition with short memory principle is

preferred:

β
t0Dte(t) = T−βs

[ t−t0
Ts

]∑
j=0

(−1)j
(
β

j

)
e(t− jTs) (4.4)

in which [.] means the integer part, Ts is the sampling time and
(
β
j

)
is the binomial

coefficient defined by (
β

j

)
=

Γ(β + 1)

Γ(j + 1)Γ(β − j + 1)
(4.5)

The responses of the fractional order differential (FOD) with various orders β

are illustrated in Fig. 4.1. As β decreases, the response of the FOD is smoothen

which may reduce the sensitive of the FOD-based controllers to the noise.
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Figure 4.1: Response of FOD with various fractional order β

Finally, the Riemann-Liouville’s definition for the fractional integral of order

α ∈ < of a continuous time function e(t) is

αζe(t) =
1

Γ(α)

t∫
0

(t− τ)(α−1)e(τ)dτ (4.6)
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The simulative step responses of the FOI with various fractional order α are shown

in Fig. 4.2. On the contrary to the FOD, the FOI shows stronger influence

on the transient response as the fractional order α decreases which may cause

fluctuations in transient-state.
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Figure 4.2: Step response of FOI with various fractional orders

In math.h library of C compiler, the gamma function Γ(z) is already sup-

ported. The syntax of this function is

float tgamma (float z) (4.7)

In contrast, FOI is not supported in C compiler. Hence, in order to implement

this integration in digital control systems, numerical approximation is needed.

Dividing the interval (0, t) into k = t/Ts sub-intervals, the integral of e(t) can

be decomposed into the sum of k integrals

αζe(t) =
1

Γ(α)

k∑
j=1

(j+1)Ts∫
jTs

(t− τ)α−1e(τ)dτ (4.8)

87



4. FRACTIONAL ORDER CONTROL DESIGN

Assume that Ts is sufficient small such that e is constant inside each sub-interval.

Then, it yields

αζe(t) ≈α ζe,k =
1

Γ(α)

k∑
j=1

ej

(j+1)Ts∫
jTs

(t− τ)α−1dτ (4.9)

following that

αζe,k =
k∑
j=1

[(k − j + 1)α − (k − j)α]
Tαs

αΓ(α)
ej (4.10)

By using (4.2) and (4.10), it gives

αζe,k =
k∑
j=1

ωjej (4.11)

where ω(j) is the weighting factor:

ωj = [(k − j + 1)α − (k − j)α]
Tαs

Γ(α + 1)
(4.12)

It can be realized from (4.11) that the FOI is different from its integer counterpart

by the weighting factors ωj in which the weighting factors of new data are larger

than of the old data. Since (4.11) can not be implemented directly in practice due

to its infinite sample data, an approximation based on finite data length (t−L, t)
is proposed in [49] where L is the length of memory. This approximation is

based on the observation that for large data, the weighting factors of old data

are small enough to be ignored. However, the output of this approximation may

be saturated due to the fact that the sum of a finite data set is bounded which

prevents the FOI-based controllers from steady-state error compensation as its

integer-based counterpart. Hence, this paper proposes a new method to compute

the FOI recursively as following.

Denote αζe,k−1 as the FOI of ek in previous step. Then, based on (4.10), it

gives

αζe,k = ω1e1 + ω2e2 + · · ·+ ωk−1ek−1 + ωkek (4.13)

αζe,k−1 = ω2e1 + ω3e2 + · · ·+ ωkek−1 (4.14)
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From (4.13) and (4.14), it yields

αζe,k =α ζe,k−1 +
k∑
j=2

ωj ẽj + ω1e1 (4.15)

with ẽj = ej − ej−1. Now, by applying the short memory principle to (4.15), it

results in

If k < N where N =
[
L
Ts

]
is the number of considered samples data, then

αζe,k =α ζe,k−1 +
N∑

j=N−k+2

Ωj ẽk−N+j + ΩN−k+1e1 (4.16)

If k ≥ N , then

αζe,k =α ζe,k−1 +
N∑
j=2

Ωj ẽk−N+j + Ω1ek−N+1 (4.17)

with

Ωj = [(N − j + 1)α − (N − j)α]
Tαs

Γ(α + 1)
(4.18)

The simulative response of the proposed approximation with unit step and

exponential inputs are shown in Fig. 4.3 and Fig. 4.4, respectively. It can be

realized that the proposed FOI is actually a hybrid of the exact FOI (4.15) and

the conventional integer order integral. This approximation exactly reflects the

behavior of the FOI in firstN step and acts like an integer order integral after that.

Which means the controllers based on this proposed FOI is able to improved the

transient response while maintaining the steady-state error compensation ability.

In contrast, the output of the method in [49] is either saturated with unit step

input or slowly increasing with exponential input, which obviously affects the

steady-state error compensation ability.
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Figure 4.3: Behavior of the proposed FOI approximation with unit step input

and N = 100
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Figure 4.4: Behavior of the proposed FOI with input = 1 + e3t and N = 100
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4.4 Discrete-Time Fractional Order PIαDβ with

Particle Swarm Optimization Tuning

4.4.1 Introduction

In continuous-time case, the systematical design of the fractional order PIαDβ

has been introduced in many researches, in both frequency [16, 48, 56, 76, 89, 93]

and time domain [60]. Besides, optimization techniques such as PSO [63, 92]

or genetic algorithm (GA) [36] are also good solutions for tuning the parame-

ters of the controller. However, these optimization techniques require a quite

good model and the algorithm runs off-line with the mathematical model in most

cases. Since the modeling error always exists, especially with uncertain model

like piezo-actuated positioning system, further tuning is also needed to apply the

parameters getting from the optimization process to experiment. To overcome

the aforementioned problem, this section presents a new approach to get the

optimal parameters of the discrete-time fractional order PIαDβ controller. The

algorithm is based on PSO technique and developed for piezo-actuated system

only. The main concept of the optimization is based on the observation that the

fractional order PIαDβ can also be regarded as a model-free controller since the

parameters of the control plant are not included in the control signal. Conse-

quently, the PSO can run on-line with real system instead of the mathematical

model. To protect the system from instability during optimization process, a safe

zone which can easily be obtained by experiments is required. The result getting

from this optimization process is optimal for real system and can be used directly

without any further adjustments.

4.4.2 Discrete-Time Fractional Order PIαDβ Investigation

Consider the following discrete-time PIαDβ controller of fractional order α and

β:

ufPIDk = upk + ufIk + ufDk (4.19)
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with

upk = KP ek (4.20)

ufIk = ufIk−1 +KI

[
N∑

j=N−k+2

Ωj ẽk−N+j + Ω1ek−N+1

]
(4.21)

ufD =
KD

T βs

N∑
j=0

(−1)j
(
β

j

)
e(t−N) (4.22)

Ωj = [(N − j + 1)α − (N − j)α]
Tαs

Γ(α + 1)
(4.23)

and KP , KI , KD are positive proportional, integral and differential gain, re-

spectively. By using “trial and error” technique, several experiment results are

achieved to investigate the influences of the fractional order on the response of

the control system. In these experiments, the parameters of the PID controller

are intentionally chosen such that the closed-loop system is closed to the verge

of instability. In this case, the change of parameters has strong influence on the

system response and can be seen clearly.
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Figure 4.5: Influence of fractional order integral α

The influence of the fractional order integral α to the transient state is shown

in Fig. 4.5. It can be seen that as α decrease, the system response tends to be

faster. However, the amplitude of oscillation also increases and the system may

be unstable if α is too small.
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Figure 4.6: Influence of fractional order β

The influence of fractional order β in transient-state is shown in Fig. 4.6.

As can be observed, the decrement of β leads to the reduction of the oscillation

amplitude which results in an improved transient response.

4.4.3 PSO Implementation

PSO is a population-based evolutionary algorithm [37] developed based on the

behavior of social animals. The basic PSO algorithm is introduced in [52] in detail.

This sub-section only shows the implementation of the PSO to on-line optimize

the parameters of the fractional order controller (4.19). The performance index

which needs to be minimized in this case is the integral of time multiplied by

absolute value of the error (ITAE)

ITAE(t) =

∞∫
0

t|e(t)|dt (4.24)

The discrete-time version of (4.24) used in this research is

ITAEk = Ts

M∑
0

kTs|ek| (4.25)

where M is a finite sampling cycles.
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Each particle has a position vector represented by

Xi(k) =
[
αi(k) βi(k) KP,i(k) KI,i(k) KD,i(k)

]
(4.26)

and a velocity vector represented by

Vi(k) =
[
Vα,i(k) Vβ,i(k) VP,i(k) VI,i(k) VD,i(k)

]
(4.27)

Each particle remembers its own best position in a vector Pbest

Pbest,i(k) =
[
Pα,i(k) Pβ,i(k) PP,i(k) PI,i(k) PD,i(k)

]
(4.28)

In (4.26), (4.27) and (4.28), i is an integer index satisfying i ∈ (0, NumofPo) in

which NumofPo is the number of population.

The best position vector among all the neighbors of a particle is then stored

in a global best vector Gbest

Gbest,j =
[
Gα,j Gβ,j GP,j GI,j GD,j

]
(4.29)

in which j is an positive integer index satisfying j ∈ (0, NumofIter) andNumofIter

is the number of iterations.

In each iteration, the velocity and position of each particle are manipulated

by the following relations

Vi(k + 1) = J(k)Vi(k) + c1 (Pbest,i(k)−Xi(k)) R1 + c2 (Gbest,j −Xi(k)) R2

(4.30)

Xi(k + 1) = Xi(k) + Vi(k + 1) (4.31)

in which J(k) is an inertia weight computed by

J(k) = 0.5 + rand (4.32)

where rand generates a random number in [0, 1] range and c1, c2 are normally

called cognitive and social coefficient, usually in the range 0 ≤ c1, c2 ≤ 4. The

two matrices R1 and R2 are diagonal matrices of random numbers in [0, 1]. The

step by step implementation of the PSO is as follows

Step 1 : Initialization.
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a. Initialize the position Xi(0) ∀ i ∈ 1:NumOfPo.

b. Initialize the best position to its initial position: Pbest,i(0) = Xi(0).

c. Run the closed-loop system with parametersXi(0) to calculate the ITAE(Xi(0))

for each particle and initialize the global best Gbest(0) = min(ITAEi(0)).

Step 2 : Repeat the following tasks in NumofIter iterations.

a. Update the global best Gbest(k) = Gbest(k − 1).

b. Update the particle velocity according to (4.30).

c. Restrict the particle velocity in [vmin, vmax] range.

d. Update the particle position as (4.31).

e. Restrict the particle position in safe zone to guarantee that the closed-loop

system is stable during optimization process.

f. Run the closed-loop system with new particle position to compute the

ITAE(Xi(k + 1)) performance index.

g. If ITAE(Xi(k+1)) ≥ ITAE(Pbest,i(k)), update the personal best: Pbest,i(k) =

Xi(k + 1).

h. If ITAE(Xi(k+1)) ≥ ITAE(Gbest(k)), update the personal best: Gbest(k) =

Xi(k + 1).

Step 3 : Obtain the best solution from Gbest at the end of the iterative process.

4.4.4 Experiment results

To show the effectiveness of the PSO algorithm described in the previous sub-

section, experiments are conducted on system (2.1) with different number of

population and iteration. The safe zone in which the system is stable can easily
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be found by several experiments and expressed by

0 < KP ≤ 0.5 (4.33)

0 < KI ≤ 1.0 (4.34)

0 < KD ≤ 1.0 (4.35)

0.9 < α ≤ 1.0 (4.36)

0 < β ≤ 1.0 (4.37)

The optimization results are shown in Table 4.1.

Table 4.1: PSO results

PSO initial condition KP KI KD α β

NumofPo = 5, NumofIter = 15 0.3635 0.8845 0.4924 0.9875 0.1125

NumofPo = 15, NumofIter = 15 0.2133 0.9721 0.4641 0.9841 0.2178

NumofPo = 15, NumofIter = 15 0.2096 0.84522 0.49985 1.0 1.0
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Figure 4.7: PSO result with NumofPo = 5 and NumofIter = 15

The experiment result with NumofPo = 5 and NumofIter = 15 is shown

Fig. 4.7. As can be observed, the ITAE converges to its minimum value in just
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Figure 4.8: Step response of the PIαDβ with NumofPo = 5 and NumofIter =

15

one iteration. It can also be seen that the fractional order of integral α is always

close to 1 to mitigate the oscillation amplitude. In contrast, the fractional order

of differential β is always close to 0 to remove the fluctuation may caused by the

differential gain KD. As a result, the step response of the closed-loop system is

quite smooth without overshoot and steady-state tracking error as seen in Fig.

4.8.
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Figure 4.9: PSO result with NumofPo = 15 and NumofIter = 15

As the number of population increases, i.e, NumofPo = 15 andNumofIter =

15, it can be observed from Fig. 4.9 that the convergence time of the ITAE is

a little bit slower, i.e, 13 iterations. However, the experimental step response is
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Figure 4.10: Step response of the PIαDβ with NumofPo = 15 and

NumofIter = 15

almost same as seen in Fig. 4.10. This means the PSO algorithm can give good

result with few computational effort.
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Figure 4.11: Comparative experiment results between PSO-PIαDβ and PSO-PID

The comparative step response between the optimal fractional order PIαDβ

and the optimal conventional PID is shown in Fig. 4.11. The parameters of the

conventional PID is also obtained by running the PSO with same restrictions

expressed by (4.33), (4.34) and (4.35). It can obviously be seen that with two

more degree of freedoms, the PIαDβ controller always shows better response than

its integer order counterpart and achieves lower ITAE as well.

Finally, experiments with other complicated desired outputs are conducted.
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Figure 4.12: Tracking performance of PIαDβ with 10Hz sinusoidal desired output
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Figure 4.13: Tracking performance of of PIαDβ with mixed amplitude and fre-

quency desired output

The experiment result with 10Hz sinusoidal reference output is shown in Fig.

4.12. The result achieved with other complicated desired output such as mixed

amplitude-frequency, time-varying amplitude and frequency, sawtooth desired

outputs are shown in Fig. 4.13, Fig. 4.14 and Fig. 4.15, respectively. It can

be seen that as the tracking frequency increases, the tracking performance is de-

graded due to the phase shift and the reduction of the system gain. Hence, a

DF-PIDSMC is introduced in the next section to enhance the tracking perfor-

mance of the system.
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Figure 4.14: Tracking performance of of PIαDβ with time-varying amplitude and

frequency desired output
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Figure 4.15: Tracking performance of of PIαDβ controller with sawtooth desired

output

4.5 DFISMC Design

In this section, the design of DFISMC with fuzzy tuning is presented.

4.5.1 Control Design

Consider the following fractional order variable:

Λk = ek +α Ξe,k (4.38)
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where αΞe,k is the integral of the tracking error with fractional order α and integral

gain KI

αΞe,k =α Ξe,k−1 +KI

(
N∑
j=2

Ωj ẽk−N+j + Ω1ek−N+1

)
(4.39)

and αΞe,0 = ωNe0 at initial state.

The one-step ahead value of Λ is

Λk+1 = ek+1 +α Ξe,k+1 (4.40)

with

αΞe,k+1 =α Ξe,k +KI

(
N∑
j=2

Ωj ẽk−N+j+1 + Ω1ek−N+2

)
(4.41)

From (4.38), it can be deduced that

αΞe,k = Λk − ek (4.42)

Hence, (4.40) can be rewritten based on (4.41) and (4.39) as

Λk+1 = ek+1 + Λk − ek +KI

(
N∑
j=2

Ωj ẽk−N+j+1 + Ω1ek−N+2

)
(4.43)

which yields

Λk+1 − Λk = (1 +KIΩN)ek+1 − (1 +KIΩ̃N)ek −KI

N−1∑
j=2

Ω̃jek−N+j (4.44)

Now, define the sliding variable Sk+1 as

Sk+1 = Λk+1 − Λk (4.45)

and by substituting (2.19) and (2.16) into (4.45), it gives

Sk+1 = −(1 +KIΩ̃N)ek −KI

N−1∑
j=2

Ω̃jek−N+j

+ (1 +KIΩN)

[
yd,k+1 +

n−1∑
i=0

aiyk−i −
m−1∑
j=0

bjuk−j − p̂k − p̃k

]
(4.46)
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The control action is obtained based on the following reaching law

Sk+1 = 0 (4.47)

By neglecting the unknown disturbance estimation error p̃k, the solution for (4.47)

is

uk =
1

b1

(
yd,k+1 +

n−1∑
i=0

ai+1yk−i −
m−1∑
j=1

bj+1uk−j − p̂k

)

−
(1 +KIΩ̃N)ek +KI

N−1∑
j=2

Ω̃jek−N+j

b1(1 +KIΩN)
(4.48)

The dynamic of the tracking error is obtained by substituting (4.48) into

(2.19). Then, a fundamental operations gives

ek+1 =
1 +KIΩ̃N

1 +KIΩN

ek +
KI

1 +KIΩN

N−1∑
j=2

Ω̃jek−N+j − p̃k

=
1 +KIΩ̃N

1 +KIΩN

ek +
KI

1 +KIΩN

N−1∑
j=2

Ω̃jek−N+j +O(T 2
s ) (4.49)

with

Ω̃j = Ωj − Ωj−1 (4.50)

It can be seen that the dynamic of the tracking error (4.49) is high order and

complicated. Besides, it is not so difficult to realize that (4.49) is also the gener-

alized error dynamic of the conventional DISMC, i.e, if α = 1 then Ω̃j = 0 ∀j > 0

and ΩN = Ts which results in the error dynamic of the DISMC

ek+1 =
1

1 +KITs
ek +O(T 2

s ) (4.51)

To illustrate the dynamic of the tracking error described by (4.49), simula-

tions are conducted for the identified model (2.2) of the positioning system. The

simulative unit impulse response of the error is shown in Fig. 4.16. It can be

observed that as α decreases, the transient time increases.

The simulative step response of the control system where the nominal plant

used in control design and the plant used in simulation are same is shown in Fig.
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Figure 4.16: Influence of α on the error dynamic

4.17. When the model is perfect, the overshoot does not occur and the behavior

of the system in transient-state is similar to what described by the error dynamic.

This means the reduction of α yields a worse transient response with large ITAE.

Hence, the fractional order α should be kept close to 1 in this case.

yk+1 = −0.95× 0.19yk − 1.05× 0.009yk−1 + 0.5× 0.49uk + 1.5× 0.047uk−1

(4.52)

Figure (4.18) shows the simulation results in a more practical circumstance:

the model used in simulation (4.52) is different from the nominal model of the

plant (2.2) used in control design which means the modeling error exists. It can

be seen that the overshoot occurs and α is useful in this situation since it can be

used to reduce the overshoot.

The integral gain KI also has influence on the system response as illustrated

in Fig. (4.19). Large KI yields faster response along with large overshoot. Thus,

adjusting KI and α simultaneously may give a balance solution in which small

overshoot and quick response can be achieved.
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Figure 4.17: Simulative step response of DFISMC with accurate model
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Figure 4.18: Simulative step response of DFISMC with inaccurate model

4.5.2 Fuzzy Tuning

To effectively utilize the integral gain KP and the fractional order of integral

α in improving the transient response of the control system, fuzzy technique is

employed in this research. The absolute of the tracking error is used as the input

of the fuzzy block whist KP and α are outputs. The following rules based on the
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Figure 4.19: Influence of the integral gain KI on transient response

Mamdani fuzzy inference method [51, 54] is employed

rule 1 : If |ek| is PZ Then KI is PZ and α is PH

rule 1 : If |ek| is PS Then KI is PZ and α is PL

rule 1 : If |ek| is PM Then KI is PZ and α is PM

rule 1 : If |ek| is PL Then KI is PZ and α is PS

rule 1 : If |ek| is PH Then KI is PZ and α is PZ

(4.53)

Then, the fuzzy sets are designed as shown in Fig. 4.20, Fig. 4.21 and Fig.

4.22. To reduce the computation cost, symmetrical input and output membership

functions (MFs) are chosen. The general form of these MFs are described by

MFr(x) =


2x−2cr,x+wr,x

wr,x
for cr,x − wr,x

2
≤ x ≤ cr,x

2cr,x−2x+wr,x

wr,x
for cr,x < x ≤ cr,x + wr,x

2

0 otherwise

(4.54)

in which, r = {1, · · · , 5} is the index of the rule, x = {|ek|, αk, KI,k} stands for

the input variables of the MFs, cr,x and wr,x are center and width of each MF.

Finally, the central of gravity method is used for defuzzification. Since the
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4. FRACTIONAL ORDER CONTROL DESIGN

Figure 4.20: Membership functions of fuzzy input |ek|

Figure 4.21: Membership functions of fuzzy output |KI |

Figure 4.22: Membership functions of fuzzy output α

output MFs are symmetrical triangles, the solutions for the defuzzification is

αk =

5∑
r=1

MFr(|ek|)w(r,αk)c(r,αk)

5∑
r=1

MFr(|ek|)w(r,αk)

(4.55)

KI,k =

5∑
r=1

MFr(|ek|)w(r,KI,k)c(r,KI,k)

5∑
r=1

MFr(|ek|)w(r,KI,k)

(4.56)
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4.5.3 Experimental results

In this section, experimental results on the piezo-actuated positioning system are

conducted to confirm the validity and feasibility of the proposed FDISMC.
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Figure 4.23: Experimental influence of the fractional order α

The influence of the fractional order α is first investigated and shown in Fig.

4.23. It can be seen that the behavior of the control system is same as described

in the simulation where the overshoot can be avoided by reducing α.
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Figure 4.24: Comparative step responses

Then, the comparative step responses of the control system are depicted in

Fig. 4.24 whist the outputs of the fuzzy block are shown in Fig. 4.25. If KI

and α are fixed (the blue and green line), either overshoot nor large ITAE are
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Figure 4.25: Fuzzy inference during transient-state
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Figure 4.26: The control signal of FDISMC with step desired output

unavoidable. In contrast, improved transient response with low overshoot and
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Figure 4.27: The computation time of the FDISMC algorithm

ITAE can be achieved by using the fuzzy tuning (the red line).
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Figure 4.28: Tracking performance of the FDISMC with mixed amplitude-

frequency desired output

Finally, the tracking performance is verified by using complicated desired out-
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Figure 4.29: The control signal of the FDISMC with mixed amplitude-frequency

desired output
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Figure 4.30: Experiment result of FDISMC with time-varying amplitude and

frequency desired output
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Figure 4.31: The control signal of FDISMC with time-varying amplitude and

frequency desired output
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Figure 4.32: Experiment result of FDISMC with sawtooth desired output
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Figure 4.33: The control signal of FDISMC with sawtooth desired output

puts including sawtooth, time-varying amplitude and frequency, mixed amplitude-

frequency as seen in Fig. 4.28 → Fig. 4.33. As long as the ratio between the

sampling and tracking frequency is less than 100, the RMSTE is less than 0.1µm,

corresponding to 1% of the maximal set-point. This result is acceptable for most

practical applications.

4.6 Conclusion

In this chapter, the design and implementation of discrete-time fractional oder-

based controllers are presented. First, a simple approximation of FOI which

computes the FOI recursively is proposed. The proposed approximation does not

require much computational effort and can easily be implemented in digital con-

trol platforms. Based on the proposed approximation, the discrete-time PIαDβ

controller of fractional order α and β is investigated. To optimize the parameters

of this controller, the PSO technique is adopted. In advance, the optimization
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process runs with real system instead of a mathematical model. Thus, the influ-

ence of the modeling error is trivial. However, as the conventional integer order

PID controller, the tracking performance of the system with complicated desired

outputs is always degraded as the tracking frequency increases due to the phase

shift and gain reduction. To enhance the tracking performance, the DFISMC

is considered. Fuzzy tuning is adopted to adjust the integral gain and the frac-

tional order of integral such that the transient response of the control system

is improved, i.e, both low overshoot and ITAE are achieved. The validity and

effectiveness of the proposed methods are confirmed by experiments.
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Chapter 5

Conclusions and Future Works

5.1 Conclusions

Aiming to practical and implementable control schemes which are capable of re-

placing the conventional PID controller widely installed in commercial devices in

the area of micro/nano positioning, as well as achieving excellent tracking perfor-

mance, various advanced control methods have been proposed in this study. First,

the pseudo MPC is proposed and presented in Chapter 2. This scheme requires

less tuning effort. In advanced, high tracking performance and robust against

the modeling error are fulfilled. Second, the prescribed performance DSMC is

proposed in Chapter 3. In comparison with the conventional DSMC and DISMC,

this proposed method offers more degree of freedom which allows the transient

response to be adjusted without influences of steady-state. Besides, the track-

ing performance is as good as the conventional DSMC. At last, the fractional

order-based controllers are discussed in Chapter 3. This type of controller can

be regarded as a generalization of their integer order-based counterparts and of-

fers more degree of freedoms which may lead to the improvement of the control

performance. In details, the PIαDβ of fractional order α and β with a new FOI

approximation technique is proposed. All parameters of the controller are opti-

mized by PSO running on real system instead of the mathematical model. As

a results, the influences of modeling error are removed. The achieved result is
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quite nice with faster response, without overshoot and lower ITAE. However, the

tracking performance with complicated desired outputs is still not improved in

comparison with the conventional PID. Hence, to achieve a better results with

complicated desired trajectories, the DFISMC with fuzzy tuning is also discussed.

Throughout this dissertation, all the control designs as well as analyses are

carried out in discrete-time domain. This approach allows the control action to be

easily implemented in any embedded systems. On the other hand, the disturbance

estimation based on one-step delay technique also plays a very important role in

compensating the uncertainties as well as improving the robustness of the control

system.

Finally, a lot of experiments employing complicated desired trajectories and

external disturbances are conducted to carefully verify the validity and effective-

ness of the proposed control schemes. Comparative experiments are also carried

out to show the advantages of the proposed method over their conventional coun-

terparts. The effectiveness of the proposed controllers can be summarized by

comparative experiments shown in Fig. 5.1 and Fig. 5.2. As can be observed in

Fig. 5.1, the pseudo MPC, PPF-DSMC and FDISMC show much better track-

ing performance in comparison with the conventional PID controller as well as

the fractional PID controller since advanced techniques such as adaptive control,

disturbance estimation are utilized in combination with conventional controllers.

The computation times of each method are provided in Fig. 5.2. Among such

proposed methods, the computation cost of the pseudo MPC is highest because

of the matrix multiplications in update laws. Right behind the pseudo MPC

is the FDISMC. The reason is that the fractional order calculus itself requires

large number of past data. Besides, fuzzification and defuzzification algorithms

are also complicated. Although exhibit lowest computation cost, the fractional

PID can not achieve high tracking performance with complicated desired output.

Hence, the proposed PPF-DSMC seems to be a balance method due to its good

performance and acceptable computation cost.

115



5. CONCLUSIONS AND FUTURE WORKS

0 0.2 0.4 0.6 0.8 1
Time(s)

0

5

10

D
es

ire
d 

ou
tp

ut
(

m
)

0 0.2 0.4 0.6 0.8 1
Time(s)

-0.5

0

0.5

T
ra

ck
in

g 
er

ro
r(

m
)

PID
Pseudo MPC
PPF-DSMC
FPID
FDISMC

Figure 5.1: Comparative tracking errors
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Figure 5.2: Comparative computation times

5.2 Future works

Throughout this study, all the control algorithms are implemented an run on a

personal computer (PC). Due to the communication delay between the PC and

the interface card, the sampling frequency is restricted at 2kHz. This fact prevents
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the authors from using systematical identification methods which is capable of

capturing the behavior of the positioning system at higher frequency to get a

better model. On the other hand, investigating the tracking performance using

high frequency desired output is also impossible. Other type of actuators in the

field of micro/nano positioning have not also been investigated yet. Finally, due

to the complicated and high order of the DFISMC, a systematic design method

to optimize the parameters of the controller has not been well studied. Hence,

the following issues are going to be considered in near future:

a. To verify the developed control schemes for other type of actuators in the

area of micro/nano positioning.

b. To implement the developed control methods on an embedded system

which has similar configuration with the commercial controllers such that fair

comparative experiments can be conducted.

c. To investigate the behavior of the positioning system at high frequency.

d. To propose a systematic design method for the DFISMC.

e. To develop a plug and run controller based on an effective identification

and optimization procedure.
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