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Abstract
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by Nguyen An Hung

The development of the Internet of Things (IoT) has made significant

changes to people’s lives now and in the future. With the develop-

ment of the Internet, smartphones, and especially sensor devices, IoT

is becoming the new trend of the world. IoT is defined as objects that

can connect to the Internet. We enter the house, unlock the door, the

lights will automatically light up where we stand, the air conditioner

will automatically adjust the temperature, the music will automati-

cally turn on to welcome us, and so on. These things are becoming

familiar in everyday life with IoT technology. However, accompanied

by the explosion of IoT because its utilities will increase security risks,

the more connections are created, the more widely shared data, the

more many security vulnerabilities. As in the past, we studied In-

ternet traffic when it became popular, so understanding, modeling,

and classifying IoT traffic is now more necessary than ever. The main

objectives of this research were to solve the problem of IoT traffic

understanding by using a traffic generator dedicated to the IoT en-

vironment as well as identify smart devices and detect anomaly in

an IoT network. In this dissertation, I designed a novel IoT traf-

fic generator called IoTTGen. I generate synthetic traffic for smart

home and bio-medical IoT environments. Simultaneously, I also build
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a smart home testbed to validate and compare with generated traffic

from IoTTGen. Then, I have a visual observation of IoT traffic prop-

erties by Behavior Shapes. My generator succeeds in capturing the

characteristics of the IoT traffic. Additionally, I also proposed a new

method to identify IoT devices based on traffic entropy. I compute

the entropy values of traffic features and I rely on Machine Learning

algorithms to classify the traffic. My method succeeds in identifying

devices under various network conditions with performances up to

94% in all cases. My method is also robust to unpredictable network

behavior with anomalies spreading into the network. In my future

research, I intend to experiment with more distinct environments. I

will also consider other scenarios and cybersecurity threats.
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Chapter 1

Introduction

This chapter aims to introduce the overview and motivation so that readers could

comprehend the importance of this dissertation, which studies an approach for

modeling and identifying IoT traffic and detecting anomalous IoT traffic. Firstly,

the existing problem will be presented in this chapter. Secondly, beneficial contri-

butions are suggested and some examples are also provided. Finally, a summary

of this chapter and the structure of this dissertation are described.

1.1 Overview

The Internet of Things (IoT) has opened up a new cyber-physical technological

era. The rapid development of IoT is already impacting our daily life. The

prevalence of smart homes, smart cities, and industries 4.0 are also notable. IoT

devices are known as devices that can exchange data over a network without

human interaction. International Data Corporation (IDC) forecasts that by 2025

about 41.6 billion IoT devices will be connected to the Internet and the total

volume of generated data will reach 79.4 zettabytes (ZB) of data [61]. This

growth is not expected to slow down and may increase several times over the

next few years.

Smart devices are also becoming more innovative: for instance, smart homes

can be equipped with several sensors that can remotely control video surveillance,

lighting, and/or heating system [62]. Humans use these IoT devices in their daily

lives; therefore, they become an essential part of our lives. More and more people

are using IoT devices connected to the Internet and thus, the traffic generated

1



1.2 Motivation and goal

from IoT devices is increasing year by year. The demand for using IoT devices

has increased accordingly.

1.2 Motivation and goal

Just as I know about Internet traffic, it is also important to understand the

specific characteristics of IoT traffic. It contributes to the control, performance

evaluation, or security of IoT devices operating as intended. IoT traffic is different

from Internet traffic, so I also need to understand the characteristics of IoT traffic.

Thereby, I need to apply security policies as well as an individual approach to IoT

traffic. Alternatively, understanding the IoT traffic model also helps us research

and manage the IoT network better.

Researchers and network administrators still lack tools to generate, observe,

and display the behavior of IoT devices. Having the ability to generate IoT traffic

is of great help for researchers testing and modeling traffic in an IoT network to

validate that devices are working as intended. Besides, with the ability to observe

and display the behavior of IoT devices promptly also helps in detecting anomalies

and managing the network in a better way.

The goal of this thesis is first to describe how IoT traffic can be accurately

emulated. Specifically, the focus is on traffic between IoT devices and gateway, so

here I have designed an IoT traffic generator that can accurately mimic the real

traffic in the IoT environment. My second goal is to classify IoT devices by using

a new method based Machine Learning algorithms and entropy values. Finally,

I aim to detect IoT traffic anomalies with using synthetic traffic generated by

IoTTGen and real traffic collected from testbed.

1.3 Challenges

With the widespread popularity of IoT devices today, there is an increase in

security vulnerabilities and network attacks. The benefits from IoT devices are

apparent, there is also a danger when it falls into the hands of hackers. For

example, a security camera can protect our home from unauthorized intrusion,

but when the security camera data is stolen, the victim’s personal information

images are most likely easily spread or it becomes an advantage for breaking into

2



1.4 Contribution and Thesis Organization

the house more comfortable. Therefore, securing IoT devices from attack is more

important than ever and a challenge in this day and age.

Regarding security in the IoT environment, commercial devices such as lap-

tops, PCs, or smartphones are all equipped with anti-virus software to protect

and detect unusual device activities. However, IoT devices have a limited re-

source, so I need a way to be tracked and detected from an external source such

as the network middle-box or gateway. Moreover, with the features of IoT devices

such as a large scale and heterogeneity, security becomes more complicated.

1.4 Contribution and Thesis Organization

In order to resolve the difficulties as mentioned above in modeling IoT traffic and

detecting anomaly. The main contributions of this dissertation can be summa-

rized as follows:

1. I designed IoTTGen - a novel IoT traffic generator. This is a packet-level

traffic generator tool dedicated to the Internet of Things traffic. I used IoTTGen

to generate custom parameter traffic and extracted parameter (extracted from

real dataset) traffic. It also has been used to model smart home and bio-medical

use case environment. I also extracted anomalous IoT traffic from a real dataset

and study the IoT traffic properties by computing the entropy value of traffic

parameters. My generator succeeds in capturing the characteristics of the IoT

traffic, which can be visually observed on Behavior Shape graphs.

2. In order to validating the effectiveness of IoTTGen and comparing between

synthetic traffic and real traffic, I setup a testbed with 5 IoT devices emulating

a smart home environment. These devices include a hub, a camera, a bulb and

two plug. The trace of IoT traffic are collected for a period of one week. The

results show that my generator succeeds in modeling the IoT traffic and capture

its main characteristics.

3. Based on traffic traces obtained from testbed, I proposed a new method

to identify and classify IoT devices. I analyzed the traffic characteristics of each

IoT devices and compute the traffic entropy while applying the machine learning

algorithms to classify IoT devices. The proposed approach is trained, validated

and demonstrated to achieve over 94% accuracy under various network conditions.

3



1.4 Contribution and Thesis Organization

My method is also robust to unpredictable network behavior with anomalies

spreading into the network.

The organization of this thesis is described as follows:

Chapter 1: Introduction. The motivation and goal of this research were de-

scribed in this chapter. In addition, the research overview was also presented.

The primary contributions of this research were also concretely summarized in

this chapter.

A literature review is provided in Chapter 2. The issues related to data collec-

tion and modeling are thoroughly resolved in detail from Chapter 3 to Chapter 5.

Chapter 6 concretely concludes the work and figures out future work direction.

Chapter 2: Literature review. In this chapter, I discuss previous researches

related to the topics of this dissertation.

Chapter 3: Generating IoT traffic: A Case Study on Anomaly Detection. This

chapter proposes a novel IoT traffic generator called IoTTGen. In this chapter,

I present a packet-level traffic generator tool used to study the properties of IoT

traffic. IoTTGen has been also used to model different IoT use case environments

such as smart home or bio-medical environments. This chapter also make a

comparison between synthetic traffic and measured traffic in various condition.

Chapter 4: Entropy-based IoT Devices Identification. This chapter proposes

a new method to to identify IoT devices. The proposed approach is to combine

entropy value and machine learning algorithms in order to classify IoT devices

under various network conditions.

Chapter 5: Conclusion and Future Work. This chapter concludes the disserta-

tion by which advantages as well as remained difficulties were discussed. Finally,

research directions of great interest for the future work were figured out.

4





Chapter 2

Related works

In the previous chapter, I described the introduction of this dissertation to de-

scribe what motivation of this research was and explain what problems were

herein addressed, including this research’s objectives and contributions. This

chapter aims to provide an idea of the state of art of the corresponding areas. I

will review the existing works and thoroughly discuss their solution and problems.

Corresponding to the stated challenges, this chapter is organized into six parts:

traffic generator, IoT traffic characterization, identify and classify IoT devices,

smart home testbed, entropy-based method, and anomaly detection.

2.1 Traffic generator

In order to evaluate the performance of the network and characterize traffic, traffic

generators are known as important and powerful tools. Many traffic generators

have been developed in different forms, such as open-source software, research

projects, or even commercial products. We can mention a few popular traffic

generators as follows:

• D-ITG (Distributed Internet Traffic Generator) [1]: is a platform that can

generate both IPv4 and IPv6 traffic.

• PackETH [2]: is a GUI and CLI packet generator tool that can create and

send any Ethernet packet or sequence of packets.

6



2.1 Traffic generator

• PktGen [3]: is a traffic generator that can generate packets with a fixed

delay and sequence numbers

• Iperf [4]: is a traffic generation tool that allows user to experiment TCP

and UDP parameters such as delay, bandwidth, window size and packet

loss.

• Ostinato [5]: is an open-source network traffic generator with a friendly

GUI.

• IP-Traffic [6]: is a commercial traffic generator for IP networks using UDP,

TCP and ICMP protocols. It is developed by ZTI-Telecom.

Table 2.1: References for traffic generators

Traffic gen-

erators

Transport

protocol
Interface

Open

source

IoT

traffic

D-ITG [1]

UDP, TCP,

DCCP, SCTP,

ICMP

Command

line
X x

PackETH [2]
UDP, TCP,

ICMP, IGMP

GUI,

Command

line

x x

PktGen [3]

UDP, TCP,

ARP, ICMP,

GRE, MPLS

Command

line
X x

Iperf [4]
UDP, TCP,

SCTP

Command

line
X x

Ostinato [5]

TCP, UDP,

ICMP, IGMP,

MLD

GUI X x

IP-

Traffic [6]

UDP, TCP,

ICMP
GUI x x

IoTTGen [7]
UDP, TCP,

ICMP

Command

line
X X

We cannot deny that the traffic generator is one of the best ways to inject

traffic into the network for utilization by other devices. Furthermore, it is useful

7



2.2 IoT Traffic Characterization

in evaluating the performance of devices under test. Most previous traffic gener-

ators focus on the Internet traffic, but I just consider IoT traffic for my research.

Therefore, I used IoTTGen as a traffic generator dedicated to the IoT network.

2.2 IoT Traffic Characterization

The Internet of Things has become a tremendous topic but there is still only a few

studies investigating the IoT traffic and its impact on networks. Shahid et al. [28]

collect traffic from smart home sensor devices. They visualize IoT traffic with

t-SNE method in order to classify network traffic for each device. Furthermore,

Koroniotis et al. [20] deploy a Bot-IoT testbed and they made their data publicly

available. They analyzed their dataset through machine learning methods for

forensics purposes. Ferrando et al. [26] rely on streaming data analytics to

detect abnormal IoT traffic. They visually observe the traffic from heterogeneous

sensor devices with Behavior Shape. My works differ as I aim at characterizing

IoT traffic, and I design an IoT traffic generator for modeling traffic in various

environments. I also apply my generator to the case study of IoT traffic anomaly.

2.3 Identify and classify IoT devices

Machine Learning algorithms have already been used to identify and classify IoT

devices. In [46], Shahid et al. use t-Distributed Stochastic Neighbor Embedding

(t-SNE) to recognize the type of four kinds of IoT devices. Feng et al. [47] rely

on a hybrid IoT device classification framework by combining Empirical models

with advanced machine learning models to classify IoT devices. Bezawada et

al. [48] build a static and dynamic behavioral model based on packet header and

payload features. By using multiple machine learning classifiers, they fingerprint

IoT device types with high accuracy. In order to classify and distinguish IoT

devices from other devices, Ortiz et al. [49] rely on a Long Short Term Memory

(LSTM) neural network, which automatically learns features from the device

traffic. This work shows that it is feasible to identify devices after automatically

learning a few TCP-flow samples with high accuracy.
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Table 2.2: References for methodology

Scheme Methodology Goal

Shahid et al. [46]
t-Distributed Stochastic Neigh-

bor Embedding

Recognize type of de-

vices

Feng et al. [47]

A hybrid IoT device classification

framework (Empirical models and

Advanced ML models)

Classify IoT devices

Bezawada et al. [48]
Use multiple machine learning

classifiers

Fingerprint IoT device

types

Ortiz et al. [49]
Long Short Term Memory neural

network
Classify IoT device

My research
Combine traffic entropy value and

ML algorithm

Identify and classify

IoT device

2.4 Entropy-based method

Regarding Internet traffic, there have been several studies relying on the entropy-

based method as a good candidate to detect anomalies [41] [42] [52]. Among them,

Bereziński et al. [42] show the ability to detect a broad spectrum of anomalies by

using supervised learning with parameterized entropy. Shukla et al. [53] computed

entropy values for a features vector and a list of legitimate traffic is then provided

for filtering the traffic. Callegari et al. [54] propose an intrusion detection system

by measuring the entropy associated with the traffic descriptors. They identify

traffic features and detect anomalies with different network scenarios.

2.5 Anomaly detection

For modeling attacks, Arnaboldi et al. [30] propose an IoT system model for

generating synthetic DoS. Erlacher et al. [31] propose an automated system for

generating attack traffic for network intrusion detection system. Huang et al. [32]

implement attack models in Omnet++ simulator tool and they evaluate the per-

formances of their intrusion detection system for sensor networks. Salem et al. [34]

propose a framework to detect anomalous changes in the medical wireless sensor
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network. Along with Cassas et al. [35] and Papadopoulos et al. [36], several stud-

ies rely on Machine Learning methods for classification and anomaly detection.

Furthermore, there have been other studies for detecting anomalies in IoT

traffic. Ozcelik et al. [55] proposed a model aiming to detect and mitigate IoT-

based DDoS attack by investigating SDN’s capabilities in edge IoT networks.

The use case of Mirai malware is, therefore, evaluated. Intrusion Detection Sys-

tem has also been proposed for IoT. Fu et al. [56] presented an automata-based

intrusion detection method for Internet of Things. By using an extension of

Labelled Transition Systems, three types of IoT attacks can be detected: jam-

attack, false-attack, and reply-attack. Similarly, Gajewski et al. [57] proposed a

two-tier Intrusion Detection System in the smart-home environment, which can

identify network attacks by using neural networks based on monitoring records.

Besides, based on the analysis of the behavior of attackers, Martin et al. [58]

combined three practical techniques: honeypot, deep packet inspection (DPI),

and a realization of moving target defense (MTD) in port forwarding to detect

anomaly. Summerville et al. [59] proposed a deep packet anomaly detection ap-

proach with the ability to distinguish between normal and abnormal payloads.

The bit-pattern matching technique was used to perform feature selection. How-

ever, this method is limited due to the resource constrained of IoT devices, while

our works focus on consumer IoT devices. Moreover, several popular IoT devices

such as Amazon Echo or Tp-link Bulb rely on the TLS protocol for communica-

tion encryption. Thus, the DPI approach is more difficult in the context of smart

IoT Devices and use more resources. Besides, using the DPI method without the

user’s permission can also be considered a violation of the information privacy of

the user [60].

2.6 Smart home testbed

Many previous research works deployed IoT testbeds that aim to research the

IoT network. There are large-scale testbeds facilities such as FIT IoT-Lab [50]

or WISEBED [51] which used a large number of sensors from different vendors.

However, for reproducing real a smart home environment, most testbeds are

smaller scale testbed equipped with commercial IoT devices as shown in the

Table 2.3. Indeed, for a consumer user, the number of devices in a smart home
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is mostly limited (e.g., a few for each room, etc.) However, the way to build a

testbed of these research works is also different. For example, [8], [9] and [28]

use only one manufacturer per device while [10] uses three different manufactures

for camera or [47] uses three different manufactures for plug. Besides, some

testbeds [9] [10] have additional non-IoT devices or testbed from [47] includes

Raspberry Pi sensors. These studies all use smart home testbed and Machine

Learning to identify the class of IoT devices (e.g., hub, camera, plug, etc.). In my

research, I also deploy a small-scale testbed as most previous papers are used.

Table 2.3: References for IoT testbeds

Testbeds
# of

Manufactures Type of IoT devices

IoT

devices

non-

IoT

devices

Adjih et al. [50] 2845 0
WSN430, M3, A8,

Turtlebot, Wifibot

Sensor, Mobile

robot

Chatzigiannakis

et al. [51]
750+ 0

Pacemate, iSense,

TelosB, MicaZ,

SunSPOT, Tmote

Sky, MSB-A2

Sensor

Feng et al. [47] 11 0

Samsung, Insteon,

YI, Belkin, Wemo,

Z-Wave, Raspberry

Hub, Camera,

Plug, Sensor

Ammar et

al. [10]
7 5

D-Link, Panasonic,

TRENDnet, Philips,

Chromecast

Camera, Light,

Speaker, TV

Anthi et al. [9] 7 3
Amazon, Belkin, TP-

Link, Hive, Apple, HP

Hub, Camera,

Plug, Sensor, TV,

Printer

Apthorpe et

al. [8]
4 0

Amazon, Nest, Belkin,

Sense

Hub, Camera,

Plug, Monitor

Shahid et

al. [28]
4 0 TP-Link, Nest, D-Link

Light, Camera,

Plug, Sensor

Our testbed 5 0
Amazon, TP-Link, Le-

fun, Teckin

Hub, Camera,

Light, Plug
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Chapter 3

Generating IoT traffic: A Case

Study on Anomaly Detection

3.1 Introduction

The Internet of Things (IoT) has been rapidly extending these last years and has

already an impact on our daily life. There are more and more sophisticated sensor

devices remotely accessible through the Internet, performing complex tasks such

as collecting data or monitoring the environment for providing new services. For

instance, Cisco has predicted that approximately 28.5 billion devices will be con-

nected to the Internet by 2022 [13]. This trend leads to new kind of applications

for various environments such as smart home, smart healthcare, smart industry,

smart cities, etc. As an example, it is now common to have several sensors at

home to control the heating system, video monitoring, or lighting system.

As it is expected that the Internet of Things will count for a major part

of the Internet traffic, there is still only a few studies for characterizing IoT

traffic. Besides, IoT is also facing new challenges regarding cyber-security and

privacy; the rise of IoT has also unveiled new vulnerabilities for devices. Indeed,

even though the monitoring environment can provide new services to users, the

collected data also conveys critical information about users and their privacy. For

instance, Mirai DDoS Botnet has seriously slowed down the Internet in 2016 [40].

Some exploits have also reported the virtual Carjacking of a vehicle [12]; it has

also been shown that the data from Heart monitoring systems for babies were

unencrypted, and alert in case of an emergency could have been modified and
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3.2 IoT Traffic Generator

have a strong impact on the medical process [14].

Traffic generators are essential tools for evaluating the performance of the

network and characterize traffic [15]. There have been already several traffic gen-

erators [16] such as Iperf, PackETH, D-ITG, and Ostinato but they focus on

the Internet traffic while IoT traffic has different characteristics, such as hetero-

geneity of source, multiple sources, new traffic pattern and different supported

services [17]. As IoT traffic show different properties, it is not clear which data

should be collected, which rate and from which source. For instance, there are

plenty of different kinds of IoT devices, from the smart camera to smart light,

also designed by various manufacturers, presenting different functionalities and

whose network traffic pattern is significantly different [18].

In this context, knowing the characteristics of IoT traffic could help to prevent

security threats and mitigating vulnerabilities. For instance, a network admin-

istrator can detect abnormal changes in IoT traffic and early detect attacks and

provide counter-measures.

In this paper, I design IoTTGen, a novel IoT traffic generator. IoTTGen is

a packet-level traffic generator tool and it is used to study the properties of IoT

traffic. IoTTGen has been used to model different IoT use case environments

such as smart home or bio-medical environments. To the best of my knowledge,

IoTTGen is the first tool for generating IoT traffic and study its characteristics.

I then use IoTTGen to generate IoT Traffic and also anomalous IoT traffic

from the real dataset. The entropy of traffic parameters is computed and I can

visually compare the traffic on Behavior Shape graphs. My traffic generator shows

its ability to capture the different properties of IoT traffic. By visually comparing

the traffic shape, it is possible to detect traffic anomalies and react accordingly

to security threats in the network.

The remainder of this paper is organized as follows. Section II introduces

IoTTGen, my novel IoT traffic generator. Section III presents the experiments

I performed with my generator to study the IoT traffic properties. Section IV

analyzes the results of my experiments. Section V surveys the related work while

concluding remarks are in Section VI as well as future perspectives.
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3.2 IoT Traffic Generator

Figure 3.1: IoTTGen - Packet Generation process

3.2 IoT Traffic Generator

3.2.1 Overview

IoT traffic is the aggregation of packets generated by several devices that could

come from different environments such as smart home or smart cities. These envi-

ronments involve several sensors that are dedicated to specific tasks such as mon-

itoring system or collecting cyber-physical values (temperature, humidity, etc.)

Thus, compared with Internet traffic where traffic has some human-generated as-

pects (flash-crowd, popularity, etc.), IoT traffic can be more easily predicted as

sensor devices are deployed to perform continuously the same tasks and generate

periodically the same amount of data. Some alerts can also occur, adding less

predictable traffic behavior, but they are still part of the way of working of the

sensor devices. Thus, I design IoTTGen, a packet-level IoT traffic generator tool.

My packet-level generator is able to finely tune all the feature parameters of the

traffic such as packet size or time interval between packets. I believe this tool

can be essential for modeling IoT traffic, to study its characteristics, to model

unpredicted traffic behavior, and to understand IoT traffic anomalies.
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3.2.2 Architecture

With IoTTGen, different kinds of IoT environments can be modeled, in which

each sensor device produces its own traffic trace according to its functionality

and characteristics. For instance: one may expect that a video recording camera

will generate continuous flows of data with large packet-size, while smart plug

generates small-size packets at a slow pace. IoTTGen is designed to easily config-

ure the parameters of each device. All the packets generated for each device are

stored into a single trace file, and different formats are supported such as pcap,

csv, or txt.

IoTTGen architecture is composed of the following components:

• Device configuration module,

• Packet creator module,

• Main controller.

The device configuration module defines the configuration of IoT devices such

as packet size, port number, payload, and period of time between packets. In

order to add a new device (smart light bulb or camera), the user needs to define

a new device template.

The packet creator module is forging the packets based on the device con-

figuration from the previous module. I rely on Scapy [19] to forge packets and

generate real packet traffic. Depending on its needs, it is also possible to generate

only packet traces in text format. For the long-duration experiment, it reduces

drastically the duration of the packet generation process.

The main controller is responsible to control the execution of the IoTTGen.

The controller will extract the parameters provided by the device configuration

module and instantiate the packet creator to forge packets or provide packet

trace. The main controller will be also responsible to merge each device trace

into a single trace. It is of course still possible to generate one trace per device.

3.2.2.1 Device generated traffic

IoT devices are dedicated entities performing continuously their task such as sens-

ing the environment, transferring the data among objects or users automatically
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3.2 IoT Traffic Generator

without human intervention. Thus each device is generating continuously traffic

even though there is no user requesting explicit information. Fig. 3.1 illustrates

the packets generation process of IoTTGen. The period for generating packets

varies for each kind of device and can be configured. For example, in Fig. 3.1, de-

vices have a period of 1s 1.5s, 1s, and 2s. As for generating traffic, all the devices

are synchronized and have the same time origin, but it is also possible to config-

ure the starting time and add some delays among packets and periods to reduce

the synchronicity of devices. Then, each device generates a different amount of

packets with a different time period for the entire duration of the scenario.

3.2.2.2 Human generated traffic

Besides, IoTTGen can also generate traffic triggered by human activities. Each

device has different event patterns, such as the smart plug has turn-on event

and turn-off event, so IoTTGen can also model the traffic generated by human

activities. The user also can create different scenarios for using IoT devices as

regular daily activities. For example, when coming home, a user can turn on the

bulb and plug, launch Spotify music service on the hub, and access the record

activities of the camera. In Figure 3.1, Plug 1 is switched on at time Activity 1,

and, as an example, two packets are generated for Plug 1. Then, when Bulb is

switched on at time Activity 2, IoTTGen generates packets accordingly. Thus,

human activities traffic can be generated easily using IoTTGen.

3.2.3 Use Case

My generator has been designed to emulate various kinds of scenario configura-

tions with a large number of devices. As a larger-scale use case, let me consider

a scenario in which a small company equipped its office with 50 smart devices

as follows: 4 hubs for each main open space, 8 Cameras, 20 Light Bulbs, and 20

electric Plugs for each Desk. As for the experimental setup, I generated a two

hour-long traffic trace in which there is no human activity, i.e., there is only the

signaling traffic of the smart devices. No device is actuated by users (e.g., turning

on/off light, or plug, etc.). IoTTGen generated the traffic for all these devices,

whose traffic parameters are derived from previous measurements (packet size,

number of packets, etc.).
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Figure 3.2: Measured traffic, Synthetic traffic with measured parameters of 5

devices and 52 devices

The overall traffic of this experiment is shown in Figure 3.2. In the figure, I

also show the overall traffic of the smart home experiments: (i) synthetic traffic

generated by IoTTGen and (ii) measured traffic from my smart-home testbed. As

it was expected, the synthetic and measured traffic for the smart-home testbed

reach the same bandwidth (4Kbps) and they overlap: IoTTGen is able to capture

the characteristics of the traffic and to generate traffic accurately. For the larger-

scale experiments with 50 smart devices, there is obviously more generated traffic

(25Kbps). This use case is to show the ability of my generator to emulate any

scenario and generate the traffic accordingly.

In the following, I will rely on the smart-home scenarios as it is the more

popular set up configuration with commercial smart devices. IoTTGen is however

able to generate the traffic of any kind of smart device (e.g., weather, motion

sensors) by providing the traffic profile of these devices.

In the following section, I will show how I apply IoTTGen into two different

IoT environments and generate a different kind of traffic.

3.3 Experiments

In this section, IoTTGen is used for implementing experiments and generating

synthetic IoT traffic for two different IoT use cases: smart home and bio-medical
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environments. I also generate malicious traffic by extracting anomalous traffic

from the real dataset [20]. Thus, I aim to investigate the properties of IoT

traffic and to study the impact of malicious traffic. All the experiments have

been conducted on a PC with Intel Core i7-7700 3.6GHz processor and 8GB of

memory. The operating system is 64-bit Windows 10 Professional.

3.3.1 Smart Home Environment

A smart home is a house equipped with (multiple) cyber-physical sensors allowing

inhabitants to obtain information on their environment (e.g., temperature) and to

control and monitor it remotely (e.g., turn on types of equipment, etc.). One can

mention typical sensors for temperature, humidity, light control, smart hub, etc.

In my smart home environment, the devices are connected to the Internet with

Wi-Fi through a home gateway, which can control the flow of information among

smart appliances to the remote network. Thus, remote users can also access data

and control home sensors with dedicated devices such as smartphones, tablets,

computer, etc.

3.3.1.1 Smart Home Scenario

In order to generate IoT traffic for a smart home, I set up an experiment with a

four-room house equipped with 13 smart devices as follows: one smart hub (e.g.,

Amazon Echo) which is in charge of controlling other devices; then, each of the

four-room is equipped with a smart camera (e.g., Belkin NetCam), a smart light

(e.g., Lifx Bulb), and a smart plug (e.g., TP-Link Smart Plug). The experiment

is described in Fig. 3.3.

I consider two distinct sets of parameters for the smart home environments (a)

a case with custom parameters; (b) another case with parameters extracted from

the dataset [21]. The rationale is to show that the different parameters will have

an impact on generated traffic. Table 3.2 summarizes the custom parameters

that I model based on the functionality of each device. For instance, a smart

plug generates periodically short-size packets (100 Bps) as they are low bandwidth

sensor devices; Smart hub may have larger packet size (200 Bps) for a management

purpose but with the same period. Differently, I consider that a smart camera

is a high bandwidth device and it is continuously generating large-size video
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Figure 3.3: Smart Home Scenario

Table 3.1: IoTTGen - Extracted Parameters for Smart Home

Period (s) Packet Size (B)

Smart Hub 2.77 144

Smart Light 3.2 94

Smart Camera 2 100

Smart Plug 10 120

Table 3.2: IoTTGen - Custom Parameters for Smart Home

Period (s) Packet Size (B)

Smart Hub 1 200

Smart Light 1 100

Smart Camera 0.05 1,000

Smart Plug 1 100

packets (1,000 Bytes) at a shorter period (50ms) for a video bitrate at 160 Kbps.

Table 3.1 shows the parameters as they have been extracted from the previous

study [21]. With the same network configuration, smart hub, smart light, smart

plug, and smart camera generated short-size packets (144, 94, 120, and 100 Bytes)

at distinct periods (2.77, 3.2, 10, and 2s).

The different parameter values (custom vs. extracted parameters) will have

an impact on the properties of the traffic and it will be described next in Section

IV (Fig. 3.12).
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For this smart home environment scenario, the overall smart-home traffic has

been generated by IoTTGen for three durations: 8 hours, 24 hours and 7 days.

3.3.2 Bio-medical Environment

IoT technology is also used for bio-medical systems, such as real-time monitoring,

personal healthcare, remote medical assistance, and alert devices. Sensors are em-

bedded in medical devices and collect health data [22] such as body temperature,

blood pressure, oxygen, heart rate, etc. With bio-medical systems, there is no

need for frequent visits at the hospital: Doctors are now able to keep track of

patients’ health thanks to wearable devices worn by patients or monitoring de-

vices in the room [23]. Thus, IoT could help to enhance the health condition of

patients and future diagnostic.

3.3.2.1 Bio-medical scenario

For the bio-medical scenario, I conduct another experiment in which patients are

diagnosed with various diseases and allocated to specific treatment rooms under

doctors’ supervision. Thus, I consider a use case medical center with four distinct

rooms according to patients’ treatment and monitoring process. Each room can

host up to four patients and sensors are whether in the room or embedded into the

body to measure physiological parameters. This scenario is illustrated in Fig. 3.4:

a control unit (CU) for each patient is collecting information from sensors and

detect whether significant physiological events occur for patients. Upon event

detection, the CU sends an alert embedding the condition status of the patient.

The frequencies of alarms/alerts have been extracted from real values [24], as well

as the duration of alert ranging from 10 seconds to 5 minutes [25]. A total of 16

CUs are used in this scenario and the parameters for each device is presented on

Table 3.3.

3.3.3 IoT Traffic

The IoT traffic traces statistics are presented in Table 3.4. As it was expected that

the number of packets and the total amount (volume) are proportional to the total

duration of the experiments, one can observe that the bio-medical environment
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Figure 3.4: Bio-Medical Scenario

generated much more traffic than smart home. For the bio-medical scenario,

there are much more packets generated as the period for each packet is shorter;

the packet size is also larger and so does the total amount. It is noteworthy to

mention that even though the two scenarios use a similar number of smart devices

(13 for smart home and 16 for bio-medical), my IoTTGen succeeds in capturing

the characteristics of the different traffic.

3.3.4 Anomalous Traffic

Besides IoT traffic for smart home and bio-medical environments, I also wanted

to model IoT anomalous traffic. I, therefore, extracted from a public dataset [20]

the traffic of several cybersecurity threats such as a) Port Scanning, b) Denial

of Service (DoS) and c) Distributed Denial of Service (DDoS). The anomalous

traffic statistics are presented on Table 3.5 and the total duration of the traces is

38 minutes. DDoS has been generated by 5 bots, while DoS and Port Scanning

have been generated by a single bot.

Then, each of the malicious traffic traces is injected into my generated IoT

traffic, and I obtain five different traces: one synthetic trace for both IoT envi-

ronment (refer to IoT traffic hereafter) and four malicious traffic traces for each

anomaly and a mixture of them (refer to DDoS, DoS, Port Scanning and Mix).
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Table 3.3: Parameters for Bio-Medical Environment

Control Unit Sensors Period (s) Packet Size (B)

CU1
Body Temperature 0.5 50

Blood Pressure 0.5 150

CU2

Body Temperature 1 50

Heart Rate 1 75

Respiratory Rate 1 50

CU3 Electromyography (EMG) 0.5 500

CU4 Cardiography (ECG) 0.5 150

Alert 0.1 50

Table 3.4: IoT Traffic Traces Statistics

Smart Home Bio-Medical

Duration # Packets Volume #Packets Volume

8 hours 115,517 11.47 MB 1,606,740 244.16 MB

24 hours 346,551 34.4 MB 4,781,820 730.64 MB

7 days 2,425,859 240.8 MB 33,055,490 4.97 GB

Table 3.5: IoT Anomaly Traffic Statistics (38 minutes) [20]

# of Packets Packet Size Volume

DDoS 29,375,746 60 B 1.64 GB

DoS 27,634,013 60 B 1.54 GB

Port Scanning 896,335 100 B – 1 MB 841.7 MB

Fig. 3.5 shows the generated traffic used for the smart home scenario. The

total duration of the experiment is 24 hours and cybersecurity threats occur at

06:00 during 38 minutes. The generated anomalous traffic is the mixture of the

3 different attacks and the IoT traffic.

3.4 Results

By designing an IoT traffic generator, my main objective is to characterize IoT

traffic and be able to detect IoT anomaly. In order to study the different prop-
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Figure 3.5: Generated IoT traffic and extracted Anomaly traffic

erties of the traffic, I compute the entropy of 6 traffic parameters: IP source, IP

destination, port source, port destination, packet size, and bytes count. I then

plot the Behavior Shape (BS) graphs [26] of the entropy and can visually compare

the traffic properties.

3.4.1 Validation

Table 3.6: Smart-home Testbed

Manufactures Model # of devices

Smart Hub Amazon Echo Dot 1

Smart Light TP-Link Kasa Wi-Fi Smart Bulb 1

Smart Camera Lefun Indoor Security Camera 1

Smart Plug
TP-Link Wi-Fi Smart Plug 1

Teckin Wi-Fi Smart Plug 1

Prior to studying IoT traffic in smart-home and bio-medical environments, I

aimed at validating the effectiveness of my generator. To this end, I deployed

a lab-scale testbed with 5 devices as for a room in smart-home (Hub, Light,

Camera, Plug) and measured traffic for 24 hours as shown in Table 3.6. I also

used IoTTGen to generate traffic based on parameters extracted from Table 3.7.

These parameters are similar to parameters of measured traffic from my testbed.

Figures 3.6 and 3.7 show the BS of generated traffic from IoTTGen (based on

parameters in Table 3.7). We can observe that the BS of the synthetic with mea-

sured parameters and measured traffic overlap for both figures as they exhibit the
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Figure 3.6: Behavior Shape: Synthetic traffic with measured parameters and

Measured traffic

Figure 3.7: Behavior Shape of Hub traffic: Synthetic with measured parameters

and Measured
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Figure 3.8: Behavior Shape of Camera traffic: Synthetic with measured parame-

ters and Measured

Figure 3.9: Behavior Shape of Bulb traffic: Synthetic with measured parameters

and Measured
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Figure 3.10: Behavior Shape of TplPlug traffic: Synthetic with measured param-

eters and Measured

Figure 3.11: Behavior Shape of TkPlug traffic: Synthetic with measured param-

eters and Measured

26



3.4 Results

same properties. In Figure 3.6, entropy values are nearly even in pairs of synthetic

and measured traffic. In Figure 3.7, 3.8, 3.9, 3.10, and 3.11, it’s similar when

I focus only on each device with ON/OFF activity. It shows that my generator

succeeds in modeling the IoT traffic and capture its main characteristics.

Table 3.7: Testbed - Measured Parameters

Period (s) Packet Size (B)

Hub 1.05 82.5

Camera 0.78 306

Bulb 12.88 80

TplPlug 46.73 85

TkPlug 12.01 85

3.4.2 Behavior Shape Traffic Analysis

Figure 3.12: Behavior Shape: Custom and extracted parameter

Fig. 3.12, 3.13, 3.14 present the BS of the generated traffic for smart home

and bio-medical environments from the experiments presented in Section III.

First of all, for all the figures, one can immediately observe that the entropy

value for the IP destination parameter is equal to 0. This is due to the fact that

for all the experiments, the traffic generated from IoT devices flows to the same

destination, i.e., the gateway, and then there is no entropy as there is only a single

destination.

In Fig. 3.12, IoT Traffic has been generated during 24 hours as a regular daily
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Figure 3.13: Behavior Shape: Smart Home Traffic

Figure 3.14: Behavior Shape: Bio-Medical Traffic
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activity with the same network configuration (smart home environment). I can

observe that parameter values have a direct impact on the shape of the traffic:

extracted parameters exhibit a larger shape than custom parameters. Indeed,

there is the same number of IoT devices but parameters are different (period,

packet size) resulting in different BSs.

In Fig. 3.13 and 3.14, the experiments have been performed for 8 hours, 24

hours, and 7 days. For all these duration, the IoT traffic exhibits the same BS.

Indeed, as synthetic traffic is generated, the traffic parameters stay unchanged

during all the experiments and there is no evolution of the traffic (e.g., there is

no new connected devices, or failure, etc.). Furthermore, the area for the BS

in the bio-medical environment (Fig. 3.14) is larger than for the smart home

environment (Fig. 3.13). Indeed, there are more IoT devices in the bio-medical

environment and they are generating much more packets with a shorter period

of time compared with smart home (Table III) and it will lead to higher entropy

for all parameters.

3.4.3 Anomalous Traffic

Fig. 3.15 and 3.16 present the BS of anomalous traffic (see Section III.D) for

smart home and bio-medical environments. Each figure shows the IoT traffic,

each of the malicious traffic (DoS, DDoS, Port Scanning) and the aggregation

of all traffic (IoT and anomalies). As I previously observed that the duration of

experiments has no impact on the entropy values, for this experiment, I focus on

the daily activity pattern and present the results of the experiment for 24 hours.

From Fig. 3.15 and 3.16, I can immediately observe that malicious traffic has

an impact on the entropy values and the BS of the IoT traffic.

For all the malicious traffic, there is a higher entropy for the destination port

in both environments. It is more pronounced for DoS and DDoS (14.5) than

for Port Scanning (12.8 for smart home and 4.8 for bio-medical). Indeed, these

anomalies come from security threats targeting a large number of destination

ports. Thus, by computing the entropy value, it is possible to visually observe

such anomaly in the network.

Regarding the entropy value of the IP source, IoT traffic has higher entropy

than other malicious traffic. Remind that traffic is generated by 13 IoT devices
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Figure 3.15: Behavior Shape: Smart Home and Anomalies Traffic

Figure 3.16: Behavior Shape: Bio-Medical and Anomalies Traffic
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for the smart home environment, 16 for the bio-medical and that the DDoS is

generated by 5 bots, while DoS and Port Scanning are generated by a single bot,

then there are more distinct IP sources in the legitimate traffic leading to more

variations and higher entropy. However, this parameter allows us to observe

variation in the traffic and detect malicious traffic from a legitimate one. For

source port, the observation is similar as for IP Source. DoS and DDoS rely on

a single port to send traffic and then traffic entropy reaches the lowest value at

0.11 for smart-home and 0.9 for bio-medical. IoT scenarios involve more source

ports and show higher entropy. One can also observe that the impact is more

pronounced for smart home; indeed, there are fewer packets than with bio-medical

environments and anomalous traffic such as DoS or DDoS count for a larger part

of the total traffic.

Regarding the packet size parameter, Port Scanning reaches a higher value

than other traffic and DoS and DDoS traffic show the lowest value. This is due

to the fact that for DoS and DDoS traffic send only 60 Bytes packets while Port

Scanning uses various sizes of packets (100 B to 1 MB, Section III.D Table 3.5)

and IoT traffic uses various sizes of packets according to devices and environment

as shown in Table 3.1 and Table 3.3. Thus, there are more variations for Port

Scanning and higher entropy.

Similarly, the bytes count computes the total bytes by IP source and the

entropy depends on the diversity of packet size and the number of IP sources.

That is why the DoS traffic shows lower entropy.

Besides, in order to evaluate the effectiveness of my generator under the in-

fluence of anomalous traffic, I also use BS graphs. From Figure 3.17, we can

observe that anomalous traffic directly impacts the shape of the traffic. This

impact is equivalent to both synthetic and measured traffic. As I analyzed above,

the malicious traffic shapes are still different from legitimate traffic. With differ-

ent attack cases, the shape of anomalous synthetic traffic nearly coincides with

the anomalous measured traffic. These observations are similar when we con-

sider the traffic of each device with ON/OFF activity under various network

conditions as shown in Figure 3.18, 3.19, 3.20, 3.21, 3.22, 3.23, 3.24, 3.25, 3.26,

3.27, 3.28, 3.29, 3.30, 3.31, 3.32, 3.33, 3.34, 3.35, 3.36, and 3.37.

It shows that with IoTTGen, we can still model IoT traffic successfully under

various network conditions.
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Figure 3.17: Behavior Shape: Synthetic Traffic with measured parameters, Mea-

sured Traffic and Anomalous Traffic

These experiments in two distinct IoT environments have been performed

in order to compute the level of entropy with regards to traffic parameters and

to visually observe the traffic on BS graphs. I observed clearly that different

traffic such as legitimate or malicious traffic show different entropy values and

have different impacts on the network. By using my IoT Generator, I succeed in

picturing the characteristics of different IoT traffic, and I show that it is possible

to detect anomalies based on entropy and visual representation of the traffic such

as Behavior Shape.
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Figure 3.18: Behavior Shape of Hub traffic under DDOS: Synthetic traffic, Mea-

sured traffic and Anomalies traffic

Figure 3.19: Behavior Shape of Hub traffic under DOS: Synthetic traffic, Mea-

sured traffic and Anomalies traffic
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Figure 3.20: Behavior Shape of Hub traffic under PortScanning: Synthetic traffic,

Measured traffic and Anomalies traffic

Figure 3.21: Behavior Shape of Hub traffic under 3-attack: Synthetic traffic,

Measured traffic and Anomalies traffic
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Figure 3.22: Behavior Shape of Camera traffic under DDOS: Synthetic traffic,

Measured traffic and Anomalies traffic

Figure 3.23: Behavior Shape of Camera traffic under DOS: Synthetic traffic,

Measured traffic and Anomalies traffic
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Figure 3.24: Behavior Shape of Camera traffic under PortScanning: Synthetic

traffic, Measured traffic and Anomalies traffic

Figure 3.25: Behavior Shape of Camera traffic under 3-attack: Synthetic traffic,

Measured traffic and Anomalies traffic
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Figure 3.26: Behavior Shape of Bulb traffic under DDOS: Synthetic traffic, Mea-

sured traffic and Anomalies traffic

Figure 3.27: Behavior Shape of Bulb traffic under DOS: Synthetic traffic, Mea-

sured traffic and Anomalies traffic
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Figure 3.28: Behavior Shape of Bulb traffic under PortScanning: Synthetic traffic,

Measured traffic and Anomalies traffic

Figure 3.29: Behavior Shape of Bulb traffic under 3-attack: Synthetic traffic,

Measured traffic and Anomalies traffic
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Figure 3.30: Behavior Shape of TplPlug traffic under DDOS: Synthetic traffic,

Measured traffic and Anomalies traffic

Figure 3.31: Behavior Shape of TplPlug traffic under DOS: Synthetic traffic,

Measured traffic and Anomalies traffic
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Figure 3.32: Behavior Shape of TplPlug traffic under PortScanning: Synthetic

traffic, Measured traffic and Anomalies traffic

Figure 3.33: Behavior Shape of TplPlug traffic under 3-attack: Synthetic traffic,

Measured traffic and Anomalies traffic
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Figure 3.34: Behavior Shape of TkPlug traffic under DDOS: Synthetic traffic,

Measured traffic and Anomalies traffic

Figure 3.35: Behavior Shape of TkPlug traffic under DOS: Synthetic traffic,

Measured traffic and Anomalies traffic
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Figure 3.36: Behavior Shape of TkPlug traffic under PortScanning: Synthetic

traffic, Measured traffic and Anomalies traffic

Figure 3.37: Behavior Shape of TkPlug traffic under 3-attack: Synthetic traffic,

Measured traffic and Anomalies traffic
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3.5 Conclusion

In this chapter, I presented IoTTGen, my new IoT traffic generator tool. I use

IoTTGen to perform experiments and especially for two use cases: smart home

and bio-medical environments. IoT traffic has been generated and IoT anomalies

extracted from a public dataset have also been included. Traffic parameters

entropy has been computed and observed through Behavior Shape graphs.

My results show that the shape of the traffic differs significantly for different

IoT environments. Anomalous traffic also has an important impact on the traffic

shape. My traffic generator succeeds in representing the characteristics of the

traffic and my methodology shows that I can also compare traffic and highlight

anomalies.

For future work, I are now using my generator to model different IoT environ-

ments and characterize different IoT traffic. For instance, I adapt my generator

tool for new scenarios such as smart agriculture or smart factory. My generator

is also tuned to generate IoT network anomalies and combine to measurement

traffic. It is an essential tool for studying consumer IoT devices in a wide range of

scenarios. Regarding my entropy-based identification method, I’m now adapting

to classify IoT devices on the fly. This method could be used in the gateway to

detect immediately legitimate or malicious devices in the network environment.

I are also including my generator into a framework for detecting IoT network

anomalies.
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Chapter 4

Entropy-based IoT Devices

Identification

4.1 Introduction

The Internet of Things (IoT) is the worldwide deployment of connected devices

sensing the physical world and sharing the collected information through the In-

ternet. There has been a wide range of novel IoT applications providing accurate

information into cyberspace for industry, home, or healthcare. This technology

is now part of everyday life and end-users can interact with IoT devices through

their smartphones, tablets, or computers. Thus, Cisco has predicted that more

than 500 billion devices will be connected to the Internet by 2030 [37], hence

having an impact both on the economic growth, as well as a technological impact

on the Internet.

As it is expected that the Internet of Things will count for a major part of

the Internet traffic, IoT devices are still mostly studied regarding their hardware

capabilities [38] or operating systems [39], and only a few studies focus on IoT

devices as communication entities with the aim of characterizing the IoT traffic.

IoT traffic should however exhibit different characteristics than current consumer

Internet traffic because of the multiplicity of sources, the heterogeneity of hard-

ware devices, and also novel services leading to new traffic patterns [17].

The IoT traffic could be seen as the aggregation of packets generated by several

devices from different environments such as smart home or smart cities. These
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environments involve several sensors that are dedicated to specific tasks such as

monitoring systems or collecting cyber-physical values (temperature, humidity,

etc.). Thus, compared with Internet traffic where traffic has some human-centric

features (flash-crowd, popularity, etc.), the IoT traffic and sensor devices con-

tinuously perform the same operations and generate the same amount of data

periodically.

Besides, the rise of IoT has also unveiled new vulnerabilities as observed in

2016 with the Mirai DDoS Botnet, which had a severe impact on the Internet [40].

IoT is, therefore, facing new challenges regarding the cybersecurity of devices and

the privacy of data and communication. Indeed, the collected data can convey

critical information about users, their privacy, and the environment. In this

context, it is essential to characterize the traffic of IoT devices in order to prevent

security threats and mitigate vulnerabilities.

In this paper, I proposed a new method to identify IoT devices. My method

is based on the traffic entropy computed for each device and Machine Learning

(ML) algorithms to classify devices. My method succeeds in identifying devices

under various network conditions with performance up to over 94% in all cases.

My method is also robust to unpredictable network behavior with anomalies

spreading into the network.

The remainder of this paper is organized as follows. Section 5.2 introduces

my testbed, the data collection, and the methodology for identifying IoT traffic.

Section 5.3 discusses on the dataset and the traffic entropy. Section 5.4 empha-

sizes the results of my IoT devices classification method. Section 5.5 summarizes

the paper.

4.2 IoT identification method

I propose a new approach to identify and classify IoT devices based on machine

learning and traffic entropy value. Before presenting my methodology to identify

devices, I first describe my experiment testbed and the IoT device data traffic

collection.
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Figure 4.1: Smart-home Testbed

4.2.1 Testbed

In order to collect IoT traffic, I set up a Smart Home experiment testbed, which

is presented in Fig. 4.1. My testbed is composed of five on-market popular IoT

devices for Smart-Home: an Amazon Echo dot as a Smart Hub, a Lefun Indoor

Security Camera, a TP-Link Kasa Wi-Fi Smart Bulb, a TP-Link Wi-Fi Smart

Plug, and a Teckin Wi-Fi Smart Plug. These devices are connected to the Internet

with Wi-Fi through a home gateway, which can control the flow information

among smart appliances to the remote network.

A Raspberry Pi 3 Model B is configured as a wireless access point and serves

as the gateway to the public Internet and for collecting the traffic. The Raspbian

Jessie OS was used for the Raspberry Pi and additional software applications

were also installed such as DNSMasq for DNS and DHCP services, Hostapd for

the access point, and authentication server services, and Tcpdump for collecting

the traffic. All the traffic from IoT devices was recorded and stored into a single

trace with the pcap file format. I collected the IoT traffic for several days and I

will present results for one-day traffic as other days show similar traffic properties.

Fig. 4.2 shows the one-day traffic on my testbed.
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Figure 4.2: Testbed IoT traffic

4.2.2 Scenarios

4.2.2.1 ON/OFF Activity

The IoT devices are dedicated entities responsible for sensing or interacting with

the physical world, e.g., activating a bulb light or switching off a plug. The

vast majority of use cases in the IoT environment are the periodic transmission

of messages containing sensor measurements, status, or simple commands. For

instance, in the case of smart light, it sends periodically its on/off status. On the

traffic collection day, I performed some activities using the IoT devices from 13:50

to 15:00 and I can observe in Fig. 4.2 that the traffic has significantly increased at

this period of time. I also had some other activities at almost 22:00 and 05:30. I

will refer to these periods of activity as ON periods, while the others are referred

to as OFF periods. The total traffic reaches barely 3.2 Kbps without any activity

(OFF) while it can reach 16 Kbps or up to 40 Kbps while there are some activities

using devices (ON).

4.2.2.2 Anomalous Traffic

Besides the regular users’ activity described previously as ON or OFF period,

another scenario of interest is when the IoT devices are under attacks and there

are some security threats in the network. Indeed, there are more and more IoT

devices connected to the Internet and there have been a lot of cybersecurity
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Table 4.1: IoT anomaly traffic traces (1 minute duration)

# of Packets Packet Size Volume

DDOS 773,045 60B 44 MB

DOS 727,210 60B 41 MB

Port Scanning 23,587 100 B - 1 KB 22 MB

threats or anomalies as seen with Mirai botnet, etc. Thus, it is also essential to

detect the devices accurately when under attack or with anomalous traffic. Then

the operator will be able to react quickly in case of new threats.

To this end, I rely on a public IoT Traffic dataset [20] and I extracted the

traffic of three cybersecurity threats: a) Port Scanning, b) Denial of Service

(DoS), and c) Distributed Denial of Service (DDoS). The anomalous traffic traces

are presented in Table 4.1. The total duration of each trace is one-minute-long.

Then each trace is injected into my collected IoT traffic trace. I then obtain

five different traces: the original traffic depicted in Fig. 4.2, three traces with

including a single anomaly (DDoS, DoS, and Port Scanning) and one trace with

all the anomalies.

4.2.3 Entropy

As I aim to identify IoT devices based on network traffic (legitimate or anoma-

lous), the frequencies of traffic parameters such as IP addresses or ports can help

identify the devices and the network conditions. Hence, I compute the entropy

values of the following traffic parameters [41]: IP Source, IP Destination, Port

Source, Port Destination, Packet Size, and Bytes.

Information Entropy is a quantity in information theory used to measure the

uncertainty [42] (4.1).

H(X) =
n∑

i=1

p(xi)log(p(xi)) (4.1)

The value of entropy can vary from 0 to log(n): a 0-value means that the

observations (i.e., packets) are similar, whereas higher entropy value shows that
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observations are different. In the rest of the paper, I will see that these parame-

ters convey sufficient information to identify the devices under different network

conditions precisely.

As the network activity can vary during day time, intense activity period (ON)

or no activity (OFF), as well as under several cybersecurity threats (DDoS, DoS,

Port Scanning), I split the one-day traffic traces into five minutes-long duration

traffic traces (288 five-minute traces for a 24-hours day trace). In order to classify

the five-minute traces into the ON or OFF period or anomalous, I rely on the

k-means clustering method combined with the mean silhouette value to optimize

the number of clusters [43]. Thus, each five-minute traces can be classified as

active, inactive, or under cybersecurity attacks.

4.3 IoT traffic observation

4.3.1 Traffic Traces

Table 4.2 summarizes the one day trace for my collected traffic. The Camera

which is a high bandwidth demand device generated the major part of packets

and Bytes, while Plugs count for a small amount of the traffic. The Hub also

generated a lot of packets compared with the Camera but the overall Hub traffic

count for a lower amount of data.
Table 4.2: IoT traffic traces (1 day)

# of Packets Packet Size Volume

Hub 82,251 82.5 B 10.9 MB

Camera 110,776 306 B 33.5 MB

Bulb 6,707 80 B 563 KB

TplPlug 1,849 85 B 150 KB

TkPlug 7,198 85 B 583 KB

4.3.2 Cloud Servers

There is a large number of IoT manufacturers on the market today. Each man-

ufacturer has its own cloud server to manage its devices and each DNS query-
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response pair is mapped into a particular domain owned by manufacturers, as

shown in Table 4.3. For instance, the TP-Link plug device will be directed to

devs.tplinkcloud.com. For Internet users, they may access many online servers

(i.e., Web, OSN, e-Business) during their activities. Differently, the IoT devices

are dedicated to a single task and communicate only to a pre-established servers.

By inspecting the remote servers that IoT devices are connecting to, this can in-

dicate whether the device has been corrupted or whether it may send information

to non-legitimate servers.

Table 4.3: Cloud servers and DNS queries for IoT devices

Devices Cloud servers DNS queries

Hub Amazon CloudFront d3p8zr0ffa9t17.cloudfront. net

Camera Mipc s0.mipcgw.com

Bulb TP-Link cloud devs.tplinkcloud.com

Tpl Plug TP-Link cloud devs.tplinkcloud.com

Tk Plug Tuya cloud a3.tuyaus.com

4.3.3 Traffic Entropy Behavior Shape

By deploying an IoT testbed, my main objective is to identify IoT devices based

on traffic entropy. For traffic visualization, I then plot the Behavior Shape (BS)

graphs [26] of the entropy value of the traffic features for each IoT device. As I

split the traffic into five minutes-long time slots, each trace from the same state

(i.e., ON, OFF, or anomalous) shows similar properties and I show the BS of a

single five-minute trace for each device.

4.3.3.1 IoT Devices Traffic

Fig. 4.3 shows the BS of one-day traffic for five distinct days. As the traffic shapes

are consistent over a day, a single day traffic is representative of other days.

Fig. 4.4, 4.5, 4.6, 4.7, and 4.8 present BS for different smart devices during one

day. I can observe that the area of the OFF period is smaller than of ON period,

except for the Camera. It can be explained that in the ON period, the Camera

uses almost only one type of packet while the remaining devices use more diverse
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types. This leads to a decrease in the entropy value expressed by a smaller BS

area for the traffic of Camera ON.

Moreover, the BS for each device is very different and this BS can help to

identify the IoT devices. This can be explained by the fact that each device

has different characteristics and functionality and they are sending or receiving

different kinds of the packet. For example, the Camera uses many different source

Figure 4.3: Behavior Shape of IoT traffic in five consecutive days

Figure 4.4: Behavior Shape of Camera Traffic
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ports when sending packets, and shows a greater entropy value for Port Source

(3.7) than for Hub (2.9), or other devices (i.e., TplPlug 1.55, TkPlug 2.0 and

Bulb 1.9).

In addition, regarding the OFF period, the BS for Camera and Hub are larger

than other devices. Those devices have many functionalities and generate many

Figure 4.5: Behavior Shape of Hub traffic

Figure 4.6: Behavior Shape of Bulb traffic
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Figure 4.7: Behavior Shape of TplPlug traffic

Figure 4.8: Behavior Shape of TkPlug traffic

more packets even in the OFF period compared to other devices (Bulb or Plugs).

Indeed, the entropy values for such devices reach a higher level.
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Figure 4.9: Behavior Shape of Hub traffic with DDOS

Figure 4.10: Entropy for normal and anomalous traffic

4.3.3.2 Anomalous Traffic

When the network is under attack, the number of packets increased drastically.

Therefore, anomalous traffic has a strong impact on the shape of the IoT traffic.

From Fig. 4.9, I can observe that the shape of Hub traffic with DDOS is totally

different from the Hub traffic. DDOS exhibits much higher entropy values for
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Port Destination (16) because it targets a large number of destination ports. For

Packet Size and Port Source, the Hub traffic has higher entropy than DDOS

traffic. Indeed, DDOS relies on a single port to send the packets with the same

size, so its traffic entropy for this feature is close to zero. Overall, the Behavior

Shape is able to represent the nature of the traffic.

Besides, I also compare the entropy values of all device traffic with each

anomalous traffic. Fig. 4.10 shows that the difference between the range of en-

tropy values of anomalous traffic and normal traffic. The entropy values of normal

traffic always fluctuate within a certain range while these values of all anomalous

traffic are almost kept stable. Additionally, the minimum or maximum value of

normal traffic is always greater or less than of anomalous traffic. From the ob-

servation of the entropy value, it is possible to detect anomalies for IoT devices.

4.4 Classification and Evaluation

4.4.1 Classification Algorithms

I observed before that the entropy values of traffic features show different char-

acteristics and can help to identify devices.

I now aim at classifying the devices by relying on Machine Learning algo-

rithms. Remind that my collected one day trace was split into several five

minutes-long traces. I evaluate the effectiveness of my classification by using

a 10-fold cross-validation method [44] and then apply it to an independent vali-

dation dataset. Dataset is randomly divided into two datasets: training dataset

(80% of total instances, i.e., five minutes-long traces) and validation dataset (20%

of total instances).

I first rely on six classification algorithms : (i) Decision Tree (DT), (ii)

Random Forest (RF), (iii) K-Nearest Neighbors (KNN), (iv) Gaussian Naive

Bayes (NB), (v) Neural Network (NN) and (vi) Support Vector Machines (SVM)

through the Weka software [45]. For evaluating the performance of the algorithms,

I consider the following metrics such as True Positive Rate (TPR), False Positive

Rate (FPR), Precision, Recall, and F-Measure. Table 4.4 shows the classification

results of these algorithms on the validation dataset for all devices and network

conditions.
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From my experiments, SVM and NN algorithms perform poorly with the

TPR metric to only 0.2996 and 0.3137, respectively. NB and DT show better

performances but NB only reaches an average level of performances (0.5712),

while DT reaches a higher level and can classify properly about 72% of the IoT

devices. RF and KNN algorithms outperform other algorithms and show a high

level of performances: KNN succeeds in classifying more than 92% of the devices,

and RF exhibits even higher performances up to 94.74%. As RF and KNN

succeed at classifying IoT devices based on the entropy value, RF shows better

performances among all, and I will rely on the Random Forest algorithm for

computing the Classification Matrix in the following.

Table 4.4: Performances of ML algorithms (validation dataset)

RF KNN DT NB NN SVM

TPR 0.9474 0.9277 0.7179 0.5712 0.3137 0.2996

FPR 0.0013 0.0022 0.0110 0.0159 0.0283 0.0291

Precision 0.9512 0.9356 0.7271 0.5767 0.3188 0.3008

Recall 0.9474 0.9277 0.7179 0.5712 0.3137 0.2996

F-Measure 0.9465 0.9267 0.7171 0.5583 0.3813 0.2835

4.4.2 Confusion Matrix for IoT Identification

Figure 4.11: Confusion Matrix RF classification algorithm
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Through all my data, I can define fifty classes based on the states of each

device and the type of network traffic (normal or anomalous). More precisely, the

five devices can be into an ON or OFF states and under five different network

conditions: regular traffic, DDoS, DoS, Port Scanning, and the three attacks

jointly.

After processing the data with RF, I obtain a probability vector for each class

that will be shown on the Confusion Matrix (CM) in Fig. 4.11. The accuracy

of the classification depends on the ratio of accurate predictions. The CM pro-

vides further information into not only the accuracy of different classifiers but

also which classes are correctly or incorrectly predicted and the type of misclas-

sification.

For all devices, my classification method reaches a very high level of accuracy

for detecting the devices under different network conditions. For the Plugs, 96%

of the traffic for this device is accurately classified. The precision for Hub under

the regular network condition is also very high (95%) and still over 80% under

anomalous network conditions. The prediction for Camera OFF also reaches a

high level (96%), but the prediction accuracy decreases under network anoma-

lies. Similarly, for the light bulb, the prediction is very high for the ON state

(98-99%) but drops drastically with the OFF period (43-57%). Basically, the

predictions are very accurate with regular traffic and are dropping while the

network is compromised by cyberattacks. The intense activity period (ON) also

Figure 4.12: Confusion Matrix RF classification algorithm - Synthetic traffic
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shows higher accuracy than OFF with no user activity. Besides, I also classify IoT

traffic based on synthetic traffic from IoTTGen and measured parameters from

Table 3.7. Fig. 4.12 shows the confusion matrix of synthetic traffic. I observe

that these accuracy are almost similar to of classification of measured traffic.

Finally, the classification of IoT Devices based on entropy succeeds in identi-

fying IoT devices and also under various network conditions.

4.5 Conclusion

In this paper, I present my new method to classify IoT devices. My method is

based on the computation of the entropy values of several traffic features. Machine

learning algorithms such as Random Forest are then used to classify the devices

based on the entropy value of the IoT traffic.

My results show that I can reach a high level of performance for classification,

especially in the case of intense activity (94% accuracy). I also train my method

under different scenarios and network attacks and it is still able to classify the

devices accurately.
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Chapter 5

Conclusion and Future Work

This chapter concludes the dissertation and figured out directions for future work.

5.1 Conclusion

In this dissertation, I presented IoTTGen, my new IoT traffic generator tool. I

use IoTTGen to perform experiments and especially for an use cases: smart home

environments. IoT traffic has been generated and IoT anomalies extracted from

a public dataset have also been included. Traffic parameters entropy has been

computed and observed through Behavior Shape graphs. My results show that

the shape of the traffic differs significantly for different scenarios and each type of

IoT devices. Anomalous traffic also has an important impact on the traffic shape.

My traffic generator succeeds in representing the characteristics of the traffic and

my methodology shows that I can also compare traffic and highlight anomalies.

Besides, I also present my new method to classify IoT devices. My method

is based on the computation of the entropy values of several traffic features.

Machine learning algorithms such as Random Forest are then used to classify the

devices based on the entropy value of the IoT traffic.

My results show that I can reach a high level of performance for classification,

especially in the case of intense activity (94% accuracy). I also train my method

under different scenarios and network attacks and it is still able to classify the

devices accurately.
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5.2 Future work

For future work, I’m now using my generator to model different IoT environ-

ments and characterize different IoT traffic. I’m also including my generator

into a framework for detecting IoT network anomalies. Regarding to IoT devices

identificatiion, I’m adapting my method in order to collect and classify the IoT

devices on the fly.
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[41] P. Bereziński, B. Jasiul, and M. Szpyrka, ”An entropy-based network

anomaly detection method,” Entropy 17.4, pp. 2367-2408, 2015.
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