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1. CHAPTER 1 

Introduction 

1.1 Role of lignite in global economy 

The name “coal” describes the general category of solid-state fossil fuels of 

significant hydrocarbon content. Although there are many classifications, from an 

economical point of view, two major groups of this fuel are distinguished: hard coal and 

lignite, also known as brown coal. Besides arbitrary and vague threshold of lower 

heating value, which can vary from 16.5 MJ kg
-1

 [1] to 28.7 MJ kg
-1

 [2], the major 

difference is related to the specificity of production and utilization of those two 

categories of coal.  

The deliberation on structural and technological properties of coal ranks is 

summarized by the Hilt’s Law, which states In a vertical sequence, at any one locality 

in a coalfield, the rank of the coal seams rises with increasing depth [3,4]. Hard coal is 

commonly produced in deep mines, and comes in the form of compact pieces of rock, 

which are feasible to be transported at virtually any distance. Lignite, on the other hand, 

is mined in opencast excavation sites, what is connected with relatively shallow deposits 

of this fuel. However, due to low heating value per mass unit, attributed mostly to the 

high natural water content in lignite, the ratio of prospective energy output to cost of 

transportation is impaired. In addition, low rank coals, which brown coal is assigned to, 

often exhibit significant share of volatile matter. That feature enhances their 
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vulnerability to spontaneous combustion while being stored on a stockpiles [4].  

For the reasons stated above, over 95% of lignite production in particular 

countries is consumed domestically [1], with a prevailing model of lignite-fueled power 

plant situated next to or surrounded by the deposits. That specificity brings about the 

economic contradistinction of hard coal as an international and lignite as a regional 

commodity, because the price of the former is much more prone on the global trends. 

For instance, production cut-backs in China, the largest producer, in 2016 caused the 

significant increase of the spot price of hard coal after a 5-year period of steady decline 

of average price level on export coals [1]. Lignite is not immune to the international 

events in the field of economy and politics, as for example cap and trade introduced by 

the European Union to reduce the carbon dioxide emissions, still the local 

circumstances play a greater role in shaping of its market position. Among these, one 

can list the ownership and geographical location of the lignite complex within a 

domestic power system, the current level of domestic reserves or the cost of mining [5]. 

The relatively low value of the latter in the case of lignite, makes it an important 

compound of energy mixes in countries that possess its deposits. 

In 2015, lignite accounted for 1.7% of primary energy consumption worldwide 

(the corresponding value for hard coal was 27.5%) with a cumulated value of 9.9×10
18

 J 

[1]. In Tab. 1.1 and 1.2, the countries in possession of largest reserves and resources are 

listed, respectively. It should be recognized that the term “reserves” describes the total 

proven mass of feedstock economically feasible in terms of production and exploitation 

with reference to present market situation and state of technology. Meanwhile, the 

expression “resources” gives a hint about a material that is currently not justified to be 

exploited for any reason or a material unproven, but estimated geologically to exist. In 

general, reserves are analogical to “possibility”, whereas resources to “potential”. 
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Table 1.1 Countries possessing largest lignite reserves (as of 2015) [1] 

rank country reserves [Gt] share [%] 

1 Russia* 90.7 28.6% 

2 Australia 76.5 24.2% 

3 Germany 36.2 11.4% 

4 USA 30.2 9.5% 

5 Turkey 11.0 3.5% 

6 Indonesia 8.2 2.6% 

7 China 7.7 2.4% 

8 Serbia 7.1 2.2% 

9 New Zealand 6.8 2.1% 

10 Poland 5.5 1.7% 

- others 36.9 11.7% 

- total 316.8 100% 

*including subbituminous coal reserves 

 

Table 1.2 Countries possessing largest lignite resources (as of 2015) [1] 

rank country resources [Gt] share [%] 

1 USA 1368.0 30.9% 

2 Russia* 1288.9 29.1% 

3 Australia 403.4 9.1% 

4 China 324.9 7.3% 

5 Poland 222.4 5.0% 

6 Vietnam 199.9 4.5% 

7 Pakistan 176.7 4.0% 

8 Mongolia* 119.4 2.7% 

9 Canada 118.3 2.7% 

10 India 38.1 0.9% 

- others 162.3 3.7% 

- total 4422.2 100% 

*including subbituminous coal resources 

 

Judging from the information gathered in the tables 1.1 and 1.2, the ratio of 

reserves to resources varies considerably, what influences the current production 
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potential of the countries. The major lignite producers are pointed out in Tab. 1.3, and 

their share in global production is illustrated by Fig. 1.1. 

Table 1.3 Leading lignite producers in 2015 [1] 

rank country production [Mt] share [%] 

1 Germany 178.1 17.6% 

2 China 140.0 13.8% 

3 Russia* 73.2 7.2% 

4 USA 64.7 6.4% 

5 Poland 63.1 6.2% 

6 Australia 63.0 6.2% 

7 Indonesia 60.0 5.9% 

8 Turkey 50.4 5.0% 

9 Greece 46.0 4.5% 

10 India 43.9 4.3% 

- others 228.8 22.5% 

- total 1011.2 100% 

*including subbituminous coal resources 

 

 

Figure 1.1 Global share of leading lignite producers in 2015 
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1.2 Lignite industry in Poland 

The origin of brown coal exploitation in the area of present-day Poland dates 

back to the 18
th

 century. There were several mines established since 1740 in Turoszow 

region and 1770 became the milestone for beginning of industrial scale exploitation [6]. 

In the entire 19
th

 century the lignite-abundant territories of present-day central and 

western Poland were under control of Prussia (Germany). The Prussian government put 

efforts to take advantage of available resources, founding a number of lignite mines, 

listed in Tab. 1.4. 

Table 1.4 Lignite mines founded on present territory of Poland in the 19
th

 century [6] 

name 
former name 

(German) 
location established 

Conrad - Witoszyn 1877 

Cybinka Bach Cybinka 1864 

Dzialoszyn Edward Dzialoszyn mid 19th c. 

Henryk Lohser Werke Kunice Zarskie 1889 

Jadwiga Gluckstern Kunice Zarskie 1890 

Luban Gluckauf Zareba Gorna late 19th c. 

Pustkowie Max Bodzew 1844 

Sieniawa Emiliensgluck Sieniawa 1873 

Slone 
Grunterberger 

Gruben 
Zielona Gora 1840 

Smogory Oskar Smogory 1886 

Teresa - Kunice Zarskie 1897 

Turow Hirschfelde Bogatynia 1836 

Wiktor - Buczyce 1898 

Zapomniana Joseph Hermann Trojca 1875 

 

No industrial exploitation of lignite was undertaken in the period between the 

First and Second World War, when the Polish state regained independence. In the first 

period after 1945, the Polish lignite industry based on the mines established by Germans 
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in the previous century. The major part of lignite production in the first decade after war 

was covered by Turow lignite mine (see Fig. 1.2), followed by several deep and 

opencast mines in Konin region. However, there was no power generation relying on 

lignite. Significant share of production was assigned to briquetting facilities or exported 

to German Democratic Republic, due to proximity of Turow mine to the western border. 

 

Figure 1.2 Deposits of fossil fuels in Poland (lignite mines marked) 

 

The first power generation unit fuelled with brown coal was connected to the 

domestic grid in 1958, when Konin power plant (580 MW) started its operation. It was 

shortly followed by Turow (1400 MW) and Adamow (600 MW) plants, established in 

1962 and 1964, respectively. The latter year was the first, when domestic consumption 
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of lignite exceeded exported tonnage [7]. In 1967, Patnow power plant (1200 MW) was 

synchronized, constituting the Patnow-Adamow-Konin complex of three lignite-fueled 

plants. The second part of this triad was decommissioned in January 2018. 

A remarkable step in Polish lignite industry was taken in 1980, when first 

batches of lignite were sent from Belchatow mine to nearby power plant. This complex 

shortly achieved the leading position among lignite production sites due to strategic 

location for domestic power system (geographical center of Poland), as well as 

abundant deposits. In 1988, the annual target production capacity of Belchatow mine 

was reached (38,5 Mt) what contributed to setting the all-time record of domestic lignite 

industry at 73,5 Mt [8]. In 2011 a new unit of 858 MW was appended to Belchatow 

power plant, what totalled its installed capacity to over 5400 MW. Due to that fact it is 

the largest power plant in Poland, satisfying around 20% of domestic electricity demand, 

and the second largest coal power plant in the world (following Taichung in Taiwan). 

The selected annual statistics of lignite production and its impact on power generation 

during the post-war era in Poland are gathered in Tab. 1.5. 

Table 1.5 Utilization of lignite in Poland on selected years between 1945 and 1990 [7] 

year 

export 

  

[Mt] 

power  

plants  

[Mt] 

other 

industries 

[Mt] 

total 

production 

[Mt] 

electricity 

generation 

[GWh] 

1945 - - 40 40 - 

1957 4116 - 1838 5954 - 

1958 5192 573 1774 7539 396 

1963 5736 6916 2692 15344 4716 

1964 5381 12098 2800 20279 8479 

1976 3084 34803 1418 39305 27136 

1977 3387 35842 1531 40760 27007 

1978 3332 36373 1300 41005 27195 

1988 - 70559 2928 73487 52585 

1990 223 66416 945 67584 52182 
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After the fall of communism in Eastern Europe accompanied by economic 

transformation of 1989, lignite retained its important role in Polish energy mix. Still, 

due to overall changes in domestic industry, Poland was able to overfulfill the 

commitments of Kyoto Protocol, achieving 30% decrease of greenhouse gases emission 

on the period of 1990 – 2008, having been committed to one fifth of this value [9]. Over 

the last couple of years the share of lignite in Poland’s electricity generation has been 

slightly declining, what also concerns hard coal. In 2016, out of total 164.6 TWh of 

consumed electricity, 51.2 TWh was covered by domestic generation in lignite power 

plants. The major cause for decline in coal role in the energy mix is the increasing share 

of renewable energy sources, what is forced by regulations of the European Union 

aiming at further reduction of carbon intensity. That trend does not concern another 

fossil fuel – natural gas. The reasons might be connected with commissioning of LNG 

terminal in Swinoujscie in 2015, what reduced the dependence on import from Russia, 

and the necessity of increasing the flexibility of the system that increases the share of 

unstable renewable energy sources. 

Table 1.6 Electricity generation in Poland [10] 

category 2014 2015 2016 

total production 98.6% 100.2% 98.8% 

 

professional power plants 88.4% 87.9% 85.5% 

  

water 1.6% 1.4% 1.5% 

  

conventional heat 86.8% 86.5% 84.0% 

   

hard coal 50.6% 50.7% 49.4% 

   

lignite 34.2% 33.2% 31.1% 

   

gas 2.1% 2.6% 3.5% 

 

wind power plants and other renewables 4.6% 6.3% 7.1% 

 

industrial power plants 5.7% 6.0% 6.2% 

transborder exchange 1.4% -0.2% 1.2% 

total consumption [% / GWh] 
100.0% 100.0% 100.0% 

158733 161438 164625 
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The details of lignite production and its influence on power generation in Poland 

are given in Tab. 1.7. It includes the list of Polish lignite mines, matched with the power 

plants that are fueled with their output. Out of 60 million tons extracted in Poland in 

2016, Belchatow mine accounts for roughly 2/3 of the total value. It is followed by 

Konin opencast mine which supplies fuel to three surrounding plants: Konin, Patnow I 

and Patnow II. Together with Adamow power plant, that ended operation in January 

2018, they belong to Zespol Elektrowni Patnow-Adamow-Konin S.A (ZE PAK) 

company. Meanwhile, Belchatow and Turow are owned by the largest Polish power 

company, Polska Grupa Energetyczna S.A. (PGE) which besides production of 

electricity is active in the field of distribution and trade. Note that lignite-fueled power 

plants scored in 2016 the highest capacity utilization rate among various types of power 

generation industries of average 5400 hours per annum. Meanwhile, power plants fueled 

with hard coal attained the mean result of 4200 hours per annum and combined heat and 

power plants worked for average of 3900 hours during the entire 2016 [11]. 

Table 1.7 Polish lignite mines and power plants [11–14] 

mines power plants 

name 
production in 

2016 [Mt] 
name 

beginning of 

operation 

installed 

capacity 

[MW] 

owner 

Belchatow 40.2 Belchatow 1981 5472 

PGE 
Turow 7.5 Turow 1962 1498 

Konin 9.0 

Konin 1958 178 

ZE PAK 

Patnow I 1967 1244 

Patnow II 2008 474 

Adamow 3.5 Adamow 
1964  

(end in 2018) 
600 

total 60.2 total  9466  
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2. CHAPTER 2 

Technology of coal drying 

2.1 Moisture in lignite 

2.1.1 Structural and thermodynamic classification 

As indicated in the previous chapter, lignite has an important position in energy 

mixes of numerous countries. Still, due to elevated content of water (30-70% of a raw 

mass), its utilization is undermined in terms of economical calculation and 

environmental impact. To overcome this obstacle, drying of brown coal is frequently 

applied. The design or selection of the drying system appropriate for the particular 

material should rely on the knowledge about the nature of moisture stored within coal 

structure as well as its interactions with the solid matter of the fuel. 

According to various research [15–17], several types of water may be 

distinguished in lignite, regarding to the circumstances of their structural occurrence, 

and therefore, manners of their removal. The desorption of each type depends on 

relative vapor pressure next to the surface of moisture layer. One of possible moisture 

classifications is presented in Tab. 2.1.  

In general, bulk water represents (Fig. 2.1) the moisture that is deposited by 

forces of adhesion on the surface of the coal or in the space between its particles. 

Meanwhile, capillary water is stored within vessels of plant origin. With the exception 

for some small capillaries of slightly deviated thermodynamics [18], this type, together 
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with bulk water is subject to an uninhibited desorption at a certain constant value of 

latent heat of evaporation. For the purposes of this study, moisture satisfying this 

criterion is classified in general as free water.  

 

Figure 2.1 Types of water in lignite 

 

On the other hand, there is a substantial amount of water that requires larger 

amount of heat to be removed from coal. To a certain degree that is attributed to oxygen 

functional groups in coal, occurring especially in the form of carboxylate salts, that tend 

to bind chemically with hydrogen in water, therefore influencing the high hydrophilicity 

of lignite [19]. That type of chemically adsorbed water, either form a series of layers 

within pores and crevices of the inherent structure or exists as a singular layer of 

molecules bound tightly on the surface of coal [20]. The moisture forming a chemically 
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stabilized layers is classified in this study as bound water, which contains also partially 

water stored in narrow capillaries. Some researchers also mentioned moisture held in a 

closed pores which can only be removed following the destruction of surrounding 

structures [21] or so-called non-freezing water which does not turn to solid phase during 

coal analysis by means of differential scanning calorimetry (DSC) [22] or nuclear 

magnetic resonance [23]. The simplified chart of water types from Tab. 2.1, relating to 

classification used in this study is shown in Fig. 2.2. 

Table 2.1 Classification of water in brown coal [15] 

water type 

relative 

vapor 

pressure 

range p/p
0
 

approximate 

classification 
share description 

bulk 0.96 to 1.0 free water 63.7% 

regular liquid condensed 

on or between coal 

particles 

capillary 0.5 to 0.96 
free/bound 

water 
27.5% 

moisture condensed in 

capillaries 

multilayer 0.1 to 0.5 bound water 4.8% 

weakly 

hydrogen-bounded water 

 on the monolayer surface 

monolayer below 0.1 bound water 4.0% 

water on interior coal 

surface, constituted 

relying on strong 

hydrogen-oxygen bonds 

 

2.1.2 Technological aspects 

The high level of water content, ranging from 30 to 75% [24] deteriorate the 

usefulness of brown coal in power generation technologies. The desired level of 

moisture in lignite assigned for combustion in the pulverized coal boiler is around 

12-15%, whereas gasification may require coal of water share around 5% [25].  
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Figure 2.2 Evaporation heat demand in regard to water types (data from [15] included) 

The negative influence of considerable moisture content is observable as soon as 

during the storage and transportation of mined fuel. In countries, where temperatures 

below 0 
o
C are reported, the problem of freezing arises. Not only does it hinder the 

fragmentation of coal into transportable batches, but due to volumetric expansion 

accompanying ice formation, the devices serving to bring coal from the excavation site 

to the power generation unit may be subject to damage [20].  

Another issue related to that part of brown coal handling is relatively high 

vulnerability to spontaneous combustion at the stockpile. In general, this phenomenon is 

prompted when the rate of low temperature oxidation in air generates more heat than the 

coal bed is giving off to the ambience. According to the observations, the long period of 

dry weather followed by a shower rain fosters spontaneous ignition. This is because the 
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condensation and wetting processes release self-heat in coal, what leads to increase in 

its temperature and consequently to growth of oxidation rate [15].  

The processes of fuel preparation are also undermined by water in coal, which 

decreases the friability of the rock. Thus, the efficiency of coal grinding prior to further 

utilization is reduced, making the preparation workload higher [18].  

The major concern, however, related to significant water share in lignite is 

connected with calorific value. Both sensible and latent heat of water diminish the 

energy output from the fuel by 20-25% [26]. As a consequence, higher fuel input is 

required to generate a certain value of electricity, comparing to bituminous coal. As a 

consequence, more flue gas is produced, increasing the atmospheric concentration of 

carbon dioxide. According to some studies, reduction in water share from 60% to 40% 

may entail decline in CO2 emission per generated electricity by 30% [27]. This matter is 

especially important for the national power systems, which recently are often obliged to 

keep up with the emission caps set for greenhouse gases by international organizations, 

such as the European Union or United Nations [28,29]. 

Another troublesome issue is related to the size of boiler. Due to high inert gas 

input, the temperature of lignite combustion is usually several hundred degrees lower 

than in the case of bituminous coal boiler of the same output. Although this 

technological feature affects beneficially the reduction of nitrogen oxide emissions, a 

larger surface wall of the boiler is required to efficiently collect the radiative heat of the 

hot gases produced in combustion. This requirement significantly elevates the initial 

cost of a boiler adapted to burn lignite, as the height of the construction may exceed the 

bituminous coal furnace by 40-50% [24]. In general, the enhancement in total thermal 

efficiency of the lignite-fueled power plant achievable by means of drying is estimated 

at 4 to 6% [30]. 
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2.2 Available methods of coal drying 

As it was justified in section 2.1.2, moisture in brown coal poses a vital threat 

for its applicability in the power generation industry. Among different methods of 

lignite upgrading, dewatering and drying are frequently used as primary fuel preparation 

or preliminary treatment before advanced coal utilization such as liquefaction, 

gasification, briquetting etc. In Fig. 2.3, the selected major methods of drying are 

presented within the classification of coal upgrading.  

Figure 2.3 Proposed classification of coal drying techniques [18,20] 
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Note that particular techniques may be applied in a combined manner for the 

sake of the optimized effectiveness. The technology of dewatering is adjusted to the 

type of the input (slurry, lumps, fine coal) and the further step of utilization (combustion, 

gasification etc.). 

2.2.1 Evaporative drying 

Rotary drying is a developed technology and the most commonly used for 

low-rank coal upgrading. This method is used in rotary-tube and rotary-drum dryers. 

The latter utilizes a direct heat transfer, where a hot flue gas, at over 350 
o
C, flows 

through coal or an indirect heating scheme, in which a central chamber is surrounded by 

a concentric pipes of heat exchanger. Due to lack of interaction of gaseous medium and 

coal, various fluids, for instance hot steam, may be applied in this scheme. The typical 

consumption of heat for drying is around 3.7 MJ per kilogram of wet material [18]. 

Rotary-tube dryer uses steam of temperature below 200 
o
C. Due to improved exchange 

of heat, the heat transfer coefficient may be 2-3 times larger than in case of rotary-drum 

solution [20]. What is more, its heat consumption is around 3 MJ kg
-1 

[18]. Rotary 

drying system usually operate on coal particles of the size order of 10
-1

 - 10
-2

 m. In 

general, direct drying requires strict control and limitation on oxygen content within the 

drying medium to prevent the hazard of ignition [20]. 

The idea of pneumatic dryer relies on a vertical tube, where hot gas is driven at 

high velocity, connected to the wet material feeder. The particles of material hover on 

the flowing gas, up to the dry product collector. Speed of particles free falling cannot 

exceed the speed of gas, what limits the size of dried particles, and precludes operation 

on lump materials. Another drawback of this technology relates to the high dustiness of 

the stream, what requires installation of efficient filters at the output of the system [31]. 

On the other hand, the construction of the system is not sophisticated and relatively low 
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budget. Around 3.1 MJ of heat input is required for drying of 1 kg of the material [18]. 

The basic feature of solar dryers relates to the general characteristics of 

renewable energy sources, to which solar energy can be assigned: it is free, but 

moderately foreseeable. Solar drying is in fact the ancient method of dewatering, 

applied from conservation of food to manufacturing of construction materials. The solar 

dryers applied in non-industrial drying of food or timber commonly and purposefully 

take advantage of the stack effect, thanks to which hot air is driven from the bottom to 

the top of the device, enhancing the convective heat transfer [31]. As to brown coal 

drying, the efforts were made in Latrobe Valley, Australia, to produce an aqueous slurry 

of fine (10 μm) grinded lignite, which was subsequently driven into a pond to dry in the 

sun. Due to slow drying accompanied with shrinkage, the compact hard lumps of brown 

coal were produced in that process [15]. 

Short drying time and high heat transfer rate contributed to growth of interest in 

microwave drying. This technology differs from the majority of techniques by 

harnessing the radiation and marginal role of convective heat transfer. Due to 

permeability of microwaves, the energy is transferred at a high rate to the wet part of the 

material and couples within moisture. Therefore, a low thermal inertia accompanies the 

drying process, which intensity may be readily regulated or switched on/off [31,32]. In 

fact, the precise control is not only an advantage, but also a must in this technique of 

drying. The mass of vaporized water is directly proportional to the energy transferred by 

microwaves, thus the fixed drying power adjustment for objects of variable moisture 

content may result in under- or overdrying. The latter is more hazardous, as it can lead 

to carbonization or ignition, depending on the drying atmosphere [15]. The common 

construction of microwave dryers incorporates a microwave oven, through which 

a conveyor belt with wet material is passed [31]. According to the research on 



19 

 
 

microwave dewatering of coal, the increase of dried particle size enhanced the drying 

rate and contributed to reduction in the drying time, what is an inverse correlation, 

regarding those observed in traditional methods of convective drying [33]. 

When fragmentation of coal is required, what is often the case in electricity 

generation, mill drying is frequently applied to produce pulverized coal. In terms of 

dewatering, it utilizes the heat of friction combined with enthalpy of hot flue gas that is  

driven from the boiler. The mill dryers are relatively easy in construction and operation, 

often formed in cylindrical shape and grind coal using numerous metal balls (30-80 mm 

in diameter) or beaters (4-10 kg per each) [25]. Due to short residence time of coal in 

the dryer (order of seconds), the substantial moisture reduction is achieved when the 

particles are crushed to 1 mm or less [15]. The heat input of mill dryers operating on 

brown coal, ranges between 4 and 14 kWh per 1 Mg of fuel [25]. 

Hot oil drying is a technique, which bases on immersion of wet material in the 

oil bath of temperature higher than required for water evaporation. The occurrence of 

water boiling induces high turbulent flow along the material surface what contributes to 

the rapid removal of significant amount of both surface and inherent moisture. Due to 

alike mechanism of heat transfer, this technique is also known as “fry drying” [20]. Oil 

immersion drying was experimentally applied to Indonesian low-rank coals, resulting in 

reduction of water share from 32 to 2-3% and doubling of the initial heating value of 

12.5 MJ kg
-1 

[34]. An interesting feature of oil drying is formation of the hydrophobic 

film within coal that reduces the readsorption of water during the storage. The 

absorption of oil in coal may increase its calorific value, however, it raises the costs of 

dryer operation, depleting the stock of drying medium [25]. 

Elevated heat transfer rate stemming from high contact area to mass ratio is one 

of the main advantages of fluidized bed drying. Fine (reason for large heat transfer area) 
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particles of coal float on the upstream which prevents them from falling down. The 

available drying mediums blowing through this dynamic suspension are hot air, gaseous 

combustion products or steam. Incline in the fluidization velocity was found to enhance 

the speed of drying of Australian brown coal mined in Loy Yang [35]. Various aspects 

of the fluidized bed technique have been investigated in experimental and analytical 

studies for coals from numerous geographical locations, including USA, China, Greece 

or Poland [36–39]. In case of the latter, a study has been prepared recently for fluidized 

spouted bed operating on Belchatow lignite and supplied with low temperature heat 

source (50-60 
o
C), which produced the output fuel of water share at 15-20% [40]. The 

heat demand for drying of 1 kg fuel is in range of 3.1-4.0 MJ for fluidized bed drying 

[41]. This method of drying has been frequently combined with superheated steam as a 

drying medium. The latter will be discussed in separate section. 

2.2.2 Non-evaporative dewatering 

The methods of non-evaporative drying commonly apply increased pressure 

level in order to prevent moisture from evaporation and save its heat of vaporization. 

The pioneer of non-evaporative fuel drying was Hans Fleissner who invented the 

method, utilizing both high pressure and vacuum [42]. At first, highly-pressurized steam 

interacts with a lump of brown coal. As its temperature rises, the water is being expelled 

from the inside, due to the pressure, in the liquid state. When the water leaves, the 

lignite shrinks. When the pressure is decreased, an additional amount of moisture is 

removed by flash evaporation, which lowers the temperature of the lump. The method 

has been utilized and modified in many applications worldwide [15]. Its energy 

consumption per mass unit fuel using superheated steam is estimated even below 

1.75 MJ kg
-1

 [41]. 

Another process of dewatering without phase change is the mechanical thermal 
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expression (MTE) technique, invented to lift the efficiency of German brown coal 

plants [43]. The idea of this method extends the Fleissner process. Lignite is fitted in the 

form, heated to around 200 
o
C and compressed by the hydraulic press, what drives the 

moisture out of the material to be collected by the output tanks. Final part of the process 

involves cooling, accompanied with flash evaporation. The optimal results of 

dewatering were obtained for pressure of 6 MPa. Mechanical thermal expression 

became in the range of interest of Australian government, considered appropriate for 

coal pre-drying in IGCC (integrated gasification combined cycle) [24]. 

Hot water drying (HWD) is a process of non-evaporative dewatering, product of 

which is a quasi-liquid fuel. The moisture is expelled from the internal structure of 

brown coal by carbon dioxide produced in decomposition of functional groups at 

temperatures of 240 
o
C and higher. Oils and tars from the decarboxylation mix with 

aqueous solvent on the surface of coal and are claimed to form a coating that limits the 

moisture readsorption after drying finishes. The method is applied to produce low-rank 

coal-water fuels (LRCWF) [25]. 

The very high reduction of water share, exceeding 90% of the initial level, can 

be obtained by solvent extraction method. In this technique, coal is placed within the 

stream of the solvent, which under the influence of increased temperature binds with the 

reactive compound and leaves the original rock. Several solvents has been tried, such as 

tetrahydronaphthalene, methylnaphthalene, supercritical carbon dioxide and liquefied 

dimethylether (DME) [44–47]. 

Electro-dewatering of coal sludges [48,49] takes advantage of the electrical 

charging mechanism of cations. Under the influence of electrical currents, the ions 

interact with water by means of viscous forces and drag its molecules to the cathode, 

where it is drained out of the sludge. This approach leads to dewatering of 25 to 50%. 
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2.3 Superheated steam drying 

Superheated steam drying (SSD) is classified as an evaporative thermal method 

of removing moisture from wet materials. The nature of vapor as a high temperature gas 

without free oxygen molecules and at the same time very easy to be produced 

(contrarily to e.g. nitrogen) brings about the supposition of the beneficial drying 

medium that reduce the spontaneous ignition hazard. However, probably due to the 

paradoxical idea of removing a form of water with another form of water, drying by 

means of steam was not under consideration until late 19
th

 century.  

In 1903, Hausbrand wrote a book, which German title might be translated as The 

Drying with Air and Steam [50]. Wenzel and White in 1950s compared drying of 

granular solid object with air and humidified air, coming to the conclusion that vapor in 

air not only does not affect the general characteristics of the drying process, but might 

be even beneficial, providing higher drying rate and thermal efficiency than in the case 

of pure air-blown conditions [51]. Studies of Yoshida and Hyodo supported this claim, 

proposing and validating the idea of the inversion point [52]. This term relates to the 

temperature above which, at the certain conditions (humidity, pressure, geometry), the 

drying rate for steam as a medium is higher than in the case of air. Kiiskinen and 

Edelmann [53] found that drying of paper with jet streams of superheated steam at 300 

o
C is performed at 26% higher rate than in the case of air at the same temperature, 

however power output of the fans was higher by 150% for superheated steam. Though 

in general the dewatering rate is higher for air in low temperatures and for steam in high 

temperatures, the inversion point can be lowered to benefit from steam drying without 

large energy expenditures [54].  

A variety of drying gases can be applied in fluidized bed dryer, to mention but a 

few examples of hot air, flue gas after combustion and superheated steam [18,55]. The 
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utilization of the latter in a combination with fluidized bed dryer was proposed with 

regard to coal upgrading by Potter et al. [56,57]. They obtained encouraging coefficients 

of heat transfer ranging around 300 W m
-2

 K
-1

 [58]. Such high values of superheated 

steam fluidized bed drying (SSFBD) promote the decline in the size of the drying 

equipment. Association of SSD with fluidized bed has been investigated by studies 

focusing on increasing lignite applicability in electricity generation operating on 

pressurized steam of temperature range 180-260 
o
C [59,60]. This studies also took 

issues of shrinkage and equilibrium moisture content into account. According to some 

research, which tested a fluidized bed drying of pulverized coal, the capital cost was 

reduced by 20% and the total energy by 15% when air was replaced by superheated 

steam [54]. Another study by the same authors claimed that for decreasing the water 

share of activated carbon pellets from 50 to 2% in fluidized bed might bring 40% cost 

reduction of SSFBD in comparison to conventional air drying [54]. According to Woods 

et al. who discussed steam drying of 1-13 mm coal particles, the residence time of 

drying does not affect the volatilization, unlike hot air drying. They found out that for 

SSD the period of constant drying rate is 6-7 times longer and the heat transfer rate 

1.7-2 times higher than for drying in air atmosphere. This manner of drying might be 

suitable to deliver high quality fine-graded fuel to emerging power generation 

technologies, such as IGCC. Although it operates currently on the pulverized 

bituminous coal [61], the raise in calorific value, combined with significant volatile 

matter content which facilitates gasification, might contribute to some breakthrough in 

development of this highly efficient system of electricity generation.  

An issue of great importance in relation with advantage of SSD over hot air 

drying was raised by Fushimi et al. [62] who discussed the possibility of self-heat 

recuperation. They proposed to evaporate the moisture from the wet material, superheat 
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and compress it, before directing it to the heat exchanger which supports the operation 

of the dryer. By that means not only the latent heat loss, but also sensible heat loss 

might be reduced. The idea of latent heat recuperation was also utilized in the industry. 

German power company RWE introduced a WTA (Wirbelschichttrocknung mit interner 

Abwärmenutzung) technology that utilizes SSFBD to enhance the quality of brown coal 

prior to its combustion [63]. The scheme of installation is presented in Fig. 2.4. The 

moisture expelled from the dried lignite is slightly superheated and compressed before 

turning back to the heat exchanger in the fluidized bed dryer. After depressurization, 

along with the hot condensate it also passes through the preheater, which is applied to 

increase the initial temperature of lignite prior to drying. With utilization of this 

technology, the water share in lignite is reduced from 55-60% to around 12% [18]. 

 

 

Figure 2.4 Scheme of WTA technology of superheated steam drying 
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In Fig. 2.5 the general idea of latent heat recuperation is presented regarding to 

scheme from Fig. 2.4. The major benefit of such a configuration is utilization of the 

latent heat of the phase change in order to limit the energy input to the dryer. Also, some 

savings are made on the preheater which utilizes the heat of a condensate to raise the 

temperature of the raw coal. 

 

Figure 2.5 Simplified scheme of latent heat recovery 

 

The reliable approach to the design and construction of a superheated steam 

drying (SSD) system coupled with a power generation unit, entails a thorough study on 

fuel taken into consideration. This kind of works often include numerical analysis as a 

cheap and precise manner of describing heat and mass transfer phenomena which occur 

in the drying process. The food industry has commonly adapted such a method of 

drying optimization. The model of fixed bed dryer of brewers' spent grain using 

superheated steam one of the examples [64]. Applying the finite difference method, 

changes in moisture content and temperature in the slice of pork were simulated for 



26 

 
 

SSD [65]. Power engineering also reached for the superheated steam drying models, 

what resulted in the numerical analysis of the combined heat and power plant fueled by 

corn ethanol [66] as well as the self-heat recuperative fluidized bed dryer of biomass, 

which consumed 95% less energy than conventional systems [67]. 

In Tab. 2.2, the benefits and drawbacks of superheated steam drying are listed. 

The characteristics refer especially to the system configured to recuperate heat of 

evaporation.  

Table 2.2 Characteristic features of superheated steam drying [54] 

advantages disadvantages 

 no hazard of oxidation or ignition 

 higher drying rate over the inversion 

point than for hot air drying 

 relatively low flow of the drying gas 

 possibility of latent heat recovery 

 high complexity of the system 

 necessity of leak control 

 considerable cost of  

auxiliary devices 

 

2.4 Modelling of coal drying 

One of the first attempts to reflect the coal drying process by means of 

mathematical modelling was made by Chen et al. in 2000 [68]. They analyzed drying of 

surface water and porous material for spheres made of ceramic and coal. The applied 

drying media were air and superheated steam. Their model involved receding interface 

assumption. The simulated results were in fine agreement with empirical data in case of 

the drying of ceramic spheres in steam as well as the drying of single water droplets in 

steam and in air. 
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The study described above, found a follow-up in another investigation 

performed by the same research group [69]. The content revolved around modelling the 

work of fluidized bed dryer. In the first paper, a mathematical model was developed for 

the drying of a single porous particle in steam. In the second one, the single particle 

model has been integrated with a two-phase hydrodynamic model to simulate the 

continuous drying of coal in a bed fluidized with superheated steam. Besides aspects 

related to engineering approach, such as variation in the superficial gas flow, inversion 

temperature or residence time, the model incorporated phenomena of initial 

condensation during the heating period and growth in temperature accompanied by 

decline in moisture content with residence time in drying bed. The authors conclude that 

“the most significant operating variables are the steam-tube duty and the initial moisture 

content of the wet coal”. 

In 2001, Looi et al. published the work entitled “Drying kinetics of single porous 

particles in superheated steam under pressure” [70], where they discussed superheated 

steam drying kinetics of spherical single porous object on the case of lignite and 

ceramic. They used objects of diameters in the range 10-14 mm and exposed them to 

steam of 155-197 
o
C, under pressure of 1.7-8.4 bar. The mathematical model was solved 

using the Crank-Nicholson method. The experimental results for ceramic spheres drying 

were successfully applied to verify the model. In the case of lignite, the model 

underestimated the drying rate – the authors supposed cracking to be the factor of heat 

transfer area enhancement. According to the study, the drying rate for porous structures 

is limited by the rate of external convective heat transfer. Simulation and experimental 

results, indicate that the evaporation of moisture occurs on a drying front which recedes 

towards the center of the particle. However, for lignite, a study did not find an optimal 

numerical solution. 
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Olufemi and Udefiagbon [71] modified the kinetic parameters of the drying 

process. They also included deliberation on particle shrinkage. The experimental results 

of Victorian (Australia) lignite drying applied to validate the numerical model were 

taken from the study of Looi et al. [70]. The study also adapted receding core model 

with evaporation of water at the boundary of wet and dry regimes. However, the 

mathematical model involved also the term for shrinking volume of the particle. 

Description of the process by partial differential equation was solved numerically with 

the finite element analysis, as the opposition to previously applied finite difference 

analysis. The latter one relied on rectangular, while the former approximated the 

solution using triangular mesh. The geometry can be simplified to circular cross-section 

of the sphere. Approaching the numerical problem with triangular mesh in this case 

provides greater accuracy of the results, due to better matching of nodal points, 

especially on the sample surface. Although authors claim to have received perfect 

consistency between simulated and experimental results, the distribution of empirical 

data points assumed in this work might be misleading. The density of experimental 

measurements along the time scale is significantly lower than in the source of those data 

[70], making the imaginable shape of experimental curve somewhat different from the 

original. However, it should be noted that the reason might be related to imperfect 

experimental attempts rather than numerical solution. 

The finite difference method has been applied to model superheated steam 

drying of Polish lignite of the same origin, as in the present study, Belchatow mine [39]. 

The cylindrical pellets of 14 g and 55% of water share were dried in a superheated 

steam chamber. The mass transfer in the mathematical model was supposed to rely on 

the Darcy flow of liquid moisture caused by generated pressure gradient as well as 

diffusion of vapor and bound water triggered by moisture content gradient. The 
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simulated drying curve appeared less convex than the results obtained in the 

experimental part of the study. 

Zhang and You [72] investigated drying of Chinese coarse lignite particles. They 

conducted empirical attempts using hot air at a velocity of 0.7 and 1.5 m s
-1

 and 

temperature of 100 and 140 
o
C. Simultaneously they derived a mathematical model of 

drying, assuming multiphase flow of air and water in the porous structure of coal, 

combining convection of the free water and diffusion of the bound water. The model 

was successfully validated with regard to experimental results and used to discuss the 

influence of such conditions as particle diameter, gas temperature, relative humidity and 

drying medium velocity on the drying characteristics. 

Recently, the numerical simulations have been designed and conducted by 

Kiriyama et al., in terms of single particle model as well as fluidized bed scenario [73–

75]. The findings of the mentioned articles were utilized in selected parts of this work. 
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3. CHAPTER 3 

Goal of the thesis 

Lignite is the second most important source of primary energy for electricity 

generation in Poland, what was indicated in chapter 1. Despite the general tendency of 

reducing the share of fossil fuels in energy mixes of highly developed countries, the 

decline in coal use in Polish energy sector over the last years is very slow and no 

forecasts predict the acceleration of this gradual shift in the next decades [76]. Besides 

rich domestic reserves, relatively low potential of renewable energy sources [76] 

combined with prolonged and uncertain efforts to introduce nuclear power plant [77–

79], secure the leading position of coal in the Polish electricity generation. 

However, due to ageing power stations [80] and international schemes of 

combating the CO2 emission [28,29], the demand on introducing highly efficient 

industries operating on lignite is constantly rising. Effective dewatering of this 

moisture-abundant fuel is one of the preconditions for satisfying the need formulated in 

such a way. As mentioned in chapter 2, the application of superheated steam, especially 

in the configuration enabling the recovery of water-vapor phase change heat, emerges as 

an opportunity to raise the quality of coal and gain benefits in the fields of economy, 

environmental protection and energy security. Pikon and Mujumdar claimed that 

Superheated steam seems to provide all the required advantages but few vendors have 

developed these technologies for coal and for large-scale operations necessary. The 
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drying conditions will need to be optimized for specific grades of coal and also the 

utilization of the product [25]. However, the literature concerning the drying properties 

of lignite from Polish deposits is limited [39,40] and no extensive coverage had been 

reported so far. Hence, researching the fundamental properties related to superheated 

steam drying seems well grounded for prospective types of lignite to be upgraded using 

this branch of drying technology.  

The goal of this work is to investigate the influence of various groups of 

properties on the drying characteristics and behavior of the Polish lignite in the 

atmosphere of superheated steam. The comprehensive research, involving experimental 

trials and numerical modelling of drying, takes the thermophysical parameters into 

account (e.g. thermal conductivity, specific heat) together with properties related to the 

drying technology, such as equilibrium moisture content or bulk density, and features 

related to physical structure of examined material. For the sake of acquiring the broad 

perspective on the features of drying in superheated steam, the coal originated in 

divergent geological circumstances has been selected for the study. 
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4. CHAPTER 4 

Methodology of experimental procedure of lignite drying in 

superheated steam 

4.1 Lignite samples 

All lignite samples used in the experimental procedure were cut out by knife 

from a randomly chosen lignite block as a coarse particles and smoothed in order to 

obtain the required size. Accurate preparation was achieved by rolling the lignite on a 

metal plate with round holes of decreasing diameter (Fig. 4.1). The precise size of the 

holes was provided by cutting them in an electric discharged machining process. 

 

 

Figure 4.1 Scheme of preparation of the experimental samples 

 

The samples utilized in the examination were split into four size groups: 2.5, 5, 

10 and 30 mm in diameter. Table 4.1 presents dimensions of the examined objects, 

assuming the 2.5 mm sample’s relative dimensions are equal to 1. 
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Table 4.1 Dimensions of samples used in the experiment 

sample  

diameter 

 

relative  

diameter 

 

relative 

 area 

 

relative 

volume 

 

relative mass 

(experimental 

average) 

d [mm] d/d2.5 A/A2.5 V/V2.5 m/m2.5 

2.5 1 1 1 1 

5 2 4 8 7.85 

10 4 16 64 65.78 

30 12 144 1728 1765.76 

 

According to the relative values, the volume of samples can vary over three 

orders of magnitude. From the statistical point of view, taking averaged density as 

a factor, the mass relation should be analogical. They exhibit slight deviation from the 

expected relative value, though. Lignite belongs to organic-rich sedimentary rocks. 

Moreover, it is classified as a low-rank coal, which means the coalification processes 

did not progress as highly as in anthracite or even bituminous coal. Therefore, the 

structure of this fuel is strongly heterogeneous, with visible insertions of plant matter. 

4.1.1 Sample of 30 mm 

The initial weight of the particle of 30±0.05 mm in diameter was approximately 

17-17.5 g. In the object prepared in the manner described two holes were made with a 

0.3 mm drill: 15 mm and 7.5 mm in depth, respectively. Inside each drilling a K-type 

thermocouple was placed to allow for temperature measurement in the central point 

(referred to as “center”) as well as the halfway point between the surface and the center 

of the sample (“midpoint”). The thermocouples fulfilled the Japan Industrial Standard 

Class 2 with temperature deviation ±2.5 
o
C. They consisted of 0.09 mm wires made of 

chromel and alumel and insulated with silica-based material. Following the installation 
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of the thermocouples, an adhesive ceramic agent was put near the orifice of both 

drillings to ensure a stable position for the wires inside the sample. 

 The polyester thread, passed through the sample interior and fixed by the knot 

on the bottom side, was used to suspend the sphere in the test chamber. Its hydrophobic 

properties prevented the water absorption which would disturb the measurement of the 

weight. The object prepared for the examination is visible in Fig. 4.2.A. 

4.1.2 Sample of 10 mm 

The result of polishing the coarse particle into 10±0.05 mm sphere was an object 

of around 0.6-0.7 g in weight. The drill used for the thermocouple installation was 

thinner: 0.2 mm. However, the idea of temperature measurement was realized in an 

analogical way: in the midpoint and center, which in that case lied 2.5 mm and 5 mm 

below the surface, respectively. The K-type thermocouples, prepared from 

chromel/alumel wires of 0.08 mm in diameter were insulated and fixed to the orifice in 

the same way as for the largest sample. 

In case of 10 mm sample, the mass of the sample was low enough, not to require 

additional hanging thread – it was suspended on two thermocouples only. On the other 

hand, to stabilize the position of the particle inside the test chamber and reduce the 

impact of fluid flow on the weight measurement, the thermocouples were rolled on a 

thin glass rod, that carried the sample weight onto an electronic balance. The results of 

the preparation is visualized schematically in Fig. 4.2.B. Figure 4.3 presents the 

photograph of a 10 mm sample prepared for the examination. 

4.1.3 Sample of 5 mm 

The weight of the 5±0.05 mm sample after the polishing was approximately 

0.06-0.08 g. Due to the small volume, the sample was equipped with only one 
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thermocouple, which tip measured the temperature 2.5 mm inside the sphere, in the 

geometrical center of the particle. The wire was curved and inserted from side to the 

lignite. For the sake of low mass of the sample, no adhesive agent was needed to 

stabilize the connection between wire and coal. 

Besides above-mentioned differences, the preparation of 5 mm object did not 

differ from 10 mm sphere. The particle ready for the experiment is shown in Fig. 4.2.C. 

4.1.4 Sample of 2.5 mm 

The sample of 2.5±0.0069 mm was characterized with by far the lowest mass of 

the entire set, around 0.01 g (10 mg). In order to neutralize influence of electronic 

balance sensitivity on the results (±0.1 mg), four samples were dried altogether, 

increasing the weight of the examined object. 

The preparation of the sphere was performed using the same method as 

previously described. The 0.1 mm drill was used to make a hole for a same-sized 

suspension wire. In this case, no thermocouple was applied, due to inability of precise 

installation. Temperature measurement was realized only by means of thermography. 

The suspension wires, inserted from bottom to spheres were put into quadrilateral 

hollow handle on the end of the glass rod. The manner of hanging 2.5 mm sample is 

exhibited in Fig. 4.2.D. 
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Figure 4.2 Lignite samples of A) 30 mm, B) 10 mm, C) 5 mm, D) 2.5 mm in diameter 
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Figure 4.3 Sample of 10 mm ready for the test (white adhesive agent visible on sides). 

 

4.1.5 Variability of the samples 

The natural diversity of lignite structure mentioned in section 4.1 was examined 

by gaining insight into the individual features of the samples used in the experiment. 

Over 120 drying tests conducted for each of 4 sizes were taken into consideration. 

Figure 4.4 illustrates the relationship between water share and density of 

experimental objects prior to drying. Water percentage is defined as a ratio between 

mass of water in the present state and the initial mass of lignite, which consists of initial 

mass of water and invariable mass of dry coal: 
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Note that in certain cases of this work, an indicator of water share (WS) is used, which 

denominator refers to the present mass of the sample, thus, including the instantaneous 

mass of water: 
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Figure 4.4 Correlation between density and initial water percentage of the samples 

 

Table 4.2 contains statistical information on the objects presented in Figure 4.4. 

A global average density equaled 1.205 kg m
-3

, while the initial water percentage was 

averaged on 51.25%. According to the value of relative standard deviation (RSD), the 

samples of 30 mm in diameter exhibit the smallest deviation from the mean value. This 

observation is related to the impact of contamination within structure of randomly 
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picked lignite particles, which is vastly enhanced with a decline in the sphere size. 

Therefore, the investigation of large objects, as more representative for the specific coal 

seam, is substantiated.  

In the case of 2.5 mm samples the tendency described above does not apply. 

Those samples were weighed and dried in groups of four, thus, statistically, the 

deviation of their parameters is neutralized. 

Table 4.2 Initial values of density and water percentage 

diameter  

d [mm] 

initial density  

ρ
0
 [kg m

-3
] 

 
initial water percentage 

WP
0
 [mass%] 

average 

value 
RSD 

 average 

value 
RSD 

2.5 1.187 4.6%  51.18% 7.7% 

5 1.167 10.2%  50.01% 9.6% 

10 1.222 5.3%  51.39% 7.3% 

30 1.215 2.5%  52.86% 5.9% 

 

4.2 Experimental setup 

Once the preparation of the sample was complete, the object was placed in the 

apparatus, where the superheated steam drying took place. Figure 4.5 presents the setup 

of experimental equipment. Table 4.3 summarizes the commercial resources installed in 

the drying system or used for the measurements. The cylindrically-shaped test section, 

where the sample remained throughout the test, was the core of the drying system. The 

diameter of cylinder base was 133 mm, and the height equaled 152 mm. In order to 

maintain desired temperature of steam, the test section was thermally insulated and 

heated from 3 sources: on its bottom, around the outer side wall and at the top cover. 



41 

 
 

 

 

Figure 4.5 Scheme of experimental setup 

 

The supply of steam to the test section was realized through the water line, 

which started at the pure water tank. Water was transported by liquid delivery pump, 

which drew it out from the tank, passed through the degasser and driven to the 

evaporator. There it was turned to steam. The steam run through the pipe of the 

superheater, located over the test section. The evaporator was equipped with two 

heaters: one placed around its enclosure and the other inside the vessel core, while the 

superheater was wrapped by the heating wire along its entire length. 

Table 4.3 Commercial resources used for drying or measurement 

item producer/model 

video camera HDRCX170, SONY 

thermography camera R-300, NEC/Avio 

black body spray THI-1B, Tasco Japan 

polymethylpentene film Japanese Consumers’ Cooperative Union 

electronic balance HR-200, A&D 

degasser DGU-20A3, Shimadzu Co. Ltd. 

liquid delivery pump LC-20AT, Shimadzu Co. Ltd. 
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The superheated steam was supplied into the top part of the test cylinder through 

a baffle plate. That solution aimed for a maximal possible dispersion of the steam in the 

entire volume of the vessel. At the bottom of the test chamber, a fan exhausted the gas 

from the drying system. Another fan was located next to the top of the cylinder in order 

to draw out the minor part of the steam (3-5% of the total amount) which was leaking 

through the orifice. Such implementation was applied in order to control the pressure 

inside the cylinder and thus, ensure the laminar flow and atmospheric condition. The 

orifice itself was used to pass the thread on which the sample was hanged into the test 

section. 

During the experiment, the data on sample weight and temperature were 

continuously collected. Basing on this information, the drying characteristics were 

constructed.  

In addition to thermocouples described in sections 4.1.1-4.1.3 (no thermocouples 

were installed in 2.5 mm objects), the thermography camera was applied to monitor the 

temperature of sample’s surface. The device was equipped with infrared bolometers 

detecting the wavelength from 8 to 12 µm. To provide the reliable temperature 

measurement, an optical path was applied to connect the thermography camera and the 

window in the test cylinder. In the path, the polymethylpentene film, 10 µm thick, was 

located at an inclination of 10
o
 to avoid infrared reflection. Due to temperature 

resistance of 180 
o
C (above the highest superheated steam temperature) and average 

transmittance of 90% in the range of wavelengths from 8 to 12 µm, the film ensured 

appropriate conditions for performing the measurements. The optical path was 

additionally heated to prevent the steam condensation on its interior as well as the film 

and to reduce heat loss from the test section. It was also painted with black body spray, 

characterized with emissivity of 0.94. Constant test section temperature and constant 
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emissivity, together with sample characteristic temperature points obtained from the 

drying characteristics (initial water evaporation at 100 
o
C, thermal equilibrium between 

sample and steam at the end) constituted the set of assumptions for thermography 

calibration. The detailed insight in the configuration of surface temperature 

measurement by means of thermography is provided in Fig. 4.6.  

 

Figure 4.6 Side view on thermography measurement devices 

 

The weight of the sample during the test was measured with an electronic 

balance, which resolution was equal to 0.1 mg. The glass rod with the sample was 

hanged on a thin metal bar which was connected directly to the balance. Protection of 

from the external influence was provided by an acrylic cylinder surrounding the metal 

bar. Air supply at the rate of 0.6 dm
3
 min

-1
 was used within the acrylic component for 

the purpose of stable temperature and flow, a desirable factors for accurate weight 

measurement. 

The setting of the sample within the test section was performed with the starting 

pipe lifted to the inside of the test chamber in order to isolate the object and control the 
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exact moment when it was exposed to the superheated steam. At that time, the starting 

pipe was filled with nitrogen. The second line of nitrogen supply reached the test 

section. This gas was used after the completion of superheated steam drying in order to 

remove any residual moisture from lignite. Both nitrogen and air were stored in the 

cylinders, compressed into 14.7 MPa, regulated into 0.2 MPa and fed to the system 

using mass flow controllers. 

In order to observe the lignite sample during the experimentation, especially in 

terms of condensation in the first phase and shrinkage combined with cracking in the 

later stages of drying, the video camera was used. Its optical path led to the test cylinder 

and was situated perpendicularly to the optical path of thermography camera, what 

allowed for simultaneous observation of various aspects of the drying process. For the 

same reasons as in the case of surface temperature measurement, the glass window 

separating test section from the optical path of the camera was operated by additional 

heat source. 

The auxiliary steps were taken for the purpose of protection of the measurement 

and drying devices from the environmental influence. The air flow in the vicinity of the 

electronic balance was reduced by a protective polyvinyl chloride enclosure that 

surrounded the entire apparatus. To minimize the effects of static electricity the air 

humidifier operated within the enclosure to maintain relative humidity above 45%,  

zero-ground cables were installed, and the antistatic spray was applied frequently. 
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4.3 Procedure of superheated steam drying 

There were four experimental conditions applied in terms of superheated steam 

temperature: 110, 130, 150 and 170 
o
C. Maintaining the steam temperature below 

180 
o
C purposed on preventing the lignite from volatilization and chemical 

decomposition of its functional groups [81,82]. Such approach ensured that the change 

in weight is induced solely by moisture removal. 

The heating of the test chamber and auxiliary heaters listed in section 4.2 was 

done under the nitrogen flow. As the demanded test temperature was reached within the 

chamber, the gas supply was switched to superheated seam. In order to achieve steam 

input to the test section at an average velocity of 0.02 m s
-1

, the water flow to the 

evaporator was set at 8 cm
3
 min

-1
. Under those circumstances, the Reynolds number 

averaged on the temperature range was 2.3, 4.6, 9.2 and 27.6 for 2.5, 5, 10 and 30 mm 

samples, respectively. Due to occurrence of laminar flow around the sample, the 

accurate weight measurement was possible. 

Once the stabilization of the thermal conditions within test chamber was 

achieved, the sample was placed inside. As mentioned in the previous section, a hollow 

cylindrical object, so-called “starting pipe”, was used under nitrogen flow to set the 

sample in the test section without immediate exposition to superheated steam. The 

beginning of proper drying took place in the moment of pulling the pipe down.  

From that moment on, the data on sample mass m, and temperature profile T, 

was simultaneously collected in 1 s intervals. The superheated steam drying was 

decided to be completed once the changes in weight did not exceed around 0.01% of the 

dried sample weight per minute. When such a state occurred, the flow of steam was 

replaced by the supply of nitrogen to the drying zone. The amount of residual water 

within the sample was determined by the decrease in weight attained during that period. 
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This mass is related to the equilibrium moisture content, which is attained a sufficiently 

long time under specific process conditions, such as a drying medium, pressure and 

temperature [83]. For each sample size, more than dozen of experimental attempts in 

order assure repeatability and reproducibility of the results. 

The mass of sample after the two-step drying process described in the paragraph 

above was assumed the mass of dry coal in lignite, mc. Subsequently, the total or initial 

mass of water in lignite, m
0

w, was equal to the total decline in sample mass during the 

test, what is quantitatively expressed as the difference between the initial mass of the 

particle, m
0
, and the mass of dry coal. 

 0 0

w c
m m m   (4.3) 

Relying on the obtained values, the essential drying indicators used for the 

description were described. Dry basis moisture content, X, is expressed at a certain time 

instance i, as a ratio of the current mass of water, m
i
w [kg], and the mass of coal 

achieved after drying, mc [kg]. 

 
w

c

i
i m

X
m

  (4.4) 

In order to gain insight into the speed of drying, the time derivative of moisture content 

was calculated and described as a drying rate: 

 d

d

i
i X

DR
t

  (4.5) 
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5. CHAPTER 5 

Experimental analysis of lignite drying in superheated steam  

5.1 Comprehensive analysis of the general drying characteristics of 

lignite exposed to superheated steam 

The insight into superheating steam drying of a lignite particle was described 

with reference to particular stages of the process. The temperature profile and mass of 

the sample as well as the drying indicators introduced in the previous chapter: moisture 

content and drying rate, were plotted along time to discuss the features of the process. 

On the basis of video recording, the features of change in sample surface were 

evaluated and discussed together with the images of the object captured during the test. 

More details related to observation of the examined object are given in section 5.3.  

The abovementioned components of drying behavior analysis were 

supplemented with deliberation on the mechanism of water evaporation. As discussed in 

chapter 2, moisture in lignite can be roughly divided into free and bound water, 

depending on the manner in which each type is removed from the porous structure. 

As an exemplary case used for the sake of discussion, the instance of 5 mm 

sample exposed to superheated steam of 170 
o
C was used. The entire drying can be 

separated into consecutive stages: {1} preheating period, {2} constant drying rate 

period (CDRP), {3,4} decreasing drying rate period (DDRP) consisting of two phases 

and {5} final drying period. The drying behavior in particular parts is shown in Fig. 5.1.  
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Figure 5.1 Drying behavior of 5 mm sample at 170 
o
C, in relation to: A) changes of 

drying indicators in time, B) changes in object’s appearance, C) stages of water removal, 

D) changes of drying indicators in the function of moisture content. 
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5.1.1 Preheating period 

In the beginning of drying, the exposition of cold sample to the superheated 

steam atmosphere induces condensation on its surface. The mass of the particle 

increases and so does the moisture content. The drying rate, consequently, achieves 

negative value for that reason. The temperature of the surface suddenly increases to 

reach the saturation temperature of 100
o
C, followed shortly by the temperature of the 

center. The end of this period is indicated by moisture content curve achieving its 

maximum level. 

5.1.2 Constant drying rate period (CDRP) 

The stage of CDRP is distinguished by the rate of drying stabilized at the 

invariable value. During the initial phase of this period, marked as {2a} in Fig. 5.1, the 

removal of water condensed in the preheating period is in progress. At this point the 

center temperature reaches 100 
o
C. This subperiod ends when the moisture from the 

surface is evaporated. It is indicated by stepwise ascend of the surface temperature into 

value slightly exceeding 100 
o
C and its subsequent gradual increase. The exact moment 

is determined by the experimental conditions, such as drying medium temperature and 

object diameter. 

In the latter subperiod of CDRP {2b}, the difference of heat transferred to the 

sample and heat consumed on evaporation of water in the vicinity of the surface 

contributes to the increase of temperature in the surface region. Due to slowly inclining 

temperature gradient between surface and center of the particle, the heat is propagated 

to the lignite interior. Still, the evaporation occurs in the proximity of the surface, what 

is induced by capillary forces acting on the free water, which diffuses from the core of 

the sphere (Fig. 5.1.C). The value of drying rate, which remains constant, is defined by 
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the amount of heat exchanged with the superheated steam (Fig. 5.1.D). The decrease in 

sample diameter becomes observable, however, it is not significant at that stage. The 

constant drying rate period ultimately ends when the drying rate level decline is 

observed and the rapid incline in surface temperature occurs. 

5.1.3 Decreasing drying rate period 1 (DDRP 1) 

As mentioned in the end of previous paragraph, the DDRP, marked as {3} in Fig. 

5.1, starts when the drying rate is in decline. Therefore, mass and moisture content of 

lignite decrease more gradually than in the previous period. The mechanism of drying 

alters in this stage, with evaporation border shifting towards the sample core 

(Fig. 5.1.C). The vaporization and resulting water content gradient entail movement of 

water in the form of multi-phase flow of liquid and gas. Over that period the 

hygroscopic bound water starts to be removed from the sample, what consumes larger 

amount of heat than required for the free water. As mentioned in chapter 2, the enthalpy 

change for the desorption of bound water, removed above the saturation temperature of 

100 
o
C is correlated with the value of moisture content (see Fig. 2.2). The dewatering of 

lignite during this stage results in formation of gaps and crevices between dry matter, 

leading to cracking of the sphere’s structure and volumetric shrinkage (Fig. 5.1.B). The 

first part of DDRP is decided to be finished when the rate of center temperature increase 

exceeds that of surface temperature, what is indicated by the highest difference between 

those two. 

5.1.4 Decreasing drying rate period 2 (DDRP 2) 

The decrease of dewatering rate in the first phase {4a} of DDRP 2 achieves the 

maximum level regarding the entire process, signalized by the steep inclination of 

drying rate chart. Evaporation of bound water is still in progress and the cracks already 
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formed tend to collapse due to shrinkage of the object (Fig. 5.1.B). The phase marked as 

{4a} terminates as the rate of temperature change reaches its peak value. 

During the second phase {4b}, the rate of temperature alteration declines 

continually, accompanied by further reduction of the drying rate level. The decreasing 

drying rate period comes to an end when the temperatures within the sphere equalizes 

with the temperature of the superheated steam (Fig. 5.1.A). 

5.1.5 Final drying period 

Though the temperature is no longer subject to observable changes, the 

evaporation of tightly bonded water continues until the equilibrium moisture content is 

reached, which value is a function of the drying medium temperature [15]. The drying 

rate becomes close to none, as the bound water poses great challenge in terms of 

feasibility of its removal.  

This stage takes the longest time to be finished and produces only a minor 

upgrade of the coal quality, what matches the general trend that subsequent periods of 

drying consume larger amounts of heat with smaller measurable effect. Thus, drying of 

coal to such a low moisture content value occurs mostly in the research endeavors [25]. 

In terms of industrial practice, though, the most crucial stages of drying are the CDRP 

and DDRP1. 

5.2 Analysis of superheated steam drying characteristics obtained at 

various experimental conditions 

In this section the drying characteristics of samples are presented. They include 

experimental trials conducted for samples of 2.5, 5, 10 and 30 mm at superheated steam 

temperatures of 110, 130, 150 and 170 
o
C. Among the numerous attempts performed for 

each combination of those two parameters, three representative cases were selected. 
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They are presented altogether in figures corresponding to the particular sample 

diameters and superheated steam temperatures. Changes of three kinds of indicators in 

time were taken into consideration: moisture content, drying curve and profile of 

temperature. The latter consists of three compounds: surface, midpoint and center 

temperature in the case of 30 and 10 mm objects, as described in chapter 4. Samples of 

5 mm in diameter were deprived of midpoint temperature measurement, and the 

temperature of the smallest category of particles was measured on the surface only. 

Figures 5.2 to 5.5 illustrate experimentally obtained drying curves for 2.5, 5, 10 

and 30 mm lignite particles, respectively. In order to reduce the impact of electronic 

balance measurement oscillations and improve the legibility of the charts, the values of 

drying rate were averaged on a time frames ranging from 15 to 120 s, depending on the 

drying conditions. The charts representing the correlation of drying rate and moisture 

content are shown in regard to size dependence (Fig. 5.6) and temperature dependence 

(Fig. 5.7). Still, the amplitude of drying rate level for the sample of 2.5 mm is the most 

explicit among the entire set of object diameters, due to the high relative ratio of 

resolution of the balance (0.1 mg) to the mass of the examined sphere. 

The fundamental conclusion drawn from the analysis of experimental drying 

curves is that increase in gas temperature and decrease in object size enhance the rate of 

dewatering. As a consequence, the time required for the completion of the process 

becomes shorter. Regarding temperature difference between surface and center 

temperatures, for 5 mm particles it is barely recognizable throughout the process, 

regardless the temperature scenario. Meanwhile, the two largest categories of object 

display significant gap in the temperature profile, especially during DDRP1. The tests 

conducted for samples of relatively high initial moisture content are characterized with 

elevated drying rate and delayed incline of the measured temperatures.  
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Figure 5.2.1 Experimentally obtained drying characteristics of 2.5 mm sample at test 

temperatures of A) 170 
o
C, B) 150 

o
C 
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Figure 5.2.2 Experimentally obtained drying characteristics of 2.5 mm sample at test 

temperatures of C) 130 
o
C, D) 110 

o
C 
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Figure 5.3.1 Experimentally obtained drying characteristics of 5 mm sample at test 

temperatures of A) 170 
o
C, B) 150 

o
C 
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Figure 5.3.2 Experimentally obtained drying characteristics of 5 mm sample at test 

temperatures of C) 130 
o
C, D) 110 

o
C 
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Figure 5.4.1 Experimentally obtained drying characteristics of 10 mm sample at test 

temperatures of A) 170 
o
C, B) 150 

o
C 
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Figure 5.4.2 Experimentally obtained drying characteristics of 10 mm sample at test 

temperatures of C) 130 
o
C, D) 110 

o
C 
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Figure 5.5.1 Experimentally obtained drying characteristics of 30 mm sample at test 

temperatures of A) 170 
o
C, B) 150 

o
C 
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Figure 5.5.2 Experimentally obtained drying characteristics of 30 mm sample at test 

temperatures of C) 130 
o
C, D) 110 

o
C 
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Figure 5.6 Experimentally obtained correlation of drying rate and moisture content for 

drying at 150 
o
C of samples of various diameters 

 

 
Figure 5.7 Experimentally obtained correlation of drying rate and moisture content for 

drying of 10 mm sample at various steam temperatures 
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Tables 5.1 to 5.4 present the information on the individual and averaged time of 

superheated steam drying for the experimental attempts included in Fig. 5.2 to 5.5. The 

average values were used to work out the approximation formula for drying time as a 

function of steam temperature and reciprocal of sample diameter. The equation is 

presented in section 7.3 and compared with the value of time of the drying process 

derived by means of numerical analysis (see Eqs. (7.2) and (7.3)). 

Table 5.1 Experimental time of drying for samples of 30 mm 

steam temperature 

Ta [
o
C] 

experimental drying time tdry,exp [min] 

Test 1 Test 2 Test 3 average 

170 200.3 195.9 198.2 198.1 

150 262.8 265.0 261.3 263.0 

130 393.4 379.7 398.9 390.7 

110 962.1 1076.3 1029.8 1022.7 

 

Table 5.2 Experimental time of drying for samples of 10 mm 

steam temperature 

Ta [
o
C] 

experimental drying time tdry,exp [min] 

Test 1 Test 2 Test 3 average 

170 76.0 73.1 68.0 72.4 

150 81.1 92.7 74.8 82.9 

130 200.0 226.5 224.2 216.9 

110 316.8 346.0 394.0 352.3 

 

Table 5.3 Experimental time of drying for samples of 5 mm 

steam temperature 

Ta [
o
C] 

experimental drying time tdry,exp [min] 

Test 1 Test 2 Test 3 average 

170 12.7 13.2 13.2 13.0 

150 20.0 23.7 19.7 21.0 

130 28.5 30.0 30.5 29.7 

110 92.5 104.3 120.0 105.6 
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Table 5.4 Experimental time of drying for samples of 2.5 mm 

steam temperature 

Ta [
o
C] 

experimental drying time tdry,exp [min] 

Test 1 Test 2 Test3 average 

170 6.4 6.2 6.1 6.2 

150 10.6 9.6 8.6 9.6 

130 16.2 17.3 16.8 16.7 

110 43.8 38.3 47.0 43.0 

 

5.3 Observation of lignite appearance during superheated steam 

drying 

As introduced in chapter 4, each experimental attempt was recorded using video 

camera. Owing to that, the observations of phenomena concerning physical appearance 

of the sample’s surface and shape could be possible. Objects of 5, 10 and 30 mm were 

taken into consideration, as the 2.5 mm objects on a quadrilateral handle (see Fig. 5.8) 

were too small to observe significant impact of drying on their structure. 

In Fig. 5.9, the images are shown in regard to 10 mm sample dried at various 

temperatures. They were captured at the start and the end of drying as well as at the 

certain values of declining moisture content. 

 
Figure 5.8 Photograph of the set of 2.5 mm lignite samples prepared for the test 
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Figure 5.9 Observation of 10 mm sample dried at A) 170, B) 150, C) 130 and D) 110 
o
C 
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Judging from the images, considerable fracturing of the surface occurred principally for 

the cases of higher steam temperatures (150 and 170 
o
C). The first signs of cracking 

were spotted when the moisture content declined by around 0.2 with reference to the 

initial value, what is approximately related to the end of CDRP. In the case of 130 
o
C 

the changes in the structure of the surface were also observed, however they occurred 

later (X≈0.5) and did not exhibit such significant impact. As indicated by Fig. 5.4.2.D, 

the temperature gradient along the radius of lignite sphere dried at 110 
o
C is minor, 

therefore removal of water from the consecutive regions of the sample is not followed 

by occurrence of high thermal stress, what limits the surface deformation. 

The influence of structural deformation is noticeable also in terms of uniformity 

of the drying characteristics (see Fig. 5.2 - 5.5). Experimental attempts conducted in 

lower test temperatures (110, 130 
o
C) are following the similar pattern for all three 

categories of drying indicators. Meanwhile, the repeatability of tests for higher 

temperature of superheated steam is slightly disrupted and the unexpected oscillations 

of the drying curves are more likely to occur. 

Figure 5.10 illustrates the appearance of the samples of different diameters dried 

at the fixed steam temperature of 150 
o
C. Although a major circumferential crack is 

observable in the case of 10 mm object, the fragmentation of 30 mm sphere seems even 

more considerable. The movement of the dry shell zone towards the center of the sphere 

generates stress, which enhances with the increase of sample diameter. The loss of lump 

strength results in the emergence of cracks. Bulk pieces of organic matter and foreign 

inclusions, characteristic for low rank coals, occur more likely in objects of larger 

volume. They boost the mentioned disorder induced by thermal stresses. In accordance 

with this deliberation, the exemplary particle of 5 mm in diameter does not exhibit such 

vast fracturing of the surface as the larger counterparts presented in series A and B. 
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Figure 5.10 Observation of A) 30, B) 10 and C) 5 mm sample dried at 150 
o
C 
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The phenomenon of cracking is thought to be fostered by the coal shrinkage 

which occurs as the pieces of organic matter collapse into empty spaces previously 

occupied by water. In each image series of Fig. 5.10, a dashed line circle was inserted to 

mark the shape of the sample at the beginning of particular drying attempt. Allardice et 

al. claimed that removal of capillary water, which begins around the moisture content of 

0.7 is accompanied by shrinkage [84]. It is consistent with first symptoms of shape 

change in the picture corresponding to X equal to 0.6. However, at the moisture content 

level of around 0.4, the gap between the dashed line and the sample becomes explicit, 

regardless the size of the object.  

The observed decline in the sample diameter due to drying was applied to 

evaluate the volumetric shrinkage of the samples. In Tab. 5.5 the average values of final 

shrinkage are gathered for various drying conditions. In Fig. 5.11, the volumetric 

decline for corresponding scenarios are related to gradually regressing moisture content. 

The intensive shrinkage in the late DDRP contributes to the sealing of the previously 

emerged cracks, as shown in the two last columns of Fig. 5.9 and 5.10. In general, the 

steam temperature did not influence the total shrinkage. Yet, the individual determinants 

of the samples did. For instance, the tests for 5 mm at 130 and 170 
o
C exhibited lower 

initial moisture content than the global average. Meanwhile, 30 mm objects, underwent 

irreversible and asymmetric deformation which precluded the gaps from sealing. 

Table 5.5 Average total volumetric shrinkage of lignite (1-V/V
0
) 

steam temperature 

Ta [
o
C] 

sample diameter d [mm] 

30 10 5 

170 28% 40% 35% 

150 37% 40% 43% 

130 37% 41% 33% 

110 39% 35% 36% 
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Figure 5.11 Average shrinkage of the samples in the drying process 

 

Another kind of phenomenon observed by video recording was formation and 

falling of the droplets. In the beginning of every test, steam condensed on the cold 

lignite surface. In case the aggregate rate of condensation and diffusion to the surface 

exceeded the rate of drying for long enough, the surface tension of water was too low to 

balance the gravitational force. Then, the water hemisphere that was forming on the 

bottom of the sample tipped off in the form of droplet. In Fig. 5.9.C, a water hemisphere, 

seconds before exceeding the critical mass, is visible at the moisture content of 1.0. 

The reduction of lignite mass and thus moisture content related to falling 

droplets was noted on the drying charts. The particles of different diameters varied in 

terms of droplet formation. No sudden decrease of weight was observed in drying of 2.5 

and 5 mm objects, as the rate of condensation was low comparing to the drying rate. In 
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the case of 10 mm spheres, a single droplet was observed in some drying instances, for 

all test temperatures except 170 
o
C, at which the speed of dewatering was too high. The 

phenomenon was most noticeable in experiments performed with 30 mm samples. The 

alternating periods of gradual mass increase followed by rapid decline occurred several 

times at the entire range of steam temperatures, as presented in Fig. 5.12. The end of 

condensation was observed when the weight of the sample decreased below the initial 

value by 2.0%, 1.6%, 1.3% and 1.5% for drying tests at 110, 130, 150 and 170 
o
C, 

respectively. It suggests that both condensation and exudation of moisture from the 

lignite interior contributed to formation of the surface layer. The shrinkage, cracking 

and droplet formation during superheated steam drying of Belchatow lignite was 

discussed in regard to 5 and 10 mm samples in [85], while for 30 mm objects in [86]. 

 
Figure 5.12 Falling of water droplets in the initial drying period of 30 mm sample 
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5.4 The influence of the structural features of lignite on the properties 

related to superheated steam drying 

5.4.1 Geological origin and contents of coal from Belchatow and Turow 

lignite mines 

In order to determine the potential impact of specific coal properties, including 

those related to its geological origin, the additional experimentation was performed. 

A series of lignite batches extracted from the deposits currently exploited by Belchatow 

and Turow mines were subject to superheated steam drying tests. 

The Belchatow deposit originated in lower Miocene (23 – 5 million years ago) in 

the area formerly covered (throughout Mesozoic) by a warm sea. The seams, to which 

the Belchatow resources are attributed to, are categorized as the 3
rd

 group of Scinawa 

Lignite Seam (SLS-3) [87]. The deposit has the form of widely spread thick layer. The 

Belchatow lignite mine area currently includes three mining fields: Belchatow, 

Szczercow and Kamiensk. Batches of lignite that were taken into consideration were 

extracted from Szczercow (batch B1) and Belchatow (batches B2 and B3) fields. The 

place of origin is visualized in the Fig. 5.13. 

The investigated lignite batches from Turow mine came from two seams. 

Batches T1 and T3 were excavated from Seam I, placed in the stratigraphic group of 

SLS-3 (same as Belchatow), while batch T2 originated in Seam II, which belongs to the 

Lusatian Lignite Seam (LLS-2), located more shallow in the cross-sectional profile. The 

latter group formed between lower and middle Miocene [87]. The geographical and 

geological location of the batches is presented in Fig. 5.14. 
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Figure 5.13 Map and cross section of Belchatow lignite mine and its surroundings [88] 
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Figure 5.14 Map and cross section of Turow lignite mine and its surroundings [89] 
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The results of proximate and ultimate analyses of introduced lignite batches are 

presented in Tab. 5.6. For comparison, the corresponding values of the B2013 coal, 

investigated in the major part of this work are given. The expected properties of drying 

for two analyzed groups vary significantly, primarily due to large gap in water content. 

Turow lignite from batches T2 and T3 is characterized with considerable combined 

share of carbon and hydrogen, approaching 70% of the dry coal mass, what is reflected 

by high calorific value of these coals. Yet, this single parameter does not determine the 

quality of coal in power generation. For instance, ash content do not directly influence 

the drying kinetics (except reducing water percentage), but its content and composition 

are crucial, for instance in terms of IGCC system operation [90]. Around 1/4 of lignite is 

taken by volatiles, what may be profitable for gasification in the mentioned technology. 

Table 5.6 Proximate and ultimate analyses for the lignite samples from  

Belchatow (B1, B2, B3, B2013) and Turow (T1, T2, T3) mines 

coal batches B2013 B1 B2 B3 T1 T2 T3 

properties proximate analysis (as-received basis) [mass%] 

total moisture 51.60 52.50 52.60 52.80 34.60 44.20 42.80 

surface moisture 43.00 39.40 39.30 37.10 19.80 21.80 23.70 

inherent moisture 8.60 13.10 13.30 15.70 14.80 22.40 19.10 

fixed carbon 16.78 15.85 14.72 18.45 14.70 21.25 21.94 

volatile matter 24.14 25.48 24.58 25.05 23.78 31.13 29.41 

ash 7.48 6.22 7.99 3.74 26.92 3.42 5.79 

contents ultimate analysis (dry basis) [mass%] 

C 56.90 57.30 54.50 62.00 37.60 64.50 61.40 

H 4.51 4.76 4.76 4.74 3.60 5.70 5.15 

O 22.32 24.13 23.19 24.60 16.91 22.84 22.55 

N 0.68 0.51 0.53 0.74 0.43 0.68 0.58 

S (combustible) 0.19 0.26 0.10 0.06 0.30 0.50 0.17 

ash  15.40 13.00 16.90 7.90 41.20 6.10 10.20 

calorific value higher heating value (dry basis) [MJ kg
-1

] 

HHVc 22.34 23.13 22.32 24.41 15.51 27.44 25.88 
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5.4.2 Effect of geological structure on initial moisture and density of lignite 

The general influence of geological origin on the drying-related properties can 

be discussed with reference to two major coal lithotypes existing in lignite structure, 

xylitic and detritic coal. The lithotype is determined by prevalence of particular 

ingredients. Detritic coal (see Fig. 5.15.A) occurs in the form of fine-graded, crumble 

groundmass (detritus), which originated primarily from herbaceous plants as well as 

wood of deciduous shrubs and trees. In the macroscale, detritic coal is rather uniform, of 

distinguishable components smaller than 1 cm [91]. Xylitic coal (see Fig. 5.15.B), on 

the other hand, is composed of elongated woody remnants, in the form of pieces of 

branches, thin trunks or roots. Due to impregnation with resin which is produced by 

coniferous plants, the preservation of original structure is more likely to occur. The 

fragments of xylites in this type of coal exceed 1 cm [91]. The coals consisting of both 

structural components are denominated as xylo-detritic (over 50% of detritus) and 

detro-xylitic (over 50% of xylites) [92]. 

 
Figure 5.15 Representative cases of A) xylitic and B) detritic coal 

 

In the studies of Romanian coal from Oltenia region [93], a correlation between 

lithotype and main qualitative parameters of coal was discussed. The significant 

dependence between coal lithotype and the ash content was observed. Xylitic coals were 

claimed to exhibit the lowest mineral content. The transient forms, xylo-detritic and 
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detro-xylitic coals, were characterized with larger share of ash contamination, while the 

largest values were obtained for detritic and clayed coals. 

A several dozens of lignite samples made of Turow lignite were measured in 

terms of initial density and water share. In Fig. 5.16, the measurement results are 

presented, in regard to T1, T2 and T3 coal batches, formed in 5 and 10 mm spheres. The 

range of WS
0
 is spread widely between 25 and 55% for all analyzed batches. Properties 

are distributed in two separated regions especially for T3 lignite, with a considerable 

number of objects, ranging significantly in initial water while having the alike initial 

density. In the case of T2, a transient group between samples of high and low density is 

observed. The trend for T1 lignite is rather blur, still, a certain amount of samples 

exhibiting low density and high moisture content is presented, similarly to T3, which 

originated within the same lignite seam. In general, the results may follow the 

correlation indicated in previous paragraph, as shown in Fig. 5.16.D. The highest 

moisture was remarked for xylitic coals, which evince low ash contamination and thus 

low density. The density rises at the expense of initial water content, what is specific 

feature of detritic coals. Still, some measurements resulted in remote and extreme 

values of both parameters, probably marking the objects prepared from highly 

contaminated footwall region of the lignite batch. 

In conclusion, the knowledge on prevailing lithotype in the particular lignite 

type might be useful for predicting some properties related to fuel preparation. Initial 

water share and density, which gives the hint on ash content, are taken into account not 

only in terms of drying, but also the assignment of appropriate technology of 

combustion or gasification. 
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Figure 5.16 Correlation between initial density and water share for coal batches  

A) T1, B) T2, C) T3, combined with D) general observations 

 

5.4.3 Effect of ash contamination on the drying behavior 

The correlation between detailed individual properties of coal sample and the 

drying behavior are discussed on the example of T1 batch. Note that this lignite is 

characterized with by far the highest mineral contamination (Tab. 5.6). It is related to 

location from where that batch was extracted – the footwall of the seam. Due to 

proximity of other rocks formed of non-organic mineral matter, the high level of 

contamination, in the form of ash, is observed. The components of ash, are mostly silica 

and metal oxides, of higher molecular mass and density than water or carbon, therefore 



77 

 
 

the share of the two latter components is reduced in objects of significant ash 

contamination. Moreover, the inclusions of foreign material within lignite diminish the 

uniformity of the batch, what contributes to incline in randomness of drying properties 

and decline in experimental repeatability. 

Figure 5.17 contains the drying characteristics for three tests performed for 

randomly chosen samples made of T1 batch, split into time charts of mass, moisture 

content, drying rate and temperature profile. Although they originated within 4 m 

section of a geological profile, their drying properties differ in significant manner. The 

major reason is the difference of moisture content, as presented with other drying 

indicators in Tab. 5.7.  

 
Figure 5.17 Exemplary drying characteristics of 10 mm samples made from T1 lignite, 

dried at 150 
o
C: A) mass, B) temperature profile, C) moisture content, D) drying rate 
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Table 5.7 Selected drying indicators of exemplary T1 samples 

indicator Test 1 Test 2 Test3 

initial water share [mass%] 26.8 38.9 47.9 

drying time [min] 42.1 57.6 58.2 

peak drying rate [s
-1

] 3.37×10
-4

 4.69×10
-4

 6.07×10
-4

 

 

The sample used in Test 1 was characterized by the lowest moisture content, 

therefore the period of preheating as well as CDRP ends sooner than the other two cases. 

For the same reason, the increase of surface and center temperatures (midpoint was 

omitted for the sake of chart’s clarity) occurs the earliest, and so does the termination of 

the drying process. In addition, the small temperature difference is observed between 

surface and center curves, what might be attributed to the relatively high thermal 

diffusivity of this sample. This parameter is directly influence by moisture share, 

because water has the highest heat capacity among lignite components. With the 

assumption of constant volume of all three samples, the one used in Test 1 exhibits the 

highest mass and hence density. In relation to lowest water share, this correlation is 

consistent with the trend presented in Fig. 5.16. 

The moisture content is also a key factor in levels of volumetric shrinkage 

achieved by drying. The spheres examined in Test 1, Test 2 and Test 3 lost 7.7%, 18.3% 

and 40.7% of their initial volume, respectively. In objects abundant in water, the 

volumetric ratio of internal pores and crevices is high. For they are subject to collapsing 

during dewatering, the potential of shrinkage under these circumstances is also 

significant.  
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5.4.4 Sensitivity analysis of physical properties of lignite on the drying 

parameters 

The individual features of coal particles discussed in section 5.4.3 may strongly 

impact the observed drying behavior and thus blur the conclusions one can draw from 

the analysis of superheated steam drying charts. For that reason, a sensitivity analysis is 

required with reference to the physical properties of lignite. On the assumption of 

constant drying rate and invariable volume in the initial period of drying, such analysis 

was performed for CDRP. The formula for drying rate may be derived from the 

equations (B.3) and (B.4) in Appendix B and expressed as: 

 a 1

CDRP b
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where ρb [kg m
-3

] is a dry bulk density, expressed as a ratio of dry coal mass and initial 

volume of the sample: 
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where ρw equals 1000 kg m
-3

. Equation (5.2) can be formulated in regard to (5.3) as: 
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(5.4) 

In Fig. 5.18, the correlation of the initial water share and drying rate is presented 

for 10 mm samples of each lignite batch dried in superheated steam of 170 
o
C. The 

curves represent theoretical correlations between density of dry matter and the rate of 
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drying in accordance with the model in Eq. (5.1). The concentration of markers related 

to Belchatow lignite (B2013, B1, B2, B3) is contrasted with dispersion of Turow data 

points (T1, T2, T3). That fact arises from the lower contamination and more 

homogenous structure within Belchatow coal. However, the empirical data markers fit 

the general dependence obtained by calculation.  

Figures 5.19 and 5.20 illustrate the correlation between dry bulk density and 

drying rate achieved for objects of different diameter and various drying temperature, 

respectively. The good agreement between theoretical and experimental results proves 

the validity of the model equation and confirms it may be applied for explanation of the 

physical properties of lignite applied for superheated steam drying. The wide dispersion 

of dry bulk density of Turow lignite is even more explicit and opposed to compact 

tendency evinced by the objects prepared using Belchatow coal. 

 

 
Figure 5.18 Impact of initial water share and density of lignite on the drying rate 
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Figure 5.19 Impact of dry bulk density of lignite and particle size on the drying rate  

 

 
Figure 5.20 Impact of dry bulk density and steam temperature on the drying rate 
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5.4.5 Effect of geological structure on residual moisture content 

The equilibrium moisture content, understood as amount of residual water 

remaining after drying at a certain temperature is a property of a material and drying 

environment. It is related to isobar sorption curve, which is a function of relative vapor 

pressure [15]. The increase in the temperature of the superheated steam is connected 

with decline of the relative humidity over the surface exposed to drying, hence, more 

water can be absorbed by the drying medium. Klutz et al. claimed that lignite cannot be 

“overdried” in the superheated steam, because once the equilibrium moisture content is 

reached, it cannot be further decreased [94]. 

The equilibrium moisture content was investigated for samples of Belchatow 

and Turow lignite, relying on the sample mass after superheated steam drying, prior to 

removal of residual water in nitrogen atmosphere. In case of the latter coal, the samples 

of low ash contamination, assumed on the basis of initial water share above a threshold 

value of 36%, were taken into consideration. 

In order to approximate the temperature dependence of equilibrium moisture at 

certain conditions, one needs to adapt a general model represented by the class of 

functions. Tang and Cenkowski [95], relying on experience in investigating the 

equilibrium moisture content for various materials, proposed the following formula: 

 
  3

eq 1 2
exp 100

k

X k k T   
 

 (5.5) 

where parameters k1, k2 and k3 can be determined using the experimental data. Though 

they claimed that Eq. (5.5) cannot be used to describe behavior of brown coals, as they 

exhibit enhanced moisture absorption capacity below 140 
o
C [95], the formula was 

found to fit the experimental results for both categories of lignite above the temperature 

of 110 
o
C. 
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The exact empirical equation for the coal from Belchatow mine is formulated as: 

 
 

0.179

eq
4.77 exp 2.36 100X T    

 
 (5.6) 

In the case of T1, T2 and T3 coals, the model can be expressed in the following manner: 

 
 

0.127

eq
44.79 exp 4.41 100X T    

 
 (5.7) 

Empirically derived equations (5.6) and (5.7) were applied in the numerical model of 

drying for batches of different origin. The results are presented in section 7.5. Note that 

the function of equilibrium moisture content below 110 
o
C was adapted from [73] as: 

 
  3

eq
0.706 98.6 6.23 10X T      (5.8) 

 In Fig. 5.21 the averaged experimental values of residual water for Belchatow 

and Turow lignite are presented together with the curves representing the model 

formulas (5.6) and (5.7). As can be seen, due to generally lower moisture content related 

to lower porosity of structure, Turow coal can store less water than Belchatow in an 

equilibrium state. For comparison, the results of experimental research on equilibrium 

moisture content of different materials were presented, including lignite [73,96], spent 

grains [95], ceramic spheres [97], wood chips [98] and paper pulp [99]. According to 

the experimental data, lignite exhibits considerably higher equilibrium moisture content 

at certain temperatures than other compared materials. It is related to developed internal 

surface of pores, where vast amount of moisture can be stored. At the opposite end of 

the spectrum ceramic spheres can be found as a material of non-capillary porous 

structure which can store barely any moisture at the equilibrium state. 
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Figure 5.21 Comparison of equilibrium moisture content for Belchatow and Turow 

lignite with different lignite types [73,96] and other materials [95,97–99]. 

 

It is expected that the structural differences of lithotypes may impact the 

absorption capacity of lignite. Thus, further studies concerning size and distribution of 

pores are desirable to assess the relation between residual moisture and nature of lignite. 

More details on dependencies between individual properties of Belchatow and 

Turow lignite can be found in [88,100,101]. The studies discuss the applicability of 

abovementioned coals not only in terms of superheated steam drying, but also regarding 

innovative technologies of energy production such as integrated gasification combined 

cycle (IGCC). 
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6. CHAPTER 6 

Mathematical model of lignite drying in superheated steam 

6.1 Physical model 

The physical model of drying is represented by a sphere, that comprises three 

phases of coal. Each of them is characterized with different thermophysical properties: 

dry coal matter, free water and bound water.  

Dry coal matter is a mixture of solid immobile substances: primarily carbon, 

carbohydrates and ash. Those lignite ingredients are not subject to evaporation. The 

drying temperature, as mentioned in the experimental section was limited in order to 

preclude volatilization and decomposition of chemical structure. For those two reasons, 

the total mass of dry coal does not vary through the drying process.  

The total amount of water within coal is divided according to the mechanism of 

evaporation. Free water is assumed to evaporate at the saturation temperature, which is 

100 
o
C under atmospheric pressure. Meanwhile, bound water, which represents the 

moisture kept tightly within the coal structure, turns to steam above 100 
o
C.  

The model was constructed on the assumption that the object is a perfect sphere 

of isotropic properties. The parameters related to dry coal matter, i.e. density ρc, specific 

heat cc or thermal conductivity λc, are temperature-independent, and thus remain 

invariable during drying process. On the contrary, analogical properties of water exhibit 

significant dependence on temperature. For that reason, empirical formulas for those 
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quantities, valid within process temperature range, were applied. What is more, 

evaporation and diffusion alter the moisture content in lignite interior (along the radius), 

what impacts the resultant values of particular properties. Coal in drying process is also 

subject to shrinking, what changes its geometry, affecting heat and mass transfer. 

The essential material parameters applicable in the model are given in Tab. 6.1.  

Table 6.1 Selected properties of coal applied in the simulation  

(lignite types: B2013 – Belchatow, Y – Yallourn, LY – Loy Yang) 

parameter lignite value source 

initial moisture 

content X
0 

B2013 1.05  
experimental average,  

equal to WS=51.25% 

density (dry coal) ρc B2013 1536 kg m
-3

 experimental average 

specific heat  

(dry coal) cc
 

B2013 1246 J kg
-1

 K
-1

 commissioned research 

thermal conductivity 

(dry coal) λc 
B2013 0.33 W m

-1
 K

-1
 

auxiliary in-house tests 

(Appendix A) 

heat transfer 

coefficient h from 

steam of temperature 

Ta[
o
C] to sphere of 

diameter d[m] 

B2013 

(2.38×10
-4

/d-9.17×10
-2

)×Ta- 

-(2.99×10
-2

/d-5.43)  

W m
-2

 
o
C

-1
 

thermodynamically 

derived in Appendix B 

equilibrium moisture 

content Xeq 

Y 0.71/(Tn-98.58)+0.006  
in range 100-114.1 

o
C, 

adapted from [73] 

B2013 4.77×exp[2.36×(Tn-100)
0.18

] 
in range 114.1-170 

o
C, 

experimental data 

enthalpy change of  

bound water 

evaporation ΔH 

Y 
2.93×10

6
-6.76×10

5
× 

×exp[-0.08×(Tn-100)] J kg
-1 adapted from [73] 

linear shrinkage 

1-l/lini 
LY 

-0.27×(Vw/V
0

w)
3
+0.66× 

×(Vw/V
0

w)
2
-0.55×(Vw/V

0
w)+0.16 

adapted from [73] 

diffusion coefficient 

of free water D 
LY 3.0×10

-9
 m s

-2
 adapted from [73] 
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Certain chemical and physical properties on Belchatow coal, have not been reported in 

the literature. Thus, for the purpose of simulation, appropriate parameters were adapted 

from other lignite types. The data marked as B2013 in the table relate to the specific 

lignite experimental batch from Belchatow mine. They are either acquired from 

auxiliary studies, calculated on experimental data or received from commissioned 

research. 

6.2  Mathematical formulation 

6.2.1 Heat transfer 

 

The above-mentioned isotropy of the properties allowed for the application of 

one-dimensional model of transient heat transfer, along the sample radius. The 

temperature field under those conditions, is described by Eq. (6.1): 

 
 

( , )
( , ) ( , ) ( , )

V

T r t
c r t r t r t T q

t
 


   


 (6.1) 

where q̇V represents volumetric heat sink (negative heat source) [W m
-3

] which reflects 

heat loss by evaporation of free and bound water (sections 6.3.3.3 and 6.3.3.4). The first 

contribution of the right-hand side of Eq. (6.8) may also be presented as: 

 
  2

2

1 ( , )
( , ) ( , )

T r t
r t T r r t

r r r
 

  
      

 (6.2) 

The initial condition is equal to: 

 0

0
( , ) 40 

t
T r t T C


    (6.3) 

The boundary conditions represent the transfer of heat from the steam to the surface of a 

sample and the symmetry condition, respectively: 
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 1

1 a a 1

( , )
( , ) ( )

r r
T r t

h r T T T t
r





  


 (6.4) 

 
0

( , )
0r

T r t

r







 (6.5) 

Heat transfer coefficient h in Eq. (6.4) is a function of steam temperature (the 

surrounding space around the sample is fulfilled with steam) and sample diameter. It 

was derived in Appendix B with consideration for heat transfer mechanisms of 

convection and radiation. The obtained empirical formula is shown in Tab. 6.1. 

6.2.2 Mass transfer 

As mentioned in section 6.1, the mass transfer phenomena during drying are 

limited to water. Thus, the general transport equation governing the water transfer and 

evaporation in coal sample is formulated by Eq. (6.6). 

 
 b,w

b,w b,w,evap

( , )
( , )

r t
D r t

t


 


   


 (6.6) 

where ρb,w is a bulk density or mass concentration of water within lignite [kg m
-3

] and D 

stands for diffusion coefficient of free water [m
2
 s

-1
]. The first contribution on the right 

hand side is a diffusion term, while the second expresses the evaporative flux of water 

concentration. 

Considering the formula (6.7) the initial condition can be expressed by Eq. (6.8):  

 w c w c

b,w c

c c

m m m m
X

V m m V
     (6.7) 

 0 3

b,w c0
( , ) 1.05 1536 1612.8 kg m

t
r t X  


     (6.8) 

The values of initial moisture content X
0
 and dry coal density ρc are taken from Tab. 6.1. 
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6.3  Numerical model 

6.3.1 Discretization scheme 

6.3.1.1 Heat transfer 

In order to obtain algebraic formulas from differential equations, the 

control-volume method was used [102,103]. Assume element n within a sphere, which 

volume is Vn and area equals to An. Eq. (6.1) can be integrated on this element as: 

 

 
( , )

( , ) ( , ) d ( , ) d d
n n n

V

V V V

T r t
c r t r t V r t T V q V

t
 


   

    (6.9) 

The term related to conduction in Eq. (6.8), over the application of Gauss integral 

theorem, might be expressed as: 

    ( , ) d ( , ) d
n nV A

r t T V r t T A       n  (6.10) 

where n is a normal vector. 

Thermal conductivity λn, density ρn, and specific heat cn over the entire element 

n are assumed to be constant at a certain time instance. Thus, apparent values dependent 

of volume fraction of coal and steam are used in the calculation domains in each time 

step. On that assumption, Eq. (6.9) and (6.10) might be transformed to: 

 
( , )

( , ) ( , ) d
n

n

n n n

V

TT r t
c r t r t V V c

t t
 




   (6.11) 

and: 

    in, out,
( , ) d

n

n n

A

r t T A Q Q    n  (6.12) 

where the right side of Eq.(6.12) represent heat fluxes conducted into and out of layer n. 
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Transformation of the integral in Eq. (6.12) and separation of its variables 

produce a formula for the heat input by conduction to the layer n: 

 

1 1

in,

24

n n

n n

r T

n

r T

Q r
T

r



 


     (6.13) 

Assuming T(rn) = Tn and T(rn-1) = Tn-1, the integration on the interval [rn-1, rn] is 

performed. The outcome, with regard to thermal resistance of a spherical element, is 

equal to: 

 
-1 -1

in,

1, 1

1 , 1
4

n n n n

n

n nn n

n n n n

T T T T
Q

r rR

r r 


 

 
 


 

(6.14) 

In the case of conduction between two adjacent layers of different thermal 

conductivity values, the heat resistance Rn,n-1 between their central points is equal to 

sum of heat resistances along the segment bn and bn-1. Introduction of interface radius 

rint,n,n-1 between layers n and n-1 is required: 

 
 int, , 1 -1-1 -1

in,

int, , 1 1 int, , 1 11

1 1int, , 1 1 1 int, , 1

4

4 4

n n n nn n n n

n

n n n n n n n nn n

n n n nn n n n n n n n

r T TT T T T
Q

r r r r b bR R

r rr r r r



    



   

    

 
  

 


 
(6.15) 

The heat output from layer n is equal to heat input to layer n+1: 

  int, 1, 1

out,

1

1 1

4
n n n n

n

n n

n n n n

r T T
Q

b b

r r



 

 



 






 
(6.16) 
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6.3.1.2 Mass transfer 

According to the scheme of the discretization of heat transfer equations 

introduced in the previous section, Eq. (6.6) can be integrated over the volume of 

element n. 

 
b,w b,w

b,w,evap

( , ) ( , )
d d d

n n nV V V

r t r t
V D V V

t r r

 


  
   

   
    (6.17) 

What is equal to: 

 
b,ww

w,evap

( , )( , )
d

nA

r tm r t
D A m

t r

  
    

  
 n  (6.18) 

The first contribution on the right hand side represent the Fick’s law and may be 

expressed as sum of diffusion fluxes into and out of the layer n: 

 

 b,w

b,w,in, b,w,out,

( , )
d

n

n n

A

r t
D A m m

r

 
    

 
 n  (6.19) 

The direction of water transfer within lignite is opposite to the direction of heat 

transfer. The evaporation of water proceeds from the surface to the core of the sphere, 

enhancing the water concentration gradient that induces diffusion. The diffusion 

coefficient of free water, D, which value is given in Table 6.1, is assumed constant over 

the entire volume and drying process [73]. Integrating LHS of Eq. (6.19) from rn-1 to rn 

with the assumption of ρb,w (rn) = ρb,w,n and ρb,w (rn-1) = ρb,w,n-1, the water diffused out of 

the layer n equals: 

 
 1 b,w, b,w, 1

out,

1

4
n n n n

n

n n

r r
m D

r r

  
 







 (6.20) 
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Substitution of water concentration according to Eq. (6.7) produces: 

 
 1 b,c, 1

out,

1

4
n n n n n

n

n n

r r X X
m D

r r

 
 







 (6.21) 

Analogically, the diffusion input to layer n is equal to the output from layer n+1, thus: 

 
 1 b,c, 1

in,

1

4
n n n n n

n

n n

r r X X
m D

r r

 
 







 (6.22) 

6.3.2 Particular discretization assumptions 

The following assumptions of the discretization supplement those introduced in 

the previous sections of this chapter: 

 The elements (layers) were distributed uniformly along the radius, establishing a 

series of concentric spherical shells characterized with initial width equal to 2b. 

In the case of extreme elements, number 1 and N+1, the initial width was equal 

to b in order to avoid overlapping of control-volume balances (Fig. 6.1). 

 The number of model segmentation was set equal to 50, what provides the 

acceptable accuracy of numerical prediction for each sample size taken into 

account in the present work. (Appendix C) 

 Convergence of the simulation was judged with reference to values of two 

quantities observable in the experiment: weight and temperature. In the case of 

former, the sufficient condition was the stepwise decrease lesser than 0.01% of 

the dry coal mass, while the latter was assumed stable when the difference 

between the drying medium and center of the sphere became lower than 10
-2

 
o
C. 
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 The explicit method of simulation was performed, therefore stability criterion 

was adapted with regard to a specific value of the time step width ∆t: 

 
 

2

2

x
t




   (6.23) 

where α stands for thermal diffusivity [m
2
 s

-1
] 

The time step width ∆t was adjusted to the conditions. By default, it was equal to 

10
-3

 s. Nonetheless, to ensure stability, for samples smaller than 5 mm in 

diameter, its value was 10
-4

 s and for objects of diameter lesser than 1.5 mm, the 

time step width equaled 10
-5

 s. 

 At the beginning of iteration i+1, the values of variables attained at the end of 

the previous iteration i are overwritten with the counter i+1. This does not 

concern the quantities, which symbols are preceded by Δ sign. Those quantities 

are representatives of the non-cumulative mass and heat flows between the 

layers and are calculated for each time instance repetitively. The general rule is 

also not applicable for material properties of water, e.g. specific heat or density, 

which are updated subsequently with regard to the current temperature of the 

layer. The graphical interpretation of the numerical simulation process is 

presented in Appendix F. 
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Figure 6.1 Distribution of elements within a lignite sphere 

6.3.3 Specificity of particular drying stages 

Throughout the process of superheated steam drying, the specificity of heat and 

mass transfer was subject to change, according to occurrence of water and temperature 

level as the most influential factors. The numerical model was prepared in accordance to 

the assumptions pointed out previously in this chapter. Its structural segmentation was 

designed with respect to varying modes of dewatering. Different sets of numerical 

equations are applicable to consecutive drying stages, as described in the following 

subsections. Still, the heat conduction between adjacent layers, followed the same 

pattern for all stages. The numerical formula, prepared basing on Eq. (6.15) is presented 

in Eq. (6.24). 

 

   
 , 1,int

,in 1

-1 -1 -1

4 i

n ni i i

n n ni i i i i i

n n n n n n

r
Q T T t

b r b r



 



   


 (6.24) 

6.3.3.1  Condensation of water on the surface 

In the initial stage of drying, the temperature of the dried object is lower than 
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saturation temperature. For that reason, on the coal surface a condensation of water 

occurs. The entire heat input to the sample is determined by this phenomenon, what is 

expressed by Eq. (6.25): 

 
   

2
0

1,in cond 1 14 100i iQ h r T t     (6.25) 

The consumption of heat within the layer n at that time induces increase in the 

temperature of dry coal and internal moisture. 

 
 cons, c c, w, w,

i i i i

n n n n nQ c m c m T     (6.26) 

6.3.3.2 Evaporation of water from the surface 

When the temperature of the surface of the coal sample reaches 100 
o
C, the 

amount of heat transferred to the sample becomes proportional to the difference in 

temperature between the superheated steam and saturation temperature of water, what is 

reflected by Eq. (6.27). 

 
   

2

1,in 1 a4 100i iQ h r T t     (6.27) 

In this stage of drying, the water film formed by condensation and exudation, 

remained on the surface. This period, especially for larger samples, was characterized 

by a tendency of subsequent forming and falling of water droplets. It happened because 

the surface tension was outweighed by the gravitational force attracting the water 

hemisphere on the bottom part of the surface. The model of droplet formation was 

adapted from the other study [74]. 

6.3.3.3 Evaporation of free water 

After the removal of water from the surface, the heat is driven to the object 



96 

 
 

according to the same mechanism. The value of the heat input, however, becomes 

proportional to the difference between the temperatures of steam and surface, the latter 

of which exceeds 100 
o
C and gradually increases (Eq. (6.28)). 

 
   

2

1,in 1 a 14i i iQ h r T T t     (6.28) 

In terms of evaporation, water on the surface and free water inside the sample are 

subject to the same mechanism. The relation between heat stored within the layer n and 

the evaporated mass of water from this layer can be formulated as: 

 
cons, evap,

i i

n nQ m L    (6.29) 

where L represents the latent heat of evaporation, equal to 2.256 MJ kg
-1

. 

As mentioned in section 6.3.1.2, due to evaporation of water, moisture content 

gradient occurs between the layers. The gradient induces water transport between the 

layers. The numerical representation of Eq. (6.22) describing the transfer mechanism of 

free water, is illustrated by Eq. (6.30). 

 
1

trans,in, c 1

1

4
i i

i i i n n
n n n i i

n n

X X
m D r r t

b b
  






   


 (6.30) 

6.3.3.4 Evaporation of bound water 

As the temperature of a particular layer exceeds 100 
o
C, the free water 

evaporation is signalized to be finished. The only remaining type of moisture in the coal 

sample at this time is bound water. It is tightly entwined within the structure of lignite, 

thus its removal requires greater input of heat than free water evaporation. The 

evaporation rate of bound water at a particular time instance is limited. For that reason, 

the surplus of heat input is allocated on raising the coal temperature. The simple 
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evaporation mechanism relying on constant latent heat is substituted by the manner 

utilizing enthalpy change of bound water evaporation ΔH. This approach applicable at 

that stage might be expressed as a function of temperature within the layer n. When 

bound water evaporation occurs, the heat consumption is determined by Eq. (6.31). 

 
 cons, c c, w, w, evap, evap,

i i i i i i i

n n n n n n n nQ c m c m m T m H       
 

 (6.31) 

6.3.3.5 Change of sample size due to shrinkage 

The decrease in moisture content to the level of around 0.6 [84] is accompanied 

by visible change in the particle size. Such a level of moisture content is typical for the 

period bound water is being evaporated from shallow parts of coal, when the core 

temperature is significantly above 100 
o
C. Therefore, the dependency on moisture 

content was applied to formulate a shrinkage equation implemented to influence the 

sample diameter in the numerical simulation. The equation is presented in Table 6.1.  
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7. CHAPTER 7 

Numerical analysis of lignite drying in superheated steam 

7.1 Comparison of empirical and numerical results of single-particle 

drying 

The outcome of the numerical simulation was juxtaposed with the experimental 

results presented in chapter 5. Identically, the results were presented as the time charts 

of the moisture content, drying rate and temperature profile. In the figures involving 

drying characteristics obtained both experimentally and numerically, the midpoint 

temperature was deliberately omitted for the sake of clarity. In the case of samples of 5, 

10 and 30 mm, the surface and center temperature were included in the graphs, while 

for the smallest particles of 2.5 mm, only surface temperature was measured and 

therefore presented. Each simulation case was coupled with a single experimental 

attempt. Figures 7.1, 7.2, 7.3 and 7.4 illustrate characteristic drying curves for 2.5, 5, 10 

and 30 mm lignite particles, respectively. The results contained in this section were 

presented in [104]. 
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Figure 7.1.1 Comparison of experimentally and numerically obtained drying 

characteristics of 2.5 mm sample at test temperatures of A) 170 
o
C, B) 150 

o
C 
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Figure 7.1.2 Comparison of experimentally and numerically obtained drying 

characteristics of 2.5 mm sample at test temperatures of C) 130 
o
C, D) 110 

o
C 
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Figure 7.2.1 Comparison of experimentally and numerically obtained drying 

characteristics of 5 mm sample at test temperatures of A) 170 
o
C, B) 150 

o
C 
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Figure 7.2.2 Comparison of experimentally and numerically obtained drying 

characteristics of 5 mm sample at test temperatures of C) 130 
o
C, D) 110 

o
C 
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Figure 7.3.1 Comparison of experimentally and numerically obtained drying 

characteristics of 10 mm sample at test temperatures of A) 170 
o
C, B) 150 

o
C 
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Figure 7.3.2 Comparison of experimentally and numerically obtained drying 

characteristics of 10 mm sample at test temperatures of C) 130 
o
C, D) 110 

o
C 
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Figure 7.4.1 Comparison of experimentally and numerically obtained drying 

characteristics of 30 mm sample at test temperatures of A) 170 
o
C, B) 150 

o
C 
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Figure 7.4.2 Comparison of experimentally and numerically obtained drying 

characteristics of 30 mm sample at test temperatures of C) 130 
o
C, D) 110 

o
C 
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In general, the simulated increase in lignite temperature, particularly the one 

indicating the center of the sphere, was more sharp and occurred later than in the 

empirical attempts. According to the adapted model, the temperature of particular layer 

could increase above 100 
o
C only if the free water has been completely removed from it. 

The inconsistence of calculated and directly achieved temperature profile might be 

attributed to the uniformity of the structure assumed in the simulation and its disorder 

enhanced by the actual processes of deformation and cracking. Those processes may 

influence the threshold between the free and the bound water, thus, diversifying the pace 

at which the moisture is diffused and evaporated within the different cross-section of the 

particle subject to experimental efforts. 

7.2 Prediction of temperature dependence on the drying performance 

The quantification of particular drying indicators, gathered in Tab. 7.1 was 

performed on the basis of another set of computations, within the same superheated 

steam temperature range, but applying the interval of 10 
o
C. The objective of such 

approach was to evaluate the impact of the drying medium temperature on the 

performance of superheated steam drying procedure. 

Table 7.1 Indicators applied for drying performance evaluation 

indicator symbol description 

drying time
 tdry time required for completion of drying 

peak drying rate  (-dX/dt)max highest level of the drying rate 

duration of constant  

drying rate period 
tCDRP 

period when the drying rate  

remains at a stable value 

time of free water removal tfree 
instance when the center temperature 

exceeds 100 
o
C for the first time 

peak temperature difference ΔT1,51,max 
largest difference between the surface 

and center temperatures 
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The values of indicators obtained for particular temperatures of superheated 

steam are shown for samples of 30, 10, 5 and 2.5 mm in Tab. 7.2, 7.3, 7.4 and 7.5, 

respectively. 

Table 7.2 Predicted values of drying indicators for 30 mm sample 

Ta  

[
o
C] 

tdry 

[min] 

tCDRP  

[min] 

(-dX/dt)max 

×10
-4

 [s
-1

] 

tfree 

[min] 

∆T1,51,max 

[
o
C] 

170 193.3 9.4 2.44 110.7 51.7 

160 225.6 12.7 2.00 133.0 43.1 

150 271.9 17.3 1.58 148.3 34.7 

140 342.7 30.6 1.22 180.9 26.6 

130 460.7 54.3 0.92 224.6 18.9 

120 695.0 107.7 0.55 298.3 11.4 

110 1216.4 284.5 0.26 478.2 4.3 

Table 7.3 Predicted values of drying indicators for 10 mm sample 

Ta  

[
o
C] 

tdry 

[min] 

tCDRP  

[min] 

(-dX/dt)max 

×10
-4

 [s
-1

] 

tfree 

[min] 

∆T1,51,max 

[
o
C] 

170 46.4 7.1 8.89 24.5 32.3 

160 54.9 9.5 7.31 27.9 26.2 

150 67.2 13.2 5.83 32.7 20.6 

140 85.9 18.6 4.45 39.4 15.3 

130 117.7 28.1 3.18 49.9 9.7 

120 180.7 47.3 2.02 70.2 5.0 

110 328.8 106.0 0.96 129.8 1.8 

Table 7.4 Predicted values of drying indicators for 5 mm sample 

Ta  

[
o
C] 

tdry 

[min] 

tCDRP  

[min] 

(-dX/dt)max 

×10
-4

 [s
-1

] 

tfree 

[min] 

∆T1,51,max 

[
o
C] 

170 17.6 3.2 22.24 8.4 22.5 

160 20.9 4.3 18.31 9.6 18.1 

150 25.6 5.8 14.63 11.3 13.8 

140 32.8 8.0 11.20 13.7 9.3 

130 45.0 11.8 8.02 17.6 5.7 

120 69.2 19.4 5.09 25.4 3.0 

110 126.4 42.4 2.42 48.7 1.1 
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Table 7.5 Predicted values of drying indicators for 2.5 mm sample 

Ta  

[
o
C] 

tdry 

[min] 

tCDRP  

[min] 

(-dX/dt)max 

×10
-4

 [s
-1

] 

tfree 

[min] 

∆T1,51,max 

[
o
C] 

170 6.1 1.1 62.32 2.7 16.3 

160 7.3 1.6 51.39 3.1 12.7 

150 8.9 1.9 41.13 3.7 9.0 

140 11.4 2.9 31.55 4.5 6.0 

130 15.6 4.2 22.65 5.8 3.7 

120 23.9 6.7 14.42 8.5 2.0 

110 43.7 15.0 6.87 16.7 0.8 

 

The time of drying tdry predicted in the simulation exhibit the sudden increase 

when the temperature is close to 100 
o
C. To give an example, the extension of the 

drying process by around 80% for samples of all sizes is expected when the steam 

temperature is changed from 120 to 110 
o
C.  

The maximum value of the drying rate (-dX/dt)max is calculated at the 

temperature of 170 
o
C, what is related to the highest heat flux between the surrounding 

gas and the object. The peak values of the drying rate for corresponding temperatures 

were around 26 times higher when comparing the drying of smallest sample to the 

largest one.  

Those values was simulated during the period, when dewatering is the most 

intense – the constant drying rate period (CDRP). The stage of constant drying exhibited 

similar share in the total duration of the process for the samples of 2.5, 5 and 10 mm, 

where it ranged from circa 1/6 (170 
o
C) to circa 1/3 (110 

o
C). The analogical boundary 

values for the largest, 30 mm, object were computed at around 1/20 and 1/4, 

respectively. 
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More uniform pattern was observed when analyzing the instance of total free 

water removal, tfree. For the entire range of examined objects, free water was predicted 

to be evaporated slightly before 40% of the entire drying time. As the steam temperature 

inclined, this relative value was slightly delayed. However, for smaller samples 

occurred a little sooner. The exact values of tfree/tdry ratio were 44.3%, 47.7%, 52.8% and 

57.3% with relation to increasing order of sphere sizes. 

The last indicator is the highest calculated difference between center and surface 

of the sphere. As the free water gradually moves to the more shallow layers and the 

front of evaporation descends towards the core of the sphere, a temperature gradient 

occurs. Below the front of evaporation the lignite remains at the temperature of 100 
o
C, 

while the shallow layers, where the bound water is being removed is increasing its 

temperature. The larger the sample is, the higher peak difference can be obtained. The 

instance of highest temperature is slightly postponed in regard to the time of free water 

evaporation. Though maximal temperature gradient, understood as ratio of peak 

temperature difference and the radius is higher for the smaller samples, the time of 

exposition for significant thermal stress is supposed to bring about more serious damage 

in the structure of large samples, especially for high temperature of the superheated 

steam. 

7.3 Quantitative verification of computed values 

 In order to comprehensively analyse the coherence of the computational and 

empirical results, the values of two indicators introduced in the previous section were 

compared. The approximation of heat transfer coefficient hapr, derived in Appendix B, 

was used to predict the peak value of the drying rate, according to Eq. (7.1). 
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  2

apr a 1

max,apr c

d

d

h T T dX

t L m

 
  

 
 (7.1) 

The same approximation of heat transfer coefficient was implemented in the 

numerical model and the maximum value of drying rate was found in the simulation. 

Those two manners were correlated to experimental method of calculating drying rate, 

relying directly on the electronic balance indication, as shown in Fig. 7.5. Since the 

approximated and simulated values depend on the same approximation of heat transfer 

coefficient, the trend lines are almost identical, with consideration of accuracy of the 

numerical computation. Due to individuality of the dried objects, the empirical results 

are distributed in some range. 

 
Figure 7.5 Maximum values of drying rate obtained from the experiment,  

the approximation formula and the numerical simulation 
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The model of approximation for the total time of drying was proposed relying on 

the dataset of actual experimental attempts. Proposed as a function of superheated steam 

temperature and reciprocal of sample diameter, initially for 5 and 10 mm [85], it was 

adjusted to the objects of the remaining sizes. Two models of approximation were taken 

into consideration, as given in Eq. (7.2) and (7.3). 

 
3 5

7 2

dry,apr a

5.73 10 1.0 10
1.93 10 exp 7.48 2.74 10t T

d d

 


    
       

  
 (7.2) 

 
3 5

7 2

dry,apr a

8.33 10 4.0 10
2.0 10 exp 6.88 2.52 10t T

d d

 


    
       

  
 (7.3) 

The former was derived with use of experimental drying time values, while the 

latter excluded the smallest category of particles, 2.5 mm. They were assessed using a 

marker of normalized mean absolute error (NMAE), calculated for each particle category, 

as formulated in Eq. (7.4). The benchmark used in calculating this indicator is the 

averaged experimental value of drying time, tdry,exp,avg, in a certain conditions (steam 

temperature, sample size). In denominator, the value of 4 stands for number of 

experimental conditions, with regard to the steam temperature (110, 130, 150, 170 
o
C). 

 
dry,exp,avg dry,apr

dry,exp,avg

4

t t

t
NMAE







 

(7.4) 

The values of NMAE are collected in Tab. 7.6. According to the values of normalized 

mean absolute error, Eq. (7.2) estimates the drying time more appropriately for 

categories of 30, 10 and 5 mm, but exhibits a large deviation from the experimental 

outcome in the case of smallest object. Therefore, the second model of approximation, 
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described in Eq. (7.3), was decided to be applied for estimating the time of drying for 

2.5 mm lignite particles. An illustration of drying time, approached in different manners, 

analogically to previously presented drying rate, is shown in Fig. 7.6. 

Table 7.6 Accuracy of two proposed models of drying time approximation 

diameter d  

[mm] 

model 1 - Eq. (7.2) model 2 - Eq. (7.3) 

NMAE NMAE 

30 0.16* 0.50  

10 0.15* 0.23  

5 0.32* 0.57  

2.5 0.84  0.12* 

ssss 

s 

  * - selected model of approximation 

 

 

Figure 7.6 Drying time values obtained from the experiment,  

the approximation formula and the numerical simulation 
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The data used for estimation of the drying rate and time, in regard to various methods of 

calculation were included in [85,86]. 

7.4 Visualization of temperature field within the lignite sphere during 

superheated steam drying 

Besides utilization of the temperature profile as a function of time for selected 

regions of the sphere, the graphical representation of temperature field on its 

cross-section was prepared. As mentioned in the description of the mathematical 

foundations, the one-dimensional modelling of the drying parameters along the radius 

was applied. For that reason, the standard simulation results needed to be transformed in 

order to represent the planar coordinates of the sphere’s cross-section. That objective 

was achieved with the application of the in-house data processing utility described in 

Appendix E. Relying on processed data sets, an open source application ParaView was 

used to prepare the graphic files. 

Figure 7.7 illustrates the temperature distribution of temperature within the 

sample of 30 mm, during simulated process of drying at 150 
o
C. The corresponding 

images represent the particular values of decreasing moisture content, averaged on the 

entire particle. The spacing between the values is not equal, as the major of the water 

removal concerns the free water, which is evaporated from the particular layer at the 

constant temperature of 100 
o
C. The last two cases in Fig. 7.7, K and L, represent the 

moments of drying when the drying rate turns zero and the temperature of sample 

achieves convergence with the temperature of superheated steam, respectively. 
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Figure 7.7.1 Simulated temperature field in 30 mm object dried at 150 
o
C (part one) 
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Figure 7.7.2 Simulated temperature field in 30 mm object dried at 150 
o
C (part two) 

 

  



118 

 
 

Analogical set of images was captured for the case of 10 mm sample dried at the 

superheated steam of identical temperature of 150 
o
C. They are shown in Fig. 7.8.  

 

Figure 7.8.1 Simulated temperature field in 10 mm object dried at 150 
o
C (part one) 
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Figure 7.8.2 Simulated temperature field in 10 mm object dried at 150 
o
C (part two) 

 

The patterns of heating presented for the simulation of drying for 10 and 30 mm 

samples exhibit considerable differences. First of all, the temperature distribution is 
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more uniform throughout the entire process in the case of 10 mm object, what is related 

to the size margin of the objects. In Fig. 7.9, the correlation of decreasing moisture 

content and the simulated difference of temperature between surface and center is 

presented for two sample diameters discussed in this section. Note that when the mass 

of water equalizes the mass of dry part (X=1), the center temperature of the larger object 

is still below 100 
o
C. The sample of 30 mm tends to achieve larger temperature disparity 

for the corresponding levels of decreasing moisture content, though the peak value is 

attained relatively later in terms of level of dewatering. In general, it occurs around the 

time instance of free water removal. In the case of 10 mm particle it is related to 

moisture content of 0.1 (Fig. 7.8.E), while the bigger object achieves the maximum 

difference at moisture content level of around 0.07 (Fig. 7.7.H). 

 

Figure 7.9 Simulated temperature difference between surface and center  

of 10 mm and 30 mm samples dried at 150 
o
C 
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7.5 Influence of variability of fundamental parameters of superheated 

steam drying process on the drying kinetics 

7.5.1 Simulated drying kinetics of lignite from various deposits 

 According to the studies performed on Polish lignite [88,89], diverse material 

properties are exhibited by coal from different locations or even excavation spots within 

one deposit. Experimental results presented in chapter 5 also proved the diversification 

of the drying behavior among the samples from different lignite seams. In this section 

the results of numerical simulation performed for coals denominated B1, B2, B3 

(Belchatow lignite) as well as T1, T2, T3 (Turow lignite) are presented. 

In Tab. 7.7, the material properties that differed between particular batches, were 

presented. The parameters that were not included in this table, were assumed equal for 

all six coals, same as in Tab. 6.1. The first two properties, initial water share and density, 

were evaluated as average experimental values. For each test, they were calculated 

depending on the mass of the sample before and after drying in superheated steam. The 

values of specific heat for each type of coal were obtained in commissioned 

examination performed by an external company. The investigation was conducted 

according to the Japanese Industrial Standard (JIS K 0129). In order to find value of 

thermal conductivity, a series of auxiliary experiments was conducted for each coal 

designation, as described in Appendix A. 

Figure 7.10 presents the drying kinetics obtained by the simulation for lignite 

categories listed in Tab. 7.7. They were prepared for the exemplary case of 10 mm 

sample exposed to superheated steam at 170 
o
C. Parts on the left-hand side (A-C) 

correspond to Belchatow lignite, while the panels on the right (D-F) illustrate drying 

behavior of coal from Turow lignite mine. 
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Table 7.7 Selected material properties of Belchatow and Turow lignites 

Parameter Unit B1 B2 B3 T1 T2 T3 

initial water share WS
0
 mass% 52.5 52.6 52.8 38.7 44.2 42.8 

density (DBC) ρc kg m
-3

 1468 1378 1523 1569 1578 1561 

specific heat (DBC) cc J kg
-1

 K
-1

 
 

1202 1181 1197 1324 1439 1461 

thermal conductivity (DBC) λc W m
-1

 K
-1

 0.22 0.23 0.48 0.50 0.39 0.47 

equilibrium moisture content Xeq [-] 4.8×exp[-2.4(T-100)
0.18

] 44.8×exp[-4.4(T-100)
0.13

] 

The major visible difference between Belchatow and Turow drying 

characteristics is the shape of drying rate curve. There are two criteria of this aspect. 

First is the highest level of the drying rate. Due to higher total moisture level, 

Belchatow samples attain significantly higher level of the drying rate. The second one is 

the duration of above mentioned maximum. In case of Belchatow samples dried at the 

higher  temperatures, a distinct period of constant drying rate is exhibited. Meanwhile, 

Turow lignite achieves the maximal drying rate level, what is followed by almost 

immediate decline of the value. Such a short constant drying rate period (CDRP) is 

caused by quick evaporation of the free water in the vicinity of the surface. This 

phenomenon is reflected by relatively early growth of surface temperature above the 

saturation temperature (100 
o
C). 

Although the total moisture of B1, B2 and B3 coal is much higher than those of 

T1, T2 and T3, the difference in the drying time is not reflected proportionally, as the 

numbers in the Tab. 7.8 indicate. Results of simulation for B2013 coal (Tab. 7.3) were 

put in the table for reference. The reason is the vital importance of the initial stage of 

drying, when the speed of dewatering is kept at the highest rate. The duration of CDRP 

at 150 
o
C in exemplary case of 10 mm B3 sample is around 3.5 times longer than for T1 

in analogical conditions. As mentioned, drying of Belchatow lignite is much more 

effective than Turow during this period. 
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Figure 7.10 Drying behavior of 10 mm sample at test temperature of 150 
o
C obtained 

numerically for lignite batches from Belchatow (A-C) and Turow (D-F) mines 
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Table 7.8 Comparison of main simulation indicators for  

10 mm samples of different coal types dried at 150 
o
C 

lignite 
tdry 

[min] 

tCDRP  

[min] 

(-dX/dt)max 

×10
-4

 [s
-1

] 

tfree 

[min] 

∆T1,51,max 

[
o
C] 

B3 65.0 14.7 6.08 32.6 17.5 

T1 65.7 4.3 4.34 21.1 13.4 

B2013 67.2 13.2 5.83 32.7 20.6 

 

Figure 7.11 represents comparison of numerical and empirical drying 

characteristics for the scenarios. The analogical curves seem well matched to each other 

in the case of B3. The agreement in case of T1 lignite is not as good. It might be 

justified by the fact that that lignite batch was extracted from the footwall of the coal 

seam, where high contamination from the adjacent rocks occurs. Therefore, the overall 

distribution of properties for singular objects made of this coal is relatively wide, what 

directly induces the drying behavior, promoting the instances of drying kinetics deviated 

from the averaged simulation. 

The direct comparison between simulation outcome for both lignite groups is 

presented in the Fig. 7.12. Concluding from the curves, the higher initial moisture 

content is usually followed by higher maximum of the drying rate, as most of the 

moisture contained within coal is the free water, subject to uninhibited evaporation 

during the early period of drying. Note that the initial stage of drying, when due to 

condensation of water on the sample surface, the level of drying rate remains below 

zero, is not visible in the chart. Omission of this part is substantiated by clarity of this 

figure. 
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Figure 7.11 Comparison of drying characteristics of 10 mm sample at 150 
o
C obtained 

numerically and experimentally for A) B3, B) T1 lignite batches 
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Figure 7.12 Numerically obtained correlation of drying rate and moisture content for  

10 mm samples of Turow and Belchatow lignite dried at test temperature of 150 
o
C 

7.5.2 Sensitivity analysis of the drying kinetics in regard to process 

parameters 

As indicated previously, the drying characteristics derived both experimentally 

and numerically differ significantly in regard to the type of fuel subject to superheated 

steam drying. For that reason, the preparation of general sensitivity analysis of the 

drying model is substantiated. The application of previously verified numerical model 

facilitates such an investigation, enabling the simulation of drying with variable process 

properties. The main objective of such an approach is to determine the parameters, 

which modifications impact the process of superheated steam drying in the most crucial 

manner. 
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The sensitivity analysis was performed mainly in regard to material properties of 

lignite, as listed in Tab. 6.1, however to obtain the proper overview, the factors 

independent from the material or even the object were taken into consideration as well. 

The full list of parameters subject to investigation is presented in Tab. 7.9. The numbers 

gathered in the table are base (reference) values of the parameters. In the simulation 

attempts, each quantity was gradually increased by 10%, 30% and 50% at once, with 

other parameters remaining fixed (ceteris paribus rule). As a result, four sets of 

simulated drying characteristics were produced. The only exception concerned 

temperature of superheated steam. For analyzing the variability of other parameters, its 

value was fixed at 150 
o
C. However, the investigation of temperature modification itself 

was performed with reference value of 110 
o
C. Under such condition, all applicable 

cases fall into the range of actual experimental settings, with 165 
o
C as a maximum. 

Table 7.9 Parameters used in sensitivity analysis of the numerical model 

parameter reference value origin type 

density (DBC) ρc 1536 kg m
-3

 averaged 

experimental  

values 

material 

properties 

initial water share WS
0
 51.25 mass% 

thermal conductivity (DBC) λc 0.33 W m
-1

 K
-1

 commissioned 

research specific heat (DBC) cc 1246 J kg
-1

 K
-1

 

apparent free water  

transfer coefficient D 
3×10

-9
 m

2
 s

-1
 

empirical 

value 

sample diameter d 0.01 m 
experimental 

conditions 

extensive 

property 

superheated steam temperature Ta 150 (110)
 o
C 

external 

parameter 
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The analysis was done basing on the time charts involving correlations of the 

moisture content, drying rate and temperature profile, similarly as in basic simulation. 

In this particular part, each of the characteristic drying quantities was illustrated using a 

reference curve and three auxiliary curves, representing the increased values of a 

particular parameter. 

The indicators selected for quantitative evaluation of the simulation outcome 

were the following quantities: drying time tdry, peak drying rate -(dX/dt)max, time of free 

water removal tfree and the maximum difference in temperature between center and 

surface of the sample ΔT1,51,max. 

Fig. 7.13.1.A shows the influence of density of lignite on the drying kinetics. 

Among major factors related to the density of coal, ash content may be distinguished. 

Generally, significant content of mineral compounds is correlated with elevated value of 

specific weight. That observation is connected with relatively low density of lignite’s 

substantial ingredients: carbon, volatile matter and water in comparison to metal oxides 

that ash is mostly composed of. Still, the precise estimation of coal density should also 

take the ash composition into account, as normally several chemical compounds 

constitute its ash content [101]. An slight decline in the drying rate and a minor 

postponement of free water removal (from 33 to 36 minutes) is observed following the 

increase in density. Contrarily, the difference of surface and center temperature rises to 

21.7 
o
C from the initial 20.6 

o
C. The total time of drying is extended by around 1/6 of 

the reference value, from 67.2 to 77.8 minutes.  

In Fig. 7.13.2.B the influence of the initial water share on the process is 

exhibited. Note that curves of +30% and +50% equivalent to WS
0
 at the level of 66.6% 

and 76.9%, respectively, may only have the theoretical meaning, because water share in 

lignite rarely exceeds 65%. The simulated incline in the water share, though, induces a 
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considerable rise in the peak drying rate. As the larger amount of water needs to be 

evaporated from the lignite, tfree exhibits approximately direct proportion to the initial 

water share. In the last cases, the temperature difference escalates to 29.9 
o
C. 

The sensitivity analysis in regard to thermal conductivity as a parameter was 

presented in Fig. 7.13.2.C. The modifications of the reference value do not produce any 

changes in the top level of drying rate. The removal of free water and the termination of 

the process are remarked insignificantly sooner, as the transfer of heat through the 

sphere is simulated at a slightly higher, especially in the late stages of drying, when the 

dry part of coal possesses a greater share in the entire particle. The indicator most 

sensitive on thermal conductivity modification is the temperature gradient. 

Abovementioned increase in heat transfer rate reduces the difference of temperature 

between the extreme layers. The values of this indicator were computed at 20.6, 19.7, 

18.2 and 16.9 
o
C for base and auxiliary cases, respectively. 

The impact of specific heat alterations was presented in Fig. 7.13.3.D. The rise 

in value of this property, even as high as 50% in regard to reference case, does not 

influence the drying indicators in a significant way. For instance, the drying time 

extends by around 8% in the maximal specific heat scenario. It should be taken into 

account even in this extreme case, the specific heat of dry coal (1869 J kg
-1

 K
-1

) is 

below half of the corresponding parameter of water (4180 – 4210 J kg
-1

 K
-1

 within the 

analyzed temperature range). This is the reason that the larger influence on heat 

accumulation during drying is exerted by wet phase of a lignite particle. 

Among material properties analyzed in terms of sensitivity analysis, the apparent 

free water transfer coefficient, D, can be listed as well. Its value is related to the 

complexity of porous structure within lignite. The drying kinetics with regard to this 

parameter as a variable are exhibited in Fig. 7.13.3.E. The values of the indicators 
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remain virtually invariable, what is also reflected on their graphical representation. The 

instance of free water removal completion, which is the only indicator subject to any 

change, for subsequently increased value of D occurs 1%, 3% and 4% earlier than in the 

reference case. It can be explained by higher efficiency of free water transport to the 

vicinity of sample’s surface. The temperature of shallow layers is generally higher than 

the sample core, what elevates the rate of evaporation relating to the water stored inside 

and thus reduces the time required for free water removal. 

 

 

Figure 7.13.1 Numerical simulation of drying parametrized for: A) density 
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Figure 7.13.2 Numerical simulation of drying parametrized for:  

B) initial water share, C) thermal conductivity 
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Figure 7.13.3 Numerical simulation of drying parametrized for:  

D) specific heat, E) apparent water transfer coefficient 
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Besides investigating the material properties, that can be classified as intensive 

parameters of the process, additional quantities independent from the structure of lignite 

were taken into consideration. The correlation of drying kinetics and sample diameter as 

well as superheated steam temperature have been previously discussed in a number of 

studies, in regard to experimental attempts [85,88,105] and relying on results of the 

numerical simulation [86,106]. Those studies, though, involved a range of experimental 

condition, as described in chapter 4. In this section, the base values were set for particle 

diameter and steam temperature at 10 mm and 110 
o
C, respectively. The pattern of 

stepwise increase was assumed the same as for material properties. 

Drying curves for samples of various diameters are presented in Fig. 7.14.1.A, 

exhibiting strong dependence of size on the drying behavior. The rate of increase in the 

case of tfree and tdry in comparison to the base curve is similar. For the 11 and 13 mm 

scenarios both values are higher than reference case by 14% and 37%, respectively. 

Only for the largest sample simulation, a small disparity was observed, evinced by 

increase of times required for the removal of free water by 65% and for the completion 

of drying by 62%. The drying rate achievable during CDRP was simulated at 3.52 s
-1

 in 

the case of 15 mm object, which is nearly 40% lower than base value. The least 

considerable impact of diameter incline concerns the extreme temperature difference. Its 

rise was simulated at 5%, 15% and 24%, respectively. 

Fig. 7.14.2.B visualizes the influence of superheated steam temperature 

enhancement. Due to large disparity of analyzed instances in terms of drying time, the 

abscissae axis is limited to initial 100 minutes of the process. The ratio of peak 

temperature differences in extreme cases exceeds 16 (29.2 
o
C against 1.8 

o
C), which is 

the most considerable change among all indicators. The significant rise, regarding the 

period when the peak value of drying rate occurs as well as the value itself is also 
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observed. The predicted time required for the completion of drying is 329, 172, 79 and 

50 minutes for 110, 121, 143 and 165 
o
C of superheated steam temperature, 

respectively. 

On the whole, the degree to which variability of material properties influences 

drying kinetics is diversified. The most important in these terms is the total share of 

water within coal, followed by density and thermal conductivity. Regarding parameters 

independent from the material, the simulation of superheated steam drying displayed 

high sensitivity to changes both in object size and drying medium temperature. For 

more details, refer to [107]. 

 

Figure 7.14.1 Numerical simulation of drying parametrized for: A) sample diameter 
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Figure 7.14.2 Numerical simulation of drying parametrized for: 

B) superheated steam temperature 

7.6 Simulation of multi-particle drying 

The actual conditions determining the operation of the drying system assume 

diversification of coal assortment that is supplied to the dryer. Hence, it is reasonable to 

gain insight into drying behavior in regard to a batch of multiple particles characterized 

with different dimensions. 

The drying behavior of mixed lignite batch was previously analyzed and 

discussed regarding the experimental results in regard to four arbitrarily adapted 

scenarios [105]. In this section, the diameter of coal particles was assumed to follow the 

Rosin-Rammler formula (Eq.(7.5)), frequently utilized to model the size distribution in 

fractionized mineral matter [108,109]. 
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 (7.5) 

The equation (7.5) results in a mass percent ratio of particles characterized with 

diameter larger than d to the total mass of a particular coal group. Characteristic particle 

size for the group is represented by de, while B stands for a uniformity constant equal 1 

[74]. For the sake of asymptotical character of the function in Eq.(7.5) (the value tends 

to zero as the diameter approaches infinity), the variable of dmax is introduced to 

embody the diameter, over which only 1% of the mass distribution in each group occurs. 

To simplify the model of fragmentation, that top part is neglected and not taken into 

calculations. The remaining part is divided into 10 groups, where the first accounts for 9 

percent of the total mass distribution and groups numbered 2 to 10 represent 10% of the 

total mass distribution per each.  

The chart illustrating the negative of derivative of f(d) is shown in Fig. 7.15 for 

the scenario of dmax equal to 80 mm. The triangular markers on the bottom axis 

represent the mean diameter of a particle in each lignite group. Equation (7.6) describes 

the derivative curve in the particular form visible in Fig. 7.15. 

'( ) 5.76 exp
17.37

d
f d

 
    

 
 (7.6) 

According to the industrial standards applied by the producer of both Belchatow 

and Turow coal [110,111], there are three basic lignite assortments. They correspond to 

the maximum diameter values of 40, 80 and 300 mm and were denominated as “fine”, 

“medium” and “thick”, respectively. The representative diameter for each group of the 

particular assortment is given in Tab. 7.10. 
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Figure 7.15 Size distribution of particles in lignite groups (dmax=80 mm) 

Table 7.10 Representative diameters of particle groups in various lignite assortments 

representative 

diameter [mm] 

lignite assortment 

fine medium thick 

dmax 40 80 300 

group 1 25.19 50.38 188.95 

group 2 16.48 32.96 123.59 

group 3 12.04 24.08 90.31 

group 4 9.12 18.24 68.39 

group 5 6.94 13.88 52.02 

group 6 5.19 10.39 38.95 

group 7 3.74 7.48 28.06 

group 8 2.50 5.00 18.74 

group 9 1.41 2.82 10.59 

group 10 0.45 0.89 3.34 
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The initial 60 minutes of medium coal drying is presented in Fig. 7.16. The 

moisture content predicted for the particular groups, marked by dashed line, is plotted 

together with curves of moisture content and drying rate of the multi-particle simulation. 

The drying rate of the entire assortment declines in a stepwise manner, what is related to 

the state of attained by particles of subsequently declining representative diameter at the 

decreasing drying rate periods of drying. 

 

Figure 7.16 Individual and collective drying curves (medium lignite) 
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The simulation of drying for particles of coal grouped in assortments was 

presented altogether in the form of drying rate curve plotted against decreasing moisture 

content. The speed of evaporation is significantly influenced by the composition of a 

lignite batch [105]. When the assortment is characterized with prevailing share of 

relatively small particles (less than 10 mm in diameter) the peak drying rate is elevated 

what entails the steep shape of the correlation chart. All curves exhibit irregularities in 

the vicinity of initial (highest) moisture content, what is related to a simulated series of 

water droplets formed on the surface that happened to fall down in the condensation 

period of drying. This phenomenon, enhanced particularly in the case of medium and 

thick coal, was observed frequently in the experimentation conducted for spheres of 

30 mm [86] and occasionally in drying of other samples [85]. 

7.7 Impact of drying on the efficiency of power generation 

7.7.1 Assumptions 

In order to analyze the influence of superheated steam drying on the 

optimization of power generation, two indicators were used: carbon dioxide emission 

per generated unit of electricity and thermal efficiency of the power plant. The 

evaluation of these two quantities requires insight into composition of lignite. In 

Tab. 7.11 the constituents of B2013 coal relevant in terms of calorific value evaluation, 

alongside the general category of “remaining dry part”, were presented. The percentage 

of each elemental component, carbon and hydrogen, was reported in an outsourced 

professional investigation on the basis of dry coal. Then it was recalculated to share 

appropriate to as-received form of fuel (“raw coal” column). 
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Table 7.11 Components of B2013 lignite relevant to evaluation of calorific value  

component 

[mass%] 
dry coal raw coal 

water share WS - 51.60 

carbon C% 56.90 27.54 

hydrogen H% 4.51 2.18 

remaining dry part 38.59 18.68 

 

The calculated emission of carbon dioxide relies on the stoichiometry of 

elemental carbon combustion. Per each 12 kg of combusted carbon, 44 kg of carbon 

dioxide is formed. Taking it into account and assuming that carbon in lignite is subject 

to complete combustion, the formulation of CO2 emission per mass unit is given as: 

 
   

2 c

44
_kg = % 1

12

i iCO C WS  (7.7) 

The superscript i correlates the water share WS down to which lignite has been dried at 

a certain instance of the process with the estimated CO2 emission. 

Two quantities are commonly applied to describe the thermal effect of fuel 

combustion. HHV understood as “higher heating value” stands for the total amount of 

heat generated on burning the mass unit fuel, on the assumption that heat loss does not 

occur through the evaporation of neither water present in the fuel nor produced parallel 

to the combustion. The HHV at the air-dried state of coal can be used to obtain the 

analogical parameter for the dry coal: 

 




ad

c

ad
1

HHV
HHV

WS
 (7.8) 

According to the commissioned investigation, mentioned earlier in this section, the 
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air-dried B2013 is characterized with HHV equal to 19.08 MJ kg
-1

 and 14.6 mass% of 

water share. Applying formula (7.8), the higher heating value for the dry coal is 

22.34 MJ kg
-1

. Hence, the general formula on HHV at the current state of water share is: 

 
  

c
1i iHHV HHV WS  (7.9) 

Relying on the evaluated HHV, the lower heating value (LHV) might be 

expressed as the higher heating value diminished by the heat required for evaporation of 

inherent moisture as well as water synthesized from the oxidant and hydrogen stored 

within dry part of coal. According to stoichiometry, 36 kg of water is formed with 4 kg 

of hydrogen as a substrate of synthesis. Thus, LHV related to coal of a certain water 

share may be expressed as: 

 
     

 c
9 % 1i i i iLHV HHV L WS H WS  (7.10) 

Then, electricity generation per mass unit regarding the fuel characterized with 

particular value of LHV is in direct proportion to thermal efficiency of the power 

generation unit. 

 
 

,raw
_kgi i

LHV
E LHV  (7.11) 

Consequently, the function from Eq. (7.7) describing CO2 emission might be 

recalculated to represent emission per electricity generation unit. 

 

 
 


2

2
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_kWh = 3.6

_kg

i

i

i

CO
CO

E
 (7.12) 

Note that thermal efficiency data provided by power generation companies tend 

to rely on LHV of utilized fuel [112,113], while the scientific publication often correlate 
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the emission ratio and thermal efficiency taking HHV into account [114,115]. 

Considering these facts, the thermal efficiency calculated using both representations of 

fuel’s calorific value might be given as: 

 
,raw

i

LHVi

HHV i

LHV

HHV





  (7.13) 

The decline in water share induce rise in LHV and HHV, as presented in 

Fig. 7.17. All but one pair of data points are displaced with a water share interval of 5%, 

whereas the last is assigned to 3.94% of residual water share (equivalent to 1.98% of 

residual water percentage), a value characteristic for superheated steam drying at 150 
o
C. 

The initial disparity between higher (10.21 MJ kg
-1

) and lower heating values (8.56 

MJ kg
-1

) reduces during the process, attaining the lowest level of 0.97 MJ kg
-1

 at the 

final. That margin is justified mostly by the hydrogen content, because the theoretical 

gap, achievable for the dry lignite (elliptical selection) is equal to 0.97 MJ kg
-1

. 

 

Figure 7.17 Simulated increase in calorific value of lignite due to drying at 150 
o
C 
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The application of high-calorific fuels is beneficial in economical as well as 

ecological aspect. Reduction of water content by drying may contribute to those benefits. 

Fig. 7.18 illustrates the feasibility of carbon dioxide emission in regard to operational 

parameters of power generation units. The information on the Polish coal-fueled power 

generation units, in reference to which the illustration was prepared, is provided in 

Tab. 7.12. Scenarios 1 and 2 relate to units utilizing lignite, while the last represent 

a unit of the power plant fueled by bituminous coal. 

 

Figure 7.18 Dependence between carbon dioxide emission rate and thermal efficiency 

of exemplary power plants operating on fossil fuels [114,116] 
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Table 7.12 Reference cases applied to CO2 reduction analysis [112,117]  

scenario 
thermal efficiency 

ηLHV,raw 

refers to power 

generation unit 

electricity 

output 
commissioned 

1 38% Belchatow No. 1-12 370 MW 1980s 

2 42% Belchatow No. 14 858 MW 2011 

3 46% Kozienice No. 11 1075 MW 2017 

 

On the horizontal axis of Fig. 7.18, the thermal efficiency on HHV is shown, 

according to Eq. (7.13). Corresponding data points in each scenario are distributed in 

regard to water share value according to the same pattern as in Fig. 7.17. The reference 

trends below data markers illustrate the tendencies of carbon intensity applicable for 

bituminous (black) coal [116], oil and natural gas [114]. The estimated CO2 emission for 

raw coal in the case of 38% in thermal efficiency is equal to 1.054 kg kWh
-1

, what is 

coherent value with information on average actual emission published in 2015 by the 

operator of Belchatow power generation complex (1.069 kg kWh
-1

) [118]. The levels of 

emission attained for raw coal in scenarios 2 and 3 are 0.954 and 0.871 kg kWh
-1

. Due 

to utilization of the same simulation results in all cases, the total decrease in the 

emission rate in comparison to initial level is 12.1%. Still, the displacement of data 

points becomes more tight as the share of water declines, therefore a claim can be made 

that the most beneficial period in terms of lifting the environmental and technical 

efficiency of the power generation unit falls into the initial stage of drying. The trend 

exhibited by the data points, together with three reference curves, agree with the general 

rule that combustion of fuels characterized with higher hydrogen-to-carbon ratio results 

in lower level of carbon emission. 
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7.7.2 Influence of input coal assortment on calorific value of lignite 

As it was already stated (Fig. 7.6), the decline in object size entails considerable 

reduction of time required to complete the drying process. For that reason, the 

utilization of the grinder (expressed by its heat consumption) which prepares the fuel for 

the drying, followed by combustion or gasification, is rewarded by diminishing of the 

time and energy input to the dryer. In this section, the latter component of this 

interdependence is presented. In order to determine the impact of coal fragmentation on 

the potential of its heating value’s enhancement, three multi-particle scenarios 

introduced in section 7.5 were investigated. 

In Fig. 7.19 the simulated progress of drying for various lignite batches was 

presented in correlation to the increasing LHV. The largest improvement of coal quality 

is observed in the initial stage of the process. In order to double the lower heating value 

of raw lignite (8.56 MJ kg
-1

), circa 30 minutes is required for fine coal, twice as much 

for medium coal and over 400 minutes for thick coal. This disparity between coal 

assortments grows as the process continues. To give an example, if the target level is 18 

MJ kg
-1

 (equivalent to WS≈14% and WP≈8%), the difference between fine and medium 

coal equals 47 minutes. Whether the objective rises to 20 MJ kg
-1

 (water share around 

14%, water percentage around 8%), the difference extends to approximately 2 hours. 

Taking the deliberations above into account, the application of finest possible 

grains of coal is the most beneficial in terms of enhancement of calorific value. 

However, the fragmentation of lignite requires work provided by the grinder. Thus, for 

global analysis of the power generation unit efficiency, the loss side should also be 

discussed, with the evaluation of power input required for achieving the demanded size 

of grain. 
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Figure 7.19 Simulated increase of lower heating value for various lignite  

assortments dried at 150 
o
C 

 

7.7.3 Influence of process parameters variability on calorific value of lignite 

The selected parameters analyzed in terms of numerical model’s sensitivity 

(section 7.5.2) on their modifications were adapted to gain insight into their influence 

on upgrading the calorific value of lignite. The time dependencies of water share and 

LHV for two material properties (density, initial water percentage) and sample size are 

illustrated and discussed in this part. The adapted case is 10 mm particle dried at 150 
o
C. 

Figure 7.20 presents the abovementioned correlations in regard to dry coal 

density. It should be taken into consideration that value HHVc is fixed in that case for 

the purpose of discussion only, as the actual density is a derivative of dry coal contents, 
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which ratio influences the heating value of coal. The gap in upgrading of the lower 

heating value expands between particular scenarios as the process continues. For 

instance, achieving of 12 MJ kg
-1

 consumes between 21.6 and 24.7 minutes, whereas 

drying oriented on obtaining lignite of 18 MJ kg
-1

 is predicted to last from 32.7 to 37.6 

minutes. The first quarter hour induces a 0.54 MJ kg
-1

 difference between extreme cases. 

After another 15 minutes, the simulated level of LHV for reference curve reaches 

17.03 MJ kg
-1

 and the coal characterized with theoretical DBC density of 2304 kg m
-3

 

attains 15.64 MJ kg
-1

. At the 45-minute mark, the difference is reduced to the level of 

0.5 – 0.6 MJ kg
-1

 and further decrease to reach the saturation level around one hour 

since the start of the process. 

 

Figure 7.20 Simulated increase of lower heating value for variable dry base coal density 
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In Fig. 7.21, the chart of water share against time was shown for initial water 

share as a parameter. As explained in section 7.5, scenarios of +30% and +50% may 

have only theoretical meaning. Because of diverse share of water in raw coal, the initial 

values of LHV differ considerably in the particular cases, with the minimum level of 

3.16 MJ kg
-1

. Half an hour of simulated drying results in 9 MJ kg
-1

 of difference 

between curves representing the lowest and highest initial moisture content. After 45 

minutes of the process this disparity diminishes to 4 MJ kg
-1

 and another 5 minutes 

entails the reduction to 1 MJ kg
-1

. Comparing the +10% scenario with reference case, 

the time required for preparation of fuel of 12 MJ kg
-1

 in LHV is 32% longer, whereas 

18 MJ kg
-1

 is attained with 10% of surplus in drying time. 

 

Figure 7.21 Simulated increase of lower heating value for variable initial water share 
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The final parameter investigated in this section is the particle diameter. The set 

of curves presented in Fig. 7.22 has an intersection around the 9
th

 minute of the 

simulation. That fact is brought about by a sudden decline in water share relevant to the 

predicted fall of droplets from the surface of two largest objects (13 and 15 mm). The 

smaller samples may achieve the sooner increase of the calorific value. The 30-minute 

mark signalizes the level of LHV equal to 17.03, 15.76, 14.82 and 13.93 MJ kg
-1

 for 

base scenario and cases of subsequently increased sample diameter. 

 

Figure 7.22 Simulated increase of lower heating value for variable sample diameter 
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In general, the influence of various initial water share on the calorific value 

enhancement is explicit mainly during the initial stage of drying, the impact of 

increased size becomes apparent after a certain time, whereas remaining material 

parameters, represented in this comparison by density, evince slight variation of LHV 

enhancement throughout the drying process. 
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8. CHAPTER 8 

Summary 

8.1 Conclusions 

The analysis of drying properties of lignite exposed to superheated steam 

atmosphere was performed in relation to coals from Polish mines in Belchatow and 

Turow. The experimental attempts involved spherical objects of four diameters dried in 

the gaseous medium heated up to four various temperatures. The measurements of 

changing weight and temperature were used to prepare the drying characteristics, which 

included time charts of moisture content, drying rate and temperature of sample surface 

and interior. The fundamental correlations between sample size, steam temperature and 

drying indicators were formulated. The approximation formula was proposed to 

calculate expected time of drying as a function of two main experimental conditions. 

Moreover, the detailed analysis of the particular stages of drying was performed, 

considering the transport and evaporation of two general types of moisture in coal: free 

and bound water. 

Applying the experimental results, a thermodynamic deliberation on the heat 

transfer between steam and coal during constant drying rate period was done, producing 

approximation equation on the heat transfer coefficient and the empirical formula on 

maximum level of the drying rate. The correlation between initial water share and initial 

density of lignite was confirmed and supplemented with an attempt to include the 
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prevailing coal lithotype in this interdependence. In terms of experimental repeatability, 

a negative impact of foreign inclusions from the adjacent rocks into lignite structure was 

observed. Relying on samples originated in different geological surroundings, the 

functions of equilibrium moisture content were elaborated. They were also used to 

successfully validate formulated general dependencies between material properties 

(water share, dry bulk density) and drying indicators such as rate of dewatering, with 

homogenous results distribution obtained for Belchatow coal and wide dispersion in the 

case of Turow lignite. Significantly sooner evaporation of water was found out for coal 

from Turow mine, comparing to its counterpart from the central part of Poland. 

For the sake of comprehensive understanding of the drying process, observations 

of coal surface were performed with video recorder. Due to such approach, the 

acquisition of data on cracking, shrinkage and droplet formation was possible. The 

samples of larger size exhibited higher vulnerability on cracking. The expansion of 

sample surface and exposition of porous structure to the direct impact of the drying 

medium might enhance the rate of drying. The evaluation of shrinkage was performed, 

confirming the major influence of this phenomenon for water share below 40%. 

On the assumption of isotropy of the properties within the coal sphere, a one 

dimensional mathematical model of drying was prepared. It used the concepts of the 

receding wet core and border of evaporation. The deliberation on heat and transfer 

phenomena occurring between lignite and superheated steam was conducted with 

reference to results of the previous studies on coal and other porous materials, tables of 

thermodynamic properties of water as well as the results of experimental investigation. 

The temperature distribution over the drying period was visualized, illustrating the 

increase of heating homogeneity with decline of the sample diameter. In order to 

determine decisive material properties of lignite, a sensitivity analysis of the drying 
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model was performed, indicating initial water share as the most sensitive parameter, 

followed by density and thermal conductivity of the dry coal matter. An attempt to 

determine the industrial applicability of divergent coal assortments was made, resulting 

in correlation curves between the fragmentation of lignite and potential of increase in 

calorific value. The required time of drying for attaining particular levels of lower 

heating value was also evaluated with regard to varying material parameters, such as 

density or water percentage. 

The empirical trials and numerical simulations were supplemented with auxiliary 

activities aimed at achieving necessary information. They included, but were not 

restricted to in-house experimentations deriving the thermal conductivity, outsourced 

laboratory tests of heat capacity or transformation of numerical results with the 

application of self-made data processing utility. Some of these procedures are described 

in the Appendix section, following this chapter. 

8.2 Recommendations 

The present work focused mainly on analysis of fundamental properties of 

lignite on the kinetics of drying in superheated steam. However, the findings attained 

during the research inspired a series of questions for possible investigation in the future. 

For instance, the investigation of relationship between issues of physical 

structure, exhibited by predominant lithotype, and attributes related to drying, triggered 

the interest in the manner of water storage in the porous structure of lignite. Although 

the porosity of coal has already been investigated by means of gas absorption [119] or 

X-ray irradiation [120], the nature of pores still evinces a research potential. A technique, 

which could be potentially applied to visualize the macro- and mesopores (larger than 

2 nm) is known as FIB-SEM (focused ion beam combined with scanning electron 
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microscope). It was successfully applied to investigate the microstructure of electrodes 

in solid oxide fuel cells [121]. In the case of lignite, a detailed insight into its pores 

network is expected to be achieved, including the hollows without channel connection 

with the ambience (and therefore unreachable by the gas absorption methods). Still, it 

should be taken into consideration that the volume of interest in a single FIB-SEM 

measurement can include around several thousands of cubic micrometers. For that 

reason, a series of tests would be required to gain enough comparative material and 

draw some solid conclusions validated by the observation of various areas of the coal 

structure. 

Another area discussed in this work in which a further investigation is desirable 

is the analysis of superheated steam drying in relation to raising the thermal efficiency. 

In this study an attempt was made to evaluate the increase in calorific value of lignite as 

a function of residence time in dryer operating on superheated steam. The results were 

related to possible impact on the efficiency and carbon intensity of the coal-fired power 

plants. However, only the gain side was discussed, without estimating the costs of 

decreasing the water content. Hence, a study on heat consumption by the dryer could be 

informative, preferably with regard to larger scale of the research. The latter aspect 

concerns also the fragmentation of coal. As indicated in this study, the assortment of 

dried material exhibits strong correlation with the rate of incline in the heating value. 

Therefore, besides drying equipment, the workload of the grinder preparing the fuel for 

further utilization should also be taken into account. By such means, indication of the 

optimal parameters of the fuel preparation system may be possible. 

On the subject of technological dependences between fuel and energy 

conversion equipment, the complex feasibility study might be interesting follow-up of 

the fundamental research of lignite properties. It should involve all stages of fuel 



155 

 
 

utilization, from the production site to the ultimate physical and chemical 

transformation. However, the emphasis could be put on the stages of direct preparation 

and utilization of lignite. For instance, the lignite batches investigated in this work with 

regard to their drying properties were also examined for prospective gasification in 

IGCC technology. Whereas physical parameters related to heat and water transfer were 

mainly analyzed in the case of drying, the chemical composition of ash, determining the 

viscosity of molten slag was decided a critical aspect in feasibility of integrated coal 

gasification [101]. Combination of fuel property analyses related to various stages of its 

application may contribute to more effective allocation of resources by national 

economies seeking for effective power generation technologies relying on fossil fuels. 
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A. Appendix A  

Determination of thermal conductivity coefficient 

A.1. Experimental setup and procedure 

The experimental apparatus used for the determination of thermal conductivity is 

presented in Figure A.1. The water bath was heated to 80 
o
C and empty plastic balls 

were put to float on the water surface and provide the thermal insulation from the top of 

the vessel. The spherical lignite sample, suspended by the wire installed on the rack, 

was equipped with two thermocouples, similarly to the regular superheated steam 

drying experiments: one measuring the center and the other the midpoint temperature of 

the sphere. An auxiliary thermocouple was used to monitor the temperature of water, 

above the coal sample. 

Starting on from the moment of the sample immersion in water, the acquisition 

of temperature data was performed every 1 second. It lasted until the center temperature 

reached the temperature of water level. In order to determine the value of thermal 

conductivity, the numerical simulation illustrating this heating process was conducted as 

described below. 

Lignite from seven excavation spots was examined, four of which were located 

in Belchatow lignite complex (designated: B2013, B1, B2, B3) and three in Turoszow 

lignite complex (T1, T2, T3). For each lignite type, at least 4 tests were done and 

average results were assumed representative values of thermal conductivity coefficient. 
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Figure A.1 Scheme of thermal conductivity measurement setup 

A.2. Assumptions of the simulation 

 The sample is a perfect sphere of isotropic properties, what makes the 

one-dimensional modelling along the radius possible. 

 There are N spherical shells of stepwise decreasing diameter constituting the 

model of the sample. Each of them has equal width 2b, besides the first and last, 

characterized with the half of the standard width: b. The N number was assumed 

60 in this experimentation. 

 The initial temperature of coal for each simulation attempt is adjusted to the 

actual experimental temperature measured by the thermocouples. 

 Lignite contains two phases: water and dry coal, ratio of which is decided by 

average experimental value of initial moisture content X
0
. The ratio remains 

invariable throughout the heating process. 

 Specific heat, cc, and thermal conductivity, λc of dry coal are material properties 

and are assumed constant for the specific type of lignite. 
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 Thermal conductivity of water, λw, exhibits temperature dependence [122]: 

 6 2 3

w
( ) 8.71 10 2.01 10 0.56T T T        (A.1) 

 The properties of lignite are resultant of corresponding dry coal and water 

properties, weighed regarding to mass fraction (moisture content) of both 

phases. 

 The explicit method of simulation was applied. The stability condition was 

fulfilled, regarding the time step width Δt equal to 0.05 s. The temperature of the 

layer n in the time instance i is expressed as: 
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       
     

 (A.2) 

Where rint,n,n-1 represents the radius of the interface between layers n and n-1, which is 

equal to the arithmetic mean of the radii of those adjacent layers. 

A.3. Function of the objective 

The solution of a problem introduced in this Appendix is a value which 

minimizes the function of the objective. The function, which variable is a value of 

thermal conductivity, is expressed in Eq. (A.3) 

   
2 2

mid,exp mid,sim cent,exp cent,sim

0 0 mid cent

c

1
( )

2 2

DT DT
i i i i

i i

T T T T
RMSE RMSE

f
DT DT

  

 
   

   
 
 
 

 
 (A.3) 
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where the variances between temperature of midpoint and center measured 

experimentally and calculated in a simulation are taken into consideration. Thus, the 

contributions on the right-hand side of Eq. (A.3) represent root-mean squared error 

(RMSE) for midpoint and center temperature, respectively, giving the average RMSE as 

an result. The variable of DT is the number of simulation steps, which is the quotient of 

total simulation time (needed for attainment of thermal equilibrium between coal and 

water) and time step width: 

 
sim

t
DT

t



 (A.4) 

The chart illustrating the determination of thermal conductivity coefficient is 

shown in Figure A.2. Each data point represent a value of either midpoint, center or 

average RMSE appropriate for singular simulation attempt. This particular case was 

performed for B1 lignite and came out with a value of 0.351 W m
-1 

K
-1

. 

 

Figure A.2 Illustration of exemplary minimization of the function of the objective  
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B. Appendix B  

Determination of heat transfer coefficient 

B.1. Derivation from experimental drying kinetics 

On the assumption that changes in sample geometry are negligible during the 

constant drying rate period (CDRP), the heat transfer per unit area between the 

superheated steam and coal surface can be defined at this period as: 

 
 a 1q h T T   (B.1) 

where q̇ is the heat flux to the surface [W m
-2

] and h is the heat transfer coefficient 

[W m
-2

 K
-1

]. During the period of constant drying, the surface of the sample remains at a 

steady temperature T1 = 100 
o
C. The entire heat input to the sample at the CDRP is 

consumed for the evaporation of free water. Under those circumstances, the heat 

transfer per unit area of the sample surface, might be expressed by the following 

dependence on the evaporation rate υ: 

 
wd

d

m
q L L

A t
     


 (B.2) 

where L is the latent heat of free water evaporation (2.256×10
6
 J kg

-1
). The correlation 

between evaporation rate and drying rate DR is given by the following equation: 
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 0c c
c

d d

d 6 d

m m X d X
DR

A A t t
      (B.3) 

Combination of equations (B.1)-(B.3) produces the formula for the heat transfer 

coefficient as a function of the drying rate, valid during the CDRP: 

 

 
c

exp 2

a 1

d

d

L m X
h

T T d t

 



 (B.4) 

B.2. Derivation with a linearized radiation equation 

Another approach to obtaining the heat transfer coefficient involves deliberation 

on two mechanisms of heat transfer, convection and radiation, as in Eq.(B.5): 

 
conv radq q q   (B.5) 

The convective heat transfer is given as: 

 
 conv conv a 1q h T T   (B.6) 

while the radiative term can be defined as: 

 
   

4 4

rad r a 1273.15 273.15q T T        
 

 (B.7) 

The relative emissivity εr is equal to 0.887 [85], and σ stands for the Stefan-Boltzmann 

constant (5.67×10
-8

 W m
-2

 K
-4

).  

The heat flux in Eq. (B.5) can be expressed as a sum of coefficients multiplied 

by temperature difference: 

 
   rad a 1 conv a 1

q h T T h T T     (B.8) 

Hence, the apparent coefficient of radiative heat transfer can be expressed as in (B.9). 
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4 4
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rad

a 1

273.15 273.15T T
h

T T

       
 


 (B.9) 

The convective term of the coefficient, for the low Reynolds number combined with the 

assumption of the laminar flow and natural convection, might be given as: 

 
a

conv Nuh
d


  (B.10) 

where Nu represents the Nusselt number and λa is the thermal conductivity of the 

superheated steam. The dimensionless numbers and thermodynamic parameters leading 

to the derivation of the Nusselt number are listed in Tab. B.1. 

Table B.1 Properties and dimensionless numbers used in derivation of hconv  

quantity formula [source] 

Nusselt number Nu  2 0.760 (Pr) Ram

TC     [123] 

Prandtl number Pr 
a

a




 

Coefficient CT 

1

43 Pr

4 2.4 4.9 Pr 5Pr

 
 

  
  [124] 

Rayleigh number Ra Gr Pr  

Grashof number Gr  
3

a 1 2

a a

9.81 d
T T

T 
   

Coefficient m 0.095

1 1

4 4 8.2Ra



 [124] 

thermal conductivity of steam 

λa [W m
-1

 K
-1

]  

7 2 5

a a1.16 10 5.17 10 0.0184T T        [122] 

kinematic viscosity of steam  

νa [m
2
 s

-1
] 

10 2 8 5

a a2.04 10 8.21 10 1.06 10T T           [122] 

thermal diffusivity of steam  

αa [m
2
 s

-1
] 

10 2 8 6

a a2.48 10 8.47 10 9.77 10T T          [122] 
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Combination of the equations gathered in Tab. B.1 leads to the conclusion that 

convective heat transfer coefficient is a function of superheated steam temperature and 

diameter of the sample, while the term related to radiation depends only on the 

superheated steam temperature. Taking these facts into account, the approximated 

equation of the resultant heat transfer coefficient, can be formulated: 

 
4 2

2

apr a

2.381 10 2.99 10
9.173 10 5.43h T

d d

 
    

       
   

 (B.11) 

 

 
Figure B.1 Correlation of the heat transfer coefficient derived from exact and 

approximated equations 
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The values of heat transfer coefficient were calculated for the entire set of test 

temperatures and sample diameters using the approach presented in section B.1 and 

compared with linear approximation constructed in section B.2. The correlation of 

coefficients obtained in two methods is shown in Fig. B.1. 
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C. Appendix C  

Optimization of model segmentation 

C.1. Assumptions 

In order to determine the appropriate number of elements within a spherical 

model of lignite, the drying simulation was performed for six segmentation cases: 6, 10, 

30, 50, 100 and 200 layers. The diameter of modelled sample was 30 mm, as it was the 

largest size of object used in the experimentation, while the steam temperature was 

simulated at the level of 150 
o
C. Two conditions were taken into consideration: the 

number of simulation iterations required to achieve convergence and the real time 

elapsed for the completion of the simulation. The correlation of the conditions and the 

number of the elements within the sphere were shown in Fig. C.1 and Fig. C.2. The time 

of simulation had a direct, while the number of iterations inverse proportion to the 

number of layers. 

The first criterion was objective and relied only on the construction of the model, 

with target temperature difference between superheated steam temperature Ta and center 

temperature of lignite TN+1 lesser than 5×10
-6

 
o
C. The second condition was 

CPU-dependent, thus, both sets of results were transformed into relative values with 

regard to the maxima. The absolute and relative values were gathered in Tab. C.1. 



182 

 
 

 

Figure C.1 Relation between number of layers and the number of simulation iterations 

 

 

Figure C.2 Relation between number of layers and the time required for simulation 



183 

 
 

Table C.1 Absolute and relative values of both optimization criteria 

number of 

layers N 

number of iterations I time of simulation tsim [s] 

absolute relative absolute relative 

6 25880559 1.000 647 0.050 

10 25132360 0.971 1018 0.079 

30 24424053 0.944 2659 0.207 

50 24281146 0.938 3545 0.275 

100 24171933 0.934 7796 0.606 

200 24116066 0.932 12870 1.000 

 

For the determination of optimal number of layers, the particular criteria were 

arbitrarily assigned to weights. The number of iterations is by far more important than 

the time of simulation, therefore 0.95 was given to the former, while 0.05 to the latter 

criterion. The relative values of I and tsim were multiplied by the corresponding weights 

to form the function of the objective. The number of layers for which the minimum 

resultant value was obtained, N=50 was decided to be applied to the model. Figure X 

presents the results of the investigation. 

 

 

Figure C.3 Minimization of the function of the objective 
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D. Appendix D  

Unsteady state heat transfer in lignite by means of conduction 

D.1. Assumptions 

For the sake of verification of the basic equations constituting the mathematical 

model of drying, the analytical solution of the transient heat transfer by conduction was 

calculated and compared with the numerical results. The comparison was simplified and 

limited to heating of dry coal (X=0) from the initial temperature T
0 

= 40 
o
C to the 

temperature of surrounding medium Ta = 150 
o
C. Although heat transfer coefficient was 

calculated according to the equation derived for the superheated steam (Eq.(B.11)), no 

condensation of water on the surface was assumed. The object selected for comparison 

had 30 mm in diameter. The thermophysical quantities as well as dimensionless 

numbers applied for the analytical solution were gathered in Table D.1. 

D.2. Analytical solution 

The analytical solution was modeled using the approach of Wisniewski [125]. In 

order to describe unsteady heat transfer in lignite sphere, three auxiliary quantities were 

applied. The excess temperature is defined as: 

 
a

( , ) ( , )r t T T r t    (D.1) 

 



186 

 
 

Table D.1 Parameters used for the analytical solution of lignite heating 

quantity  value origin 

diameter d 0.03 m section 4.1 

characteristic linear dimension R 0.015 m d / 2 

superheated steam temperature Ta 150 
o
C section 4.3 

initial temperature T
0 40 

o
C section 6.2.1 

density (DBC) ρc 1536 kg m
-3 

Tab. 6.1 

thermal conductivity (DBC) λc 0.33 W m
-1

 K
 -1

 Tab. 6.1 

specific heat (DBC) cc 1246 J kg
-1

 K
-1

 Tab. 6.1 

heat transfer coefficient h 21.36 W m
-2

 K
-1

 Eq. (B.11) 

thermal diffusivity αc 1.72×10
-7

 m
2
 s

-1
 λc / (ρc × cc) 

Biot number Bi 0.971 R × h / λc 

 

The radius r was applied to define dimensionless radius r
+
, with regard to characteristic 

linear dimension R: 

 
( )

r
r r

R

   (D.2) 

 To derive the dimensionless analogue in terms of time, Fourier number was used: 

 
2

Fo( )
t

t
R


  (D.3) 

The problem of heating of the isotropic sphere, which is characterized with 

constant thermal conductivity, density and specific heat, might be expressed in the form 

of differential equation: 

    2

c 2

( , ) ( , )r r t r r t

t r

 


 


 
 (D.4) 
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with following boundary conditions: 

 
c

( , )
( , )       for 

R t
h R t r R

t


 

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

 (D.5) 

 (0, )
0         for 0

t
r

t


 


 (D.6) 

and initial condition: 

 0

a
( ,0) ( ,0) ( )       for 0r T T r r t      (D.7) 

Taking into account the symmetry condition Eq. (D.6) and that the temperature of the 

center at any moment cannot be infinitely high, ϑ(0,t) ≠ ∞, the particular solution of 

Eq. (D.4) can be formulated as below: 

 2

2
( , ) sin exp( )

F r
r t t

r R R

 
    (D.8) 

where β represents an infinite sequence of roots of the characteristic equation 

(Eq. (D.9)) derived from the boundary condition (Eq. (D.5)). 

 
tg =

1 Bi





 (D.9) 

Coefficient F can be expressed with reference to β sequence in the formula: 

 
 

 

02 sin cos

sin cos

m m m

m

m m m m

R
F

   

   





 (D.10) 

The general solution is the sum of particular solutions, presented in Eq. (D.8). 

Taking dimensionless radius r
+
 and dimensionless time Fo into consideration, the 

general solution can be given: 
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( ,Fo)= sin exp( Fo)m

m m

m

F
r r

Rr
  


 




  (D.11) 

In order to calculate the temperature of the sphere at a certain time in the precise 

manner, the first six terms of a series expressed in Eq. (D.11) were used. The exact 

values of β were interpolated from the table of roots for specific values of Biot number, 

as shown in Tab. D.2. 

Table D.2 Exertion from table of roots for Eq. (D.9) [125] 

Bi β1 β2 β3 β4 β5 β6 

0.8 1.4320 4.6696 7.8284 10.9774 14.1230 17.2672 

1.0 1.5708 4.7124 7.8540 10.9956 14.1372 17.2788 

0.971 1.5505 4.7061 7.8503 10.9929 14.1351 17.2771 

 

The values of r
+
 for surface, midpoint and center were assumed 1, 0.5 and 10

-6
. 

D.3. Numerical solution 

The numerical solution in simplified form, for heating of the lignite sphere, can 

be reduced to the following dependencies valid in time instance i: 

 boundary conditions 

 
 2

1, 1 a 1
4i i

n
Q h r T T t     (D.12) 

 
1,out

0i

N
Q


   (D.13) 

 initial condition 

 0 o40 CT   (D.14) 
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 heat conduction 

 
 , 1,int c

,in 1

1

1

4
n ni i i

n n n

n n

n n

r
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b b

r r

 
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(D.15) 

 heat propagation 

 
1,in ,out

i i

n n
Q Q


    (D.16) 

 heat consumption 

 
,in ,out cons, c c

i i i i

n n n n
Q Q Q c m T       (D.17) 

The combination of the formulas above lead to the equation describing the temperature 

of the sphere layers in the subsequent time instance i+1: 

 
,in ,out1

c c

i i

n ni i

n n

Q Q
T T

c m


 

   (D.18) 

D.4. Comparison 

The values of temperature were determined using both numerical and analytical 

method for the time step width of 1 s. The convergence criterion applied for the 

computational model of drying (difference between surrounding gas and center 

temperature equal to 5×10
-6

 
o
C) was fulfilled for numerical method after 9232 s (153.9 

min). At that time, the corresponding value for analytical method was 5.7×10
-6

 
o
C. 

Figures D.1, D.2 and D.3 present the temperature profile of the heated dry coal 

sphere, calculated analytically and numerically for surface, midpoint and center, 
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respectively. First 50 minutes of the process was shown in each case and the gaps 

between the curves are impossible to distinguish at the current scale of the charts. 

 

Figure D.1 Surface temperature of heated dry coal sphere determined in two methods 

 

Figure D.2 Midpoint temperature of heated dry coal sphere determined in two methods 
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Figure D.3 Center temperature of heated dry coal sphere determined in two methods 

 

In order to determine the coherence of acquired results, the root-mean squared 

error coefficient was calculated for all three pairs of output temperature data sets, 

according to the formula given in Eq. (D.19). In accordance with the statement in the 

first paragraph of this section, DT was equal to 9232. The corresponding values for 

surface, midpoint and center temperature of 0.0297 
o
C, 0.0299 

o
C and 0.0274 

o
C were 

evaluated as satisfying to sustain the basic assumptions of numerical heat transfer 

applied in the drying model.  
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

 

(D.19) 
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E. Appendix E  

Coal temperature data processing utility 

E.1. Assumptions 

In this part, the idea, scheme of operation and source code listing of a utility, 

which prepares the input data for coal temperature visualization, is presented. Due to 

one-dimensional character of the numerical model, the simulation results are achieved 

as a single file containing values of temperature corresponding to the spherical layers 

along the sample radius (Fig. E.1). The subsequent rows of temperatures are separated 

by the simulation’s time step or its multiplication (second, minute), accordingly to the 

total time of drying. In order to present the temperature distribution in a proper way, the 

transformation of simulation file into a series of output files is required. The files 

correspond to the particular time instances of the process. For each layer, a series of 

nodes, distributed symmetrically on the both sides of the geometrical center of the 

object on the OX axis. Their number depends on a layer diameter, therefore can be 

given as a function of layer’s number. Every x coordinate of a node is used to calculate 

the y value, according to the Eq. (E.1). The parameter computed in this way is paired 

with its additive inverse for the sake of covering the mesh on the both sides of OX axis. 

 
2 2

ny r x   (E.1) 
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Figure E.1 Scheme of simulation results (source file) and output files applied for 

graphical representation of temperature distribution within lignite sphere 

E.2. Schematics of data transformation 

The specificity of the task presented schematically in Fig. E.1 includes the 

following aspects: 

 acquiring the detailed information about simulation time and segmentation count 

from the source file, 

 reading the temperature values from the file and generating the temperature 

field, 

 preparation of the mesh which contains all the layers of the model, 

 combining the temperature field with round-shaped mesh, 

 iterative storage of data into subsequent output files. 

Due to the necessity of multiple data flows between files and program or 

between matrices/vectors containing values and Cartesian coordinate system, the 

application of structured programming, as in the program executing the simulation of 

superheated steam drying (C++ language), was supposed to be ineffective. Therefore, 
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the object programming was applied to address the problem of data transformation. This 

paradigm relates more adequately to the nature of mathematical objects, that digital 

representations of exchange information between each other. The graphical scheme of a 

utility constructed using Java language is presented in Fig. E.2. 

 

 
Figure E.2 Graphical scheme of operation and data organization in temperature data 

processing utility 

  

It operates on five classes, which functioning is coordinated by the Main class. 

The only data kept within the Main class is the radius of modelled sample, distinguished 

by capital-letter name Radius. The order of operations performed by the program is 

following: 

1. Main class passes the name of the input file (the one containing drying 

simulation results) to the Time and Layers classes. The two latter classes 

use check() method to read the number of rows and columns, and then 

store the acquired data in t and N variables, respectively. 



196 

 
 

2. Main class sends the input filename to the IO class, altogether with t and 

N values. Invoking load() method, IO class is able to get the values of 

input file and return them as a temperature field two-dimensional array 

(tempField). 

3. Main class performs two operations for t times: 

a. passes the tempField, N and Radius variables, together with 

current time instance i to Mesh class, receiving the 

two-dimensional mesh circMesh, coupled with temperature 

variables, 

b. passes circMesh to IO class, which using save() method, stores it 

to the subsequent output files. 

It should be noted that Mesh class, besides using own constructor to generate circMesh, 

applies also linToCos() method, which transforms the linear system of nodes in a 

particular layer into distribution described by trigonometric function. Thanks to such 

approach, the resultant mesh is refined near its edges, what guarantees fairly uniform 

distribution of the mesh points on the entire circular cross-section. The application of 

linear range the points of low y value are insufficiently represented in the mesh, 

especially near the circle border.  

The output CSV files prepared in the manner described above were then loaded 

into ParaView application as described in section 7.4, which offers multiple possibilities 

of graphical representation of numerical data. Fig. E.3 illustrates the exemplary frame of 

the animation of the transient temperature distribution in the lignite dried with the use of 

superheated steam. The red rectangle symbolically encompass the input data vector for 

the current time instance, while the violet circle indicates the entire range of mesh 

points, being the result of temperature data processing utility operation. 



197 

 
 

 

 

Figure E.3 Scheme of input and output data on the circular mesh (ParaView) 

E.3. Code listing 

Class Main 

public class Main { 

public static void main(String[] args) { 

   

File inputFileName = new File(System.getProperty("user.dir")+"\\"+"input.csv"); 

int N = SegmentationCheck.check(inputFileName);  

// segments count(read from input file) 

int layers = N+1; // layers (nodes) count 

double Radius = 10.0/2.0;  //sample total radius 

double interval = Radius/(double)N;//interval between layers along the radius 

int t = TimeCheck.check(inputFileName);//time of simulation (read from input file) 
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double [][] tempField = InputOutput.load(inputFileName, t, layers); 

 

for (int i =0; i<=t;i++) { 

MeshGrid circMesh = new MeshGrid(N,Radius,interval,tempField,i); 

    

InputOutput.save(circMesh.getX(), circMesh.getY(), circMesh.getY_neg(), 

circMesh.getZ(), circMesh.getT(), circMesh.getX_nod(), N, i); 

  } 

 } 

} 

Class Layers 

public class Layers { 

static int check (File input){ 

int columns=0;   

 

try (Scanner sc = new Scanner(input)){ 

String layerLine = sc.nextLine(); 

String []layerCount = layerLine.split(";"); 

columns=layerCount.length; 

return columns-1; 

} catch (IOException e) { 

e.printStackTrace(); 

return columns; 

  } 

 } 

} 

Class Time 

public class Time { 

static int check (File input){ 

int rows=0;   

   

try (Scanner sc = new Scanner(input)){ 

while (sc.hasNextLine()) 

{sc.nextLine(); 

rows++; 
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} 

return rows-1; 

} catch (IOException e) { 

e.printStackTrace(); 

return rows; 

  } 

 }  

} 

Class IO 

public class IO { 

public static void save (double[][] xMesh, double[][] yMesh, double[][] y_negMesh, 

double[][] zMesh, double[][] TMesh, int[] nodes, int N, int t) { 

   

String outputFileName = System.getProperty("user.dir")+"\\"+"output"+t+".csv"; 

File output = new File (outputFileName); 

  

try(PrintWriter out = new PrintWriter(output)){ 

out.print("x;y;z;T"); 

out.println(); 

for (int n=0;n<=N;n++) 

{for (int i=0;i<nodes[n];i++) { 

double x=xMesh[i][n]; 

double y=yMesh[i][n]; 

double y_neg=y_negMesh[i][n]; 

double z=zMesh[i][n]; 

double T=TMesh[i][n]; 

out.print(x+";"+y+";"+z+";"+T); 

out.println(); 

out.print(x+";"+y_neg+";"+z+";"+T); 

out.println(); 

} 

} 

}catch (FileNotFoundException e) { 

e.printStackTrace(); 

  } 

 } 

public static double[][] load (File inputFileName, int t, int layers) { 
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double[][]tempField = new double[t+1][layers]; 

try (Scanner sc = new Scanner(inputFileName)){ 

int m=0; 

while (sc.hasNextLine()) { 

String line = sc.nextLine(); 

String []data = line.split(";"); 

for (int n=0;n<layers;n++) 

tempField[m][n]=Double.parseDouble(data[n]); 

m++;} 

} catch (IOException e) { 

e.printStackTrace(); 

} 

return tempField;   

 } 

} 

Class Mesh 

public class Mesh{ 

private double [][]x,y,y_neg,z,T; 

private int []x_nod; 

Mesh(int N, double Radius, double interval, double[][]tempField,int currentTime) 

{double []rad = new double[N+1];    //radial coordinates 

x_nod = new int[N+1];      //nodes count 

for (int n=0;n<=N;n++){ 

x_nod[n]=2*(N-n)+1; 

rad[n] = (double)(N-n)*interval;} 

   

x = new double[x_nod[0]][N+1];  //rectangular abscissae 

y = new double[x_nod[0]][N+1];  //rectangular ordinates 

y_neg = new double[x_nod[0]][N+1]; //rectangular negative ordinates 

z = new double[x_nod[0]][N+1];  

//rectangular neutral coordinates (for 3D visualisation) 

T = new double[x_nod[0]][N+1]; 

//temperatures corresponding to particular coordinates 

for (int n=0;n<=N;n++){ 

for (int i=0;i<x_nod[n];i++) { 

x[i][n]=-rad[n]+LinToCos(x_nod[n], interval,rad[n])[i];   

y[i][n]=Math.sqrt(rad[n]*rad[n]-x[i][n]*x[i][n]); 
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y_neg[i][n]=-y[i][n]; 

z[i][n]=0.0; 

T[i][n]=tempField[currentTime][n];} 

} 

} 

  

double []LinToCos (int nodes,double interval,double layerRad){ 

//casting linear abscissae range to trigonometric 

double [] linNod = new double [nodes]; 

double [] cosNod = new double [nodes]; 

double [] arg = new double [nodes]; 

double x; 

   

for (int i = 0;i<nodes;i++)  

 {linNod[i] = interval*i; 

 x=-layerRad+linNod[i]; 

 arg[i]=x*Math.PI/(2.0*layerRad);} 

    

for (int i = 0; i<=(nodes-1)/2;i++) 

 cosNod[i]=Math.cos(arg[i])*linNod[i]; 

for (int i = 0; i<(nodes-1)/2;i++) 

 cosNod[nodes-1-i]=2*layerRad-Math.cos(arg[i])*linNod[i]; 

 

if (nodes==1) cosNod[0]=0.0; 

return cosNod; } 

 

  public double[][] getX() {return x;} 

  public double[][] getY() {return y;} 

  public double[][] getY_neg() {return y_neg;} 

  public double[][] getZ() {return z;} 

  public double[][] getT() {return T;} 

  public int[] getX_nod() {return x_nod; } 

} 
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F. Appendix F  

Computational algorithm of superheated steam drying 

F.1. Assumptions 

The algorithm of numerical model was prepared and presented in the form of the 

flowchart diagram, regarding to the mutually exclusive stages of the drying process, 

shown in sections F.2.2-F.2.5. The components of the diagram were illustrated in 

accordance with ISO standard [126], as indicated in Fig. F.1. 

 

Figure F.1 Examples of the components used in the flowchart diagram  

of numerical algorithm 
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F.2. Flowchart diagram 

F.2.1 Initial calculations 
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F.2.2 Condensation stage 
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F.2.3 Surface evaporation stage 
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F.2.4 Drying 1 stage – free water occurring 

 



208 

 
 

F.2.5 Drying 2 stage – no free water occurring 
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F.2.6 Water transfer procedure 

 

 


